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Abstract 
Choosing rationally the spatial resolution for remote sensing 
requires a formal relation between the size of support and 
some measure of the information content. The local variance 
in the image has been used to help choose an appropriate 
spatial resolution. Here we choose spatial resolutions to map 
con tin uous variation in  properties, such as biomass, using 
the variogram. The experimental variogram can be separated 
into components of underlying spatially dependent variation 
and measurement error. The spatially dependent component 
can be deregularized to a punctual support, and then regu- 
larized to any spatial resolution. The regularized variogram 
summarizes the information attainable b y  imaging at that 
spatial resolution because information exists in the relations 
between observations only. The investigator can use i t  to se- 
lect a combination of spatial resolution and method of anal- 
ysis for a given investigation. Two examples demonstrate the 
method. 

Introduction 
If the Earth were spatially uniform, then the signal of a given 
area of ground would be the same as that from its neighbor 
and there would be no relation between spatial resolution and 
signal strength. In practice, however, the Earth is spatially var- 
iable and the frequency of this variability determines the form 
of this relation between spatial resolution and signal strength 
(Raffy, 1993; Raffy, 1994). To characterize this important rela- 
tion, we need to use the techniques of geostatistics. Through- 
out this paper, the geostatistical concept of the support (the 
size, geometry, and orientation of the space over which mea- 
surement is made) is taken to be equivalent to spatial resolu- 
tion. In practice, the geometry of the support is complex, and 
the true size of support is much greater than the spatial reso- 
lution because of the point spread function (PSF) of the sensor. 
Further, the true support varies across the image as a result of, 
for example, the terrain and the scan angle of the sensor. 

The spatial resolutions of current sensors vary over four 
or five orders of magnitude, so investigators have a wide 
choice. But on what criteria should an investigator choose a 
spatial resolution? Ideally, the spatial resolution should be 
chosen so that the information desired is attained with the 
least data. The question then is, How should the investigator 
decide when the desired information has been attained, and 
with the least data? Usually, the choice is intuitive, and in 
some cases the investigator uses what happens to be readily 
available. As a result, the spatial resolution may be inappro- 
priate, so that the information desired may not be obtained, or 
unnecessary data may be acquired (Lam and Quottrochi, 1992; 
McGwire et a]., 1993). 

In remote sensing, most studies on spatial resolution 
have examined the accuracy of estimating some property at 
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the ground with remotely sensed imagery of different spatial 
resolutions, For example, Latty and Hoffer (1981), Welch 
(1982), Bizzell and Prior (1983), Toll (1983), and Johnson 
and Howarth (1987) examined the effect of spatial resolution 
on the accuracy of remotely sensed classifications of land 
cover. These studies are empirical, and the choice of spatial 
resolution depends on the relation between two variables. To 
develop a theoretical approach, we initially limit ourselves 
to the relations among observations of one property only. 

Researchers in agronomy were the f is t  to show interest 
in the size of support. Mercer and Hall (1911) measured the 
yields of crops in small plots in uniformity trials. Then, by 
grouping the plots into ever larger ones, they discovered that 
the plot-to-plot variance decreased only slightly for sizes 
greater than about 0.01 ha, and this became the recom- 
mended size of plot in field experiments for many years. 
Smith (1938), working in Australia, found an empirical lin- 
ear relation between the log of dispersion (or sample) vari- 
ance and log of size of support. 

Mercer and Ha11 (1911) and Smith (1938) demonstrated 
that the variance between sample values decreases as the 
support increases in size. The precision of estimating the 
mean of some property within a region increases with size of 
support because the variance decreases. In the context of re- 
mote sensing, Curran and Williamson (1988) demonstrated 
this relation for estimating the mean green leaf area index 
(GLAI) of a region. 

If the objective is to map some property, then the varia- 
tion between sample observations determines both the preci- 
sion of the estimates and the information that is ultimately 
displayed (Dungan et al., 1994). Both precision and informa- 
tion are valid criteria on which to base a choice of spatial 
resolution (Atkinson and Curran, 1995). However, if the spa- 
tial sample is the map (for example, if complete coverage is 
provided and there is no interpolation to be performed), then 
the spatial variation determines only the information that is 
displayed. Here, we consider the relation of information with 
spatial resolution and how it affects a choice of spatial reso- 
lution for mapping by remote sensing. 

Woodcock and Strahler (1987) based a choice of spatial 
resolution on the relation between spatial resolution and spa- 
tial dependence, the likelihood that observations close in 
space are more alike than those further apart. The ideas are 
similar to those of Grieg-Smith (1964) and Moellering and 
Tobler (1972); they were extended in Jupp et al. (1988; 
1989); and they were applied in a remote sensing context by 
Townshend and Justice (1988), Townshend et al. (1988), 
Chavez (1992), Gu (1992), and Vogt (1992). Woodcock and 
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Strahler (1987) represented spatial dependence with the local 
variance, defined as follows: 

Let z(xij) be the value of the pixel located at x, in the i th  
row and jth column of an image. Then the local variance, a$, 
around x, can be computed over a (2n+l) by (2m+l) win- 
dow: i.e., 

where u ,  is the mean of the ( ~ n + l )  by (2m+l) window cen- 
tered on xi? If m = n = 1, then the local variance is com- 
puted over xij and its neighbors. The mean local variance for 
an image is taken to be the mean u$ computed for all x ,  with 
the exception of a border equal to either n or m. 

The mean local variance can be computed for different 
spatial resolutions, and it is as a function of spatial resolu- 
tion that it represents the spatial dependence in the image. 
To measure the local variance at multiple spatial resolutions, 
the image is degraded to successively coarser spatial resolu- 
tions simply by combining pixels into larger ones and com- 
puting the average values in them. 

The rationale behind Woodcock and Strahler's (1987) 
use of local variance is as follows. Scenes are assumed to be 
composed of discrete objects arranged either in a mosaic that 
completely covers the region, or distributed on a continuous 
background (Strahler et al., 1986). If the spatial resolution is 
much finer than the size of objects in the scene, many adja- 
bent pixels will be alike and the local variance will be small. 
As the spatial resolution coarsens towards the size of the ob- 
jects, the local variance will increase to a maximum. When 
the spatial resolution is much coarser than the size of the ob- 
jects, the local variance will once again be small because lo- 
cal variation will be encompassed within the pixels. 

The maximum in the local variance as a function of spa- 
tial resolution is an indirect guide to the size of objects in 
the scene. As such, it can be used to choose an appropriate 
combination of spatial resolution and method of analysis for 
specific investigations. For example, if one wishes to classify 
an image using a spectral classifier, one might select a spatial 
resolution that is much finer than the size of objects in the 
scene. Alternatively, if the spatial resolution chosen is simi- 
lar to the size of objects in the scene, then a mixture model 
may be more appropriate. 

For mapping continuous variation by remote sensing, the 
spatial resolution of the imagery should be fine enough to 
capture the variation of interest in the property at the ground 
and should, therefore, according to Woodcock and Strahler 
(1987), be much finer than the spatial resolution at which 
the local variance in the property at the ground occurs. If it 
is not, the spatial variation of interest in the property at the 
ground may be encompassed within the support. 

Method 
Woodcock and Strahler's (1987) method is attractive. How- 
ever, we should recognize that it is strictly empirical, analo- 
gous to Mercer and Hall's (1911) approach above. It depends 
on coarsening the spatial resolution of imagery by computing 
average values. We suggest that the method can be improved 
by modeling images as realizations of random processes. 

Model of Soatial Variation 
~ a d i a t i o i  sensed remotely may be represented by the follow- 
ing model: 

where Z(x) is a random function (RF) defined for positions x 

in two-dimensional space, IR2; m, is the local mean of Z in a 
local region V, a part of IRZ; and e(x) is an RF with mean of 
zero. 

Generally, the spatial variation in Z from place to place 
is such that we may adopt the so-called intrinsic hypothesis 
of stationarity (Matheron, 1965; Matheron, 1971) in which 
the mathematical expectation exists and does not depend on 
x: i.e., 

E { ~ ( x ) }  = m, for all x, 

and for all vectors of separation or lags, h, the increment, [Z 
(x) - Z(x+h)], has a finite variance which does not depend 
on x: i.e., 

2 y (h) = var [Z(x) - Z(x + h)] 

= E ([Z(X) - Z(x + h)12) - (E [Z(x) - Z(x + h)])2 (4) 

= E {[Z(x) - Z(x + h)I2) 

Here, y(h) is the variogram, a function which relates semi- 
variance to lag h, and which summarizes the spatial depend- 
ence in Z. 

The variogram as defined above is for a punctual sup- 
port, whereas in practice our measurements are made on pix- 
els of a finite area. If we denote an observation or pixel v 
with area I vl , then we are concerned with the spatial 
means, Z,(x), which are the integrals of Z(x) over v: i.e., 

where Z(y) is the variable Z defined on a punctual support. 
The variogram, y,(h), on some support v is readily ob- 

tained from the punctual variogram by (Journel and Huij- 
bregts, 1978) 

Here, y(v,vh) is the average punctual semivariance between 
two pixels of area I vl whose centroids are separated by h,  
and y(v,v) is the average punctual semivariance within a 
pixel of area I vl . 

The spatial integration is usually known as regulariza- 
tion (Clark, 1977; Jupp et al., 1988; Jupp et al., 1989; Isaaks 
and Srivastava, 1989; Zhang et al., 1992). Geometrically, reg- 
ularization is simply increasing the size of support over 
which a spatial process is averaged. In the context of remote 
sensing, it means increasing the size of the pixels and coars- 
ening the spatial resolution. Regularization is the key to un- 
derstanding the relations among spatial dependence and size 
of support. 

The Experimental Variogram and Measurement Error 
We never know a priori the punctual variogram. Indeed, we 
rarely know the variogram on the support of the sensor, and 
this has to be found experimentally from data. The experi- 
mental variograrn has been computed and applied exten- 
sively in the present context (Curran, 1988; Webster et a]., 
1989; Clark, 1990; Chavez, 1992; Rossi et al., 1992; Gohin 
and Langlois, 1993). 

Provided we have measured some property, Z, on obser- - -  - 
vations centered at x,, x,, ..., we can compute an experimen- 
tal variogram for p(h)  pairs of observations: i.e., 

By changing h, an ordered set of semivariances is obtained, 
and this constitutes the experimental variogram. 

The experimental variogram, like the experimental vari- 
able from which it is computed, is likely to contain measure- 

December 1997 PE&RS 



ment error. Because measurement implies integration over a 
support of positive size, the underlying variable is regular- 
ized and its variogram is continuous through the origin. The 
variogram of measurement error, however, does not pass 
through the origin. The experimental semivariance at a lag of 
zero, .j1,(0+), is, therefore, expected to be some positive value 
determined solely by the measurement error in the variable 
(Curran and Dungan, 1989; Atkinson, 1993). 

The quantities jl,(h) estimate the semivariances on the 
experimental support, and, to proceed further, we must fit a 
mathematical model to them. This model must be "author- 
ized" in that it cannot produce negative variances; techni- 
cally, it must be conditionally negative semi definite (CNSD). 
There are several well established simple CNSD models, 
listed by Webster and Oliver (1990). 

Variogram models often feature a term c,,, the nugget var- 
iance. This quantity is the intercept of the fitted model on 
the ordinate. While the nugget variance does not generally 
seek to estimate .j1,(0+) it may be used for this purpose where 
observations are adjacent (or approximately so) as for re- 
motely sensed imagery (Curran and Dungan, 1989). 

Practical Regularization 
In many fields such as mining and soil survey, the observa- 
tions, z(x,), 1=1, 2, ..., for Equation 7 are so small in relation 
to the supports for which we want statistics that they can be 
approximated as being points and the experimental vario- 
gram may be regularized directly (Webster, 1991). Figure l a  
shows an example in which a spherical model (given by 
Equation 8) is regularized over square supports of side 1 m: 
I 0  

y (h) = c, (1.5 (hla,) - 0.5 (hla,)3) for all 0 < h < a, 

15 

for all h > a, 

N_ 

where h = I h l for isotropic variation. The quantity c, is the 
structured variance of the model and is 10 units and a, is the 
range and is 10 m. 

For remotely sensed imagery, the size of support is the 
maximum possible given the sampling intensity of the image, 
and may often be of the same order of magnitude as that to 
which we want to regularize. In these circumstances, we 
must first deregularize to estimate the punctual variogram. 

In our surveys, the variables were measured on contigu- 
ous supports and there was no intervening space unac- 
counted for. The nugget variances are, therefore, likely to 
estimate measurement error accurately (Curran and Dungan, 
1989). The relation of measurement error with size of sup- 
port cannot be represented analytically, and so measurement 
error must be removed from the variograms and treated sepa- 
rately. The first step in deregularizing a variogram is to sub- 
tract the nugget variance, if it has one, leaving functions that 
pass through the origins. 

For the present purpose, measurement error is of no inter- 
est and so it plays no further part in the analysis. When com- 
puting the local variance from digital images, measurement 
error is an integral part of the pixel values and is averaged at 
each new coarser spatial resolution. This is undesirable and 
may lead to bias in the spatial resolution at which the local 
variance is maximized. In particular, the local variance at the 
smallest lags will be smaller with the measurement error re- 
moved. This is one reason why we recommend that the mea- 
sured spatial variation be modeled. 

We must now try to find a model for the punctual vario- 
gram, which when regularized will produce a curve which 
matches the fitted function. We chose for each punctual vario- 

a) 

PE&RS December 1997 

gram the same basic function as that fitted to the experimental 
variogram. We added to this an exponential term, c,{l - exp 
(-hla,)), where ae=0.5d, to represent the short-range variation 
within the experimental pixel of side d. Then, by iterative reg- 
ularization, we adjusted c,, the sill of the short-range term, un- 
til the sill of the regularized variogram equalled that of the 
fitted model within an acceptable tolerance. The final model 
of the punctual variogram is as follows: 

$ 10- 
a - 

for all 0 < h < a, 

(I) 

.5 

y (h)  = c, for all h > a, 

Spherical model: c,, = 0.00 c, = 10.00 a, = 10.00 

I I I I 

where c, is 1.937 units, c, is 10 units, a, is 0.5 m, and a, is 10 
m. Figure l b  shows it, together with the variogram regularized 
over the experimental support (dashed line) and, for compari- 
son, the fitted model (solid line) that it matches. 

The variograms deregularized in this way are, thus, the 
basic functions from which to construct variograms that are of 
the same order of magnitude as the experimental ones. 

Regulaiiing Variogtams of Real Imagery 
Experimental variograms were computed for real digital im- 
ages degraded to successively coarser spatial resolutions. The 
algorithm used to degrade the imagery is the same as that 
used by Woodcock and Strahler (1987), simply averaging the 
pixel values that are encompassed within a single larger pixel. 
This involves the assumption of a square wave response 
which may be a crude approximation only of reality (Justice 
et al., 1989), but it will serve to demonstrate the method. 

Two images recorded in the red wavelengths, both in 
England, were used. The first was a Daedelus AADS 1268 air- 
borne multispectral scanner system (MSS) image of reclaimed 
grassland near Belper, Derbyshire and the second was a SPOT 

0 2 4 6 8 10 
Lag, h, m 
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Spherical model with exponential component: 
c,,=O.OOc,=1.937 al=0.5 c,=10.00 a;,=10.00 

I I I I 
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Lag, h, m 

Figure 1. (a) spherical model regularized over a sup 
port of 1 m (lower curve) and (b) spherical plus expo- 
nential model (upper curve) regularized over a support 
of 1 m (dashed line) with the original spherical model 
representing the experimental variogram shown for 
comparison (lower solid curve). 
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Figure 2. Experimental variograms for images of (a) Bel- 
per and (b) Sheffield coarsened to spatial resolutions of 
1 (o), 2 (e), 3 (A), 4 (m), and 5 (A) pixels. The solid 
curve is the model fitted to the variogram of the original 
imagery. 

HRV image of urban Sheffield. The two images are very differ- 
ent. For example, the airborne MSS image of Belper has a spa- 
tial resolution of 1.5 m and the area of interest within the 
image is a field of pasture of some 300 m by 300 m. In con- 
trast, the SPOT image has a spatial resolution of 20 m and the 
area of interest within the image is the city of Sheffield. The 
experimental variograms of the two initial and degraded im- 
ages are shown in Figure 2. 

The experimental variograms were modeled with the ex- 
ponential (Belper) and penta-spherical (Sheffield) models (Ta- 
ble 1) (solid curves in Figure 2). The regularized variograms 
can be estimated from the models by deregularization and reg- 
ularization using Equation 6. In order that the estimates corre- 
spond to the experimental variograms computed above by 
degrading the images, regularized variograms were obtained 
for square, non-overlapping supports (Figure 3). Allowing for 
the uncertainty in fitting a model to the experimental and reg- 
ularized values of semivariance, there is correspondence be- 
tween the empirically and analytically derived functions. 

Identifying Scales of Variation 
The local variance may be computed from the punctual vario- 
gram using Krige's relation (Journel and Huijbregts, 1978): i.e., 

D q v l  V) = 7 (V, V) - 7 (v, v) (10) 

where D2(v/V) is the dispersion variance of a sample defined 
on a support v within a region V. 

The local variance is computed_over a range of separating 
distances of between 0 pixels and d 8  pixels (if m = n = 1). In 
terms of Krige's relation and the punctual semivariance, the 
local variance is computed over distances f rog  0 pixels up to 
the diagonal of a 3- by 3-pixel cell, that is, q18. This choice is 
somewhat arbitrary. Here, we replace the local variance with 
the semivariance at a lag of one support, %(v) (Atkinson and 
Danson, 1988). Our reasons for doing so relate to the need to 
base a choice of spatial resolution on spatial information. 

Information exists in the relations between measurements, 
represented by spatial dependence, and summarized by the 
variogram (Equation 6): information is relative. Further, infor- 
mation exists between immediate neighbors (Von Neuman, 
1941). Relations between more distant observations are ac- 

counted for by the intervening neighbors and represent double 
counting. 

In IR1, there are at most two neighbors of z,(x,), and all 
the information associated with z,(xo) exists in the two rela- 
tions with them. In IRZ, z,(xo) can have many neighbors and 
so, to avoid double counting, each relation with each neighbor 
may be weighted according to the proportion of the Dirichlet 
tile associated with z,(x,) that is attributable to it (Atkinson, 
1995). For remotely sensed imagery, the neighbors of a pixel, 
z,(x,), defined in terms of its Dirichlet tile, are the two hori- 
zontally adjacent and two vertically adjacent pixels, equally 
weighted. The information associated with a pixel v in an im- 
age may, therefore, be computed from the semivariance at a 
lag of one pixel j,(v). 

Given an estimate of the punctual variogram, .jl,(v) may be 
computed for any size of support from Equation 6, including 
supports that are smaller than the experimental support. Fur- 
ther, y"(~)  may be computed from small subareas of images, 
for example, within agricultural fields and from data that do 
not constitute an image, for example, from transect data. This 
is a direct advantage of modeling the spatial variation. 

Clearly, yv(v] and the local variance are closely related. 
Figures 4a through 4d relate .j/,(v), the local variance, and the 
dispersion variance to size of support for a series of black 
shapes (square, circle, diamond, and cross) on a white back- 
ground. The quantity .jl,(v),, occurs at a slightly coarser spa- 
tial resolution than the maximum of the local variance as 
might be expected from Equations 6 and 10. 

The graphs of the experimental yv(v) against spatial reso- 
lution are plotted for the images of Belper and Sheffield in 
Figures 5a, 5b, and 5c. One can see a relation between the 
shape of the initial experimental variogram model and the po- 
sition of .j/,(v),, on the abscissa. For both variograms, the 
model increases sharply from the origin. As a result, .jl,(v),, is 
reached when the spatial resolution is about 2 pixels (3 m) 
and 5 pixels (100 m), respectively. For mapping, the spatial 
resolution should be much finer than these values. 

Remote Sensing Examples 
The following examples illustrate the procedure for selecting 
an appropriate size of support for mapping continuous varia- 
tion by remote sensing. 

Field Measurements 
The study site was Morrell Wood opencast coal reclamation 
site, located 3 km east of Belper in Derbyshire, United King- 
dom (uK). It lies at about 100 m in altitude with slopes vary- 
ing between 0" and 8". The site consists of grass fields 
separated by quickthorn hedging. The grassland was fairly 
uniform and dominated by Lolium perenne and Lolium multi- 
jlorum with some clover, Trifolium repens. Cattle and sheep 
grazed the pasture from time to time throughout the year. 

On 6 May 1988, one measurement of reflectance was 
made using a Milton multiband radiometer (MMR) (Milton, 
1980) over the center of each of 100 1- by 1-m plots along a 
200-m transect. Simultaneous measurements were made over 
a Halon panel for conversion to reflectance. The reflectance 
properties of the Halon panel had been measured using an In- 
frared Intelligient Spectroradiometer (Milton and Rollin, 1987) 
and calibrated against the UK national standard. The NDvI was 
computed as follows: 

Image Model CO Cl a, 

Belper Exponential - 4.554 2.425 
Sheffield Penta-spherical - 22.71 11.08 
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Figure 3. Regularized estimates of the semivariance 
(solid curves) compared with experimental estimates of 
semivariance for images of (a) Belper and (b) Sheffield 
coarsened to spatial resolutions of 1 (o), 2 (e), 3 (A), 4 
(w), and 5 (A) pixels. 

NDVI = (NIR - R ~ ~ ) / ( N I R  + Red) 

where NIR is the reflectance in near-infrared wavelengths and 
Red is the reflectance in red wavelengths. 

The above-ground biomass was weighed. A sample of ap- 
proximately 80 g was weighed and dried for 24 hours at 65°C 
and reweighed to detemine the dry biomass. 

Estimating the Dry Biomass 
The aim is to map the dry biomass at Belper on 6 May 1988 
in a remote sensing investigation. We have chosen two hypo- 
thetical investigations. In the first, the aim is to map the dry 
biomass using ground-based radiometry and cokriging and, in 
the second, the aim is to map the dry biomass using airborne 
MSS imagery and regression. 

Suppose that an investigator wishes to map the dry bio- 
mass by cokriging from samples of dry biomass and NDW mea- 
sured with a field radiometer (Atkinson et al., 1992). The 
variograms of dry biomass and NDm must be computed for 
cokriging. Therefore, the investigator can use them for two 
valuable reconnaissance studies at no extra cost in the field. 
These are, first, designing an optimal sampling strategy (Atkin- 
son et al., 1992) and second, choosing a suitable spatial reso- 
lution which we now consider. The choice of spatial resolu- 
tion should depend on the property at the ground, not the 
remotely sensed imagery. Therefore, we start with the dry bio- 
mass measured along a-200-m transect. 

The experimental variogram of the dry biomass was com- 
puted using Equation 7 (Figure 6a). Several models were fitted 
to it by weighted least squares approximation using the pro- 
gram MLP (Ross, 1987), and the exponential model was found 
to provide the best fit in terms of Akaike's Information Crite- 
rion, AIC (Akaike, 1973) (Table 2). The nugget variance was 
removed from this model, and the spatially dependent compo- 
nent was regularized. The semivariance at a lag of one sup- 
port is plotted against size of support in Figure 6a for 20 sizes 
of support. The maximum value of 'y,(v) is reached at approxi- 
mately 11.5 m. 

Many investigators measure the radiation over supports of 
around 0.5 m by 0.5 m (by measuring from a height of ap- 
proximately 2 m with a 15' field-of-view (Milton, 1987)). The 
question is, Will this support capture the spatial variation of 

0.0025 <"u.;. r; - $ 0.0010 i, 5 5 
o.MX)5 

0.0005 

'0 5 10 15 20 25 '0 5 10 15 20 25 
Size of support, v, pixels Size of support, v, pixels 

0.0012 0 . W 8  
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N- z 0.0006 N- 

e 0 
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0.0002 

0.0002 
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0 5 10 15 20 25 '0 5 10 15 20 25 

Size of support, v, pixels Size of support, v, pixels 

Figure 4. Local variance (o), the semivariance at a lag of 
one pixel (m), and the dispersion variance (A) plotted 
against size of support for four black shapes on a white 
background. 

interest? Is the spatial variation such that mapping with a sup- 
port of 0.5 m by 0.5 m is futile? The spatial resolution at 
which %(v) is maximized (11.5 m) indicates that the spatial 
resolution of 0.5 m by 0.5 m is appropriate in this instance: 
most of the spatially dependent variation will not be averaged 
within the support. The investigator can be confident that the 
spatial variation in the dry biomass will be captured if the 
support of the field radiometer measurements is 0.5 m by 0.5 
m. 

Consider a second scenario where the investigator wishes 
to map the dry biomass using airborne MSS imagery and the 
usual method based on regression (Curran and Williamson, 
1987). As the flying height of the aircraft is variable, the inves- 
tigator can choose a spatial resolution. Given the graph in Fig- 

Sheffield 

0 
0 

.- 
E 
U) 

0 2 4 6 8 1 0  
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Figure 5. The maximum semivariance at a lag of one 
pixel plotted against size of support for images of (a) Bel- 
per and (b) Sheffield. 

-- 
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Figure 6. Experimental variograms (o), fitted models 
(solid curves), and semivariance at a lag of one 
pixel (a) at Belper for (a) the dry biomass and (b) 
the NDVI on 6 May 1988. 

because most satellite sensors have a relatively coarse spatial 
resolution and a large area of coverage. The method presented 
can be applied to imagery recorded over larger areas, includ- 
ing choosing appropriate spatial resolutions for global remote 
sensing and even for new systems of sensing from satellite. 

Conclusions 
The variogram and yv(v),, are proposed as aids to choosing 
appropriate spatial resolutions for mapping spatial variation 
by remote sensing. The advantages of modeling the spatial 
variation are as follows: 

Measurement error can be accounted for and treated separately 
from the underlying variation; 
The regularized variogram and .j.,(v),, can be computed for 
any size of support, not just supports that are larger than and 
multiples of the original pixel size; and 
The regularized variograrn and ~v(v),,, can be computed for 
small sub-areas of images and for transect data. 

In remote sensing investigations, it is desirable to deter- 
mine an appropriate spatial resolution such that the informa- 
tion desired is acquired for least data. For mapping continu- 
ous variation by remote sensing, the support must be small 

ure 6a, it is clear that, if the investigator wishes to capture the enough to reveal the spatial variation of interest. The vario- 
spatial variation in the dry biomass, the spatial resolution gram and +v(v),,, can be used to define the predominant scale 
should be less than the lag at which %(v) is maximized, prob- of spatial variation in a continuous variable, and to help en- 
ably 1 to 2 m. If this information were not available and a sure that the spatial resolution is chosen so that this scale of 
spatial resolution of 10 m was chosen, then most of the varia- spatial variation is revealed in the data. 
tion of interest would be lost and the investigation could be a 
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