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Abstract 
Monitoring broad-scale ecological responses to disturbance 
can be facilitated by  automated change-detection approaches 
using remotely sensed data. This study evaluated the effect- 
iveness of five unsupem'sed change-detection techniques us- 
ing multispectral, multitemporal SPOT High Resolution 
Visible (HRV) data for identifying vegetation responses to ex- 
tensive flooding of a forested ecosystem associated with 
Tropical Storm Alberto in  July 1 9 9 4 .  Standard statistical 
techniques, logistic multiple regression, and a probability 
vector model were used to quantitatively and visually assess 
classification accuracy. 

The change-detection techniques were ( I )  spectral-tem- 
poral change classification, (2) temporal change classifica- 
tion based on the Normalized Difference Vegetation Index 
(NDVI), (3) principal components analysis (PCA) of spectral 
data, ( 4 )  PCA of NDVI data, and (5) NDVI image differencing. 
Spectral-temporal change classification was the least effec- 
tive of the techniques evaluated. Classification accuracy 
improved when temporal change classification was based on 
NDVI data. Both PCA methods were more sensitive to flood-af- 
fected vegetation than the temporal change classifications 
based on spectral and NDVI data. Vegetation changes were 
most accurately identified by  image differencing of NDVI 
data. Logistic multiple regression and a probability vector 
model were especially useful for relating spectral responses 
to vegetation changes observed during field surveys and 
identifying areas of agreement and disagreement among the 
different classification methods. 

to utilize satellite data to assess vegetation responses to 
flooding in a forested ecosystem and to compare analytical 
approaches for vegetation change detection. Minimal wind 
and storm surge damage accompanied Alberto as it made 
landfall on the Florida panhandle near Fort Walton Beach on 
3 July 1994 and traveled inland. However, due to weak steer- 
ing currents, the storm remained relatively stationary over 
southwestern Georgia and southeastern Alabama. Over a pe- 
riod of six days (2-7 July 1994), one-third of Georgia and 
one-sixth of Alabama recorded over 17  cm of precipitation 
(Garza, 1995). Rainfall was especially heavy (up to 53 cm) in 
the Flint and Ocmulgee River basins in southwestern Geor- 
gia, and flood discharges in tributaries and mainstems of the 
two rivers exceeded 100-year flood discharges along most 
stream reaches (Stamey, 1995). Flood discharges inundated 
riparian habitats, as well as agricultural fields, pine planta- 
tions, and upland habitats adjacent to streams and rivers. 
Natural terrestrial habitats in the flood-affected area are pri- 
marily characterized by longleaf pine (Pinus palustris) and 
wiregrass (Aristida stricta), the dominant ground cover spe- 
cies. 

Various analytical approaches differing in mathematical 
complexity, processing and analysis intensity, classification 
technique, and interpretability have been used to detect veg- 
etation change. Dobson et al. (1995a) reviewed several image 
processing techniques that used Landsat Thematic Mapper 
(TM) data for coastal change detection. Many studies have re- 
lied upon less computationally intensive post-classification 
change-detection techniques using images from one or two 
dates IAldrich. 1975: Sirois and Ahern. 1989: Dobson et al.. 

Introduction and Objectives 
Hurricanes and tropical storms, like other large natural dis- 
turbances, play an important role in regulating ecosystem 
structure and function, as well as affecting diverse plant and 
animal populations and communities (Pickett and White, 
1985; Loope et al. 1994; Michener et al., 1997). Because veg- 
etation typically exhibits abrupt changes in physiognomy 
and spectral characteristics in response to acute distur- 
bances, environmental scientists are increasingly using re- 
motely sensed data to detect these changes over broad spatial 
and spectral scales. Change-detection analyses, employing 
satellite data obtained prior to and following a disturbance, 
have been used to assess vegetation responses to drought 
(Peters et al., 1993; Jacobberger-Jellison, 1994), insect out- 
breaks (Muchoney and Haack, 1994), dust storms (Chavez 
and MacKinnon, 1994), high winds (Cablk et al., 1994; John- 
son, 19941, deforestation (Foody and Curran, 1994), and 
other disturbances. 

Tropical Storm Alberto presented a unique opportunity 
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199513; 01sson; 1995). Recently, principal components analy- 
sis (PCA), various vegetation indices, and logic rules have 
been implemented utilizing multitemporal satellite data 
(Bauer et al., 1994; Muchoney and Haack, 1994; Jensen et al., 
1995; Walsh and Townsend, 1995). Muchoney and Haack 
(1994), for example, evaluated four supervised change-detec- 
tion approaches using multitemporal SPOT HRV data, ranging 
from standard post-classification change detection to more 
analytically complex image differencing and PCA techniques, 
for identifying hardwood forest defoliation caused by gypsy 
moth infestation. In their study, overall accuracy ranged i3om 
0.61 (post-classification, spectral-temporal) and 0.63 (PCA) to 
0.69 (image differencing) relative to traditional air survey ap- 
proaches to monitoring defoliation. 

Increased interest in climate change, changing land-use 
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Figure 1. Location of the lchauway study site showing generalized land cover and 
extent of flooding associated with Tropical Storm Alberto. 

patterns, and natural and anthropogenic disturbances, cou- 
pled with high labor costs and difficulty in synoptically sam- 
pling large areas, have led to increased reliance on remotely 
sensed data and digital image change-detection techniques 
for documenting changes in ecological structure and function 
at broad spatial scales. Although it is generally possible to a 
priori identify relevant data sources, the selection of a single 
change-detection method to address a specific problem may 
not be a straightforward task (Collins and Woodcock, 1996). 
For example, vegetation and related spectral responses to a 
disturbance may vary markedly by type and intensity of dis- 
turbance, ecosystem type, and other environmental factors. 
Some change-detection techniques may therefore be more ap- 
propriate for specific types of changes and ecosystems. Most 
studies reported in the literature document the use of a sin- 
gle method for a specific problem and do not offer direct 
comparisons with other possible methods (but see Muchoney 
and Haack (1994)). Furthermore, change-detection techniques 
are often not well developed or widely applied and algo- 
rithms are not well tested in a variety of ecosystem types 
(Cohen et al., 1996). Consequently, analysts have been en- 
couraged to employ and compare a variety of supervised and 
unsupervised methods for their applicability to a particular 
problem (Dobson et al., 1995a). 

The purpose of this study was to compare five unsuper- 
vised change-detection approaches for their ability to dis- 
criminate vegetation responses to differential severity of 
flooding using SPOT HRV data. Relatively sparse overstory 
canopy coverage in longleaf pine-dominated stands, typical 
of many forest savannas that occur throughout the world, en- 
abled SPOT'S high resolution satellite sensors to detect spec- 

tral characteristics of the dense ground cover vegetation. 
Extensive ground surveys supported evaluation of the effect- 
iveness of different change-detection approaches. In addition 
to standard statistical accuracy assessment procedures, two 
other procedures were used to quantitatively and visually 
compare the five change-detection methods. First, logistic 
multiple regression was used for relating spectral responses 
to observed vegetation changes (percent dead and percent 
live) and magnitude of flood disturbance. Second, probability 
vector modeling (PVM) was used for identifying areas of 
agreement and disagreement among the different classifica- 
tion methods. 

The importance of this study was to show that SPOT HRV 
data and appropriate change-detection analyses can be used 
to monitor responses of natural vegetation communities to 
disturbances such as flooding. Logistic multiple regression 
and PVM represent two relatively new techniques that could 
significantly enhance our understanding of the relationship 
between environmental change and spectral variability, as 
well as facilitate the design of ground surveys and selection 
of appropriate change-detection methods. Use of this tech- 
nology in other regionally important ecosystems will in- 
crease our understanding of how spectral patterns and varia- 
tion, and ecosystem structure and function are affected by 
natural disturbances. 

Study Area 
Ichauway is a 115 km"cologica1 reserve that is located in 
Baker County in southwest Georgia, 45 km southwest of Al- 
bany (Figure l). The site is located along the Flint River at 
its confluence with Ichawaynochaway Creek. Approximately 
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22 km of Ichawaynochaway Creek and 19 km of the Flint 
River, a brownwater stream originating in the Georgia Pied- 
mont region, are located within the reserve. The riparian 
zone for both Ichawaynochaway Creek and the Flint River is 
very constricted and consists of two principal geomorphic 
components, seasonally flooded hardwood hammocks and 
longleaf pine-dominated upland terraces. Flood tolerant spe- 
cies are confined to hardwood hammocks (200 ha) or steep 
banks adjacent to terraces (Figure 1). Generally, flow in Icha- 
waynochaway Creek and the Flint River is low and stable 
from early summer through autumn. Winter and early spring 
storms often result in bankfull discharges and inundation of 
riparian areas. 

Forested upland communities comprise 7,557 ha and are 
dominated by longleaf pine (2,778 ha), mixed pine (423 ha; 
primarily longleaf pine and slash pine, Pinus elliotti), and 
mixed pines and hardwoods (3,039 ha; primarily longleaf 
pine and oaks, Quercus spp.). Other communities include 
mixed hardwoods (934 ha; dominated by live oak (Q. virgini- 
ana), laurel (Q. hemisphaerica), and water oak (Q. nigra)); 
deciduous mesic (222 ha, primarily American beech (Fagus 
grandifolia), Southern magnolia (Magnolia grandij'lora), white 
oak (Q. alba), hickory (Carya spp.), and sweetgum (Liquid- 
ambar styraciflua)); deciduous xeric (70 ha; comprised of 
turkey (Q. laevis), sandpost (Q. margaretta), post (Q. stellata), 
bluejack (Q. incana), and Southern red oaks (Q. falcata), as 
well as black cherry (Prunus serotina) and several associated 
species); and cypress wetlands (91 ha; Taxodium spp.). 

Although wiregrass is the predominant ground cover 
species, silkgrass (Pityopsis graminifolia) can be found in 
abandoned agriculture fields and scrublshrub vegetation is 
relatively common in more xeric habitats. Historically, high 
productivity and plant biodiversity in longleaf pine savannas 
was maintained by infrequent summer fires that were initiated 
by lightning strikes. The natural burning regime throughout 
the southeastern U.S. has, however, been almost entirely sup- 
planted by managed fires that are initiated during winter or 
spring on an annual or biannual basis. Forested portions of 
the study area generally are managed with an annual spring 
burn which serves to retain the open savanna conditions and 
reduce hardwood encroachment and midstory canopy devel- 
opment. 

The Remotely Sensed Data 
A scene acquisition request was placed with SPOT Image Cor- 
poration in late July, 1994 for a multispectral (xs) image of 
the study area. Due to the amount of cloud cover during the 
period following Tropical Storm Alberto, a satisfactory image 
was not obtained until 28 September 1994. Two additional 
SPOT-XS images (18 October 1986 and 05 October 1990), sea- 
sonally similar to the 1994 image, were acquired from the 
SPOT image archive. All images were processed to level IB, 
were predominantly cloud-free, and had incidence angles 
less than 10 degrees (-0.9, -3.3, and -9.7, respectively). 

When change-detection analysis is based on data ac- 
quired immediately prior to and following a discrete distur- 
bance event, spectral change may be related to ecological 
changes with a reasonably high degree of certainty. Other- 
wise, spectral changes associated with a specific disturbance 
may be confounded with land-use change, annual phenologi- 
cal differences, climate, and other factors that differ between 
the pre- and post-disturbance imagery. The two pre-flood im- 
ages acquired for 1986 and 1990 were observed to encom- 
pass much of the natural variability in vegetation spectral 
characteristics (1986 representative of dry conditions that fre- 
quently occur in the ecosystem during the fall; 1990 typical 
of wetter summer-fall precipitation conditions). Because land 
use had not changed appreciably in the study area between 
1986 and 1994, an a priori decision was made to use both 

the 1986 and 1990 images as the basis for characterizing pre- 
flood conditions. By doing so, we were inferring that spectral 
changes exhibited in 1994 exceeded the variability associated 
with natural climatic fluctuations and likely represented eco- 
logically significant responses to the flood. 

Image Rectification 
Twenty-three ground control points (GCPS) digitized from 
uSGS 7.5-minute topographic quadrangles (USGS quads) were 
used to rectify the 5 October 1990 SPOT-XS image to a Uni- 
versal Transverse Mercator (UTM) map projection (RMSE = f 
0.3 pixels / + 5.9 m). The 1986 and 1994 images were recti- 
fied using GCPS obtained from the 1990 rectified image (1986 
RMSE = 2 0.2 pixels / f 4.6 m, 1990 RMSE = f 0.3 pixels / 
f 6.6 m). The images were resampled to a 20-m pixel size 
using a nearest-neighbor resampIing technique to retain radio- 
metric integrity (Jensen, 1986; Jensen et al., 1993). To insure 
that the data layers used in this analysis were co-registered, 
the relative error between the images and the ancillary data 
layers was estimated by taking the difference between ten 
well distributed checkpoints (road intersections) whose coor- 
dinates were recorded from the rectified images and the GIS 
transportation layer (discussed below) (Wolter et al., 1995). 
The relative error (RMSE) was less than + 5 m in each case. 

lmage Normalization 
It is important that multi-date images be normalized to mini- 
mize changes in brightness values due to detector calibra- 
tion, sun angle, Earthlsun distance, atmospheric attenuation, 
and phase angle between dates. After scene normalization, 
changes in brightness values are assumed to reflect changes 
in surface conditions. Absolute radiometric calibration tech- 
niques require ground reflectance data, and information 
about the sensor and atmosphere for the date of image acqui- 
sition, which are often difficult or impossible to obtain for 
archived imagery (Price, 1987; Kim and Elman, 1990; Fer- 
encz et al., 1993; Olsson, 1995). In such cases, empirical nor- 
malization techniques based on linear regression models can 
be used to correct for relative differences in atmospheric and 
other non-surface conditions among multiple image dates 
(Schott et a]., 1988; Vogelmann, 1988; Caselles and Lopez- 
Garcia, 1989; Eckhardt et al., 1990; Hall et al., 1991; Jensen 
et a]., 1995). 

The 5 October 1990 SPOT-XS scene was selected as the 
base scene to which the 1986 and 1994 scenes were normal- 
ized because aerial photographs were available for this pe- 
riod (discussed below). Seven radiometric normalization 
targets were common among all image dates and included (1) 
two "dark" water bodies (deep ponds), (2) three conifer for- 
est stands, and (3) two "bright" agricultural fields (unvege- 
tated bare soils). All targets were located in relatively flat 
areas, provided a consistent appearance over time, and were 
assumed to represent constant reflectors (Vogelmann, 1988; 
Eckhardt et al., 1990). 

Digital numbers were sampled using a 3 by 3 window, 
in similar areas of the normalization targets in each image. 
Regression equations were developed by correlating the tar- 
get brightness values obtained for the scenes being normal- 
ized (1986, 1994) with the brightness values of the base 
image targets (1990) for each band (Table 1). The derived re- 
gression equations were applied to the 1986 and 1994 im- 
agery, resulting in normalized datasets in which spectral 
variation related to atmospheric path radiance, detector cali- 
bration, sun angle, atmospheric attenuation, and phase angle 
between dates was minimized. 

Ancillary Data Layers 
Ancillary data layers were used to assess classification accu- 
racy, characterize damage within the flood zone, and derive 
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other data layers such as image masks that were used in the 
change-detection analyses. The following sections document 
relevant aspects of the GIS database development, field sur- 
veys, and spatial data manipulations and analyses. 

GIS Layers 
GIs data layers were developed in conjunction with the Mis- 
sissippi Remote Sensing Center (MRSC) at Mississippi State 
University, Starkville, Mississippi. Four ancillary data layers 
used in this study (land cover, ground cover, hydrography, 
and transportation) were interpreted from 1:12,000-scale 
color infrared (CIR) aerial photographic transparencies and 
field surveys. Data were transferred to uSGS quads using a 
vertical sketchmaster, digitized, and attributed. Land-cover 
classification attributes included detailed descriptions of tree 
species composition, age class, and stand density for all for- 
ested areas. Ground-cover attributes included primary and 
secondary understory vegetation classes and vegetation den- 
sity. The transportation layer included linear features such as 
fire-breaks, state and county maintained roads, and high- 
ways. To insure that the layers were co-registered, MRSC used 
hydrography and transportation as a coincident line layer, 
keeping these features consistent in each of the other photo- 
interpreted layers. Soils data were transferred from 1:20,000- 
scale Natural Resources Conservation Service soil survey 
sheets to USGS quads, digitized, and attributed with soil 
codes, soil texture, slope, and hydrologic group. Elevation 
spot heights and 1.52-m (5-ft) contours were digitized from 
USGS quads. In a few cases, 1.52-m contours were interpo- 
lated from 3.05-m (10-ft) contours. 

The progression of the floodwaters was monitored on 
site, and maximum water levels were recorded at approxi- 
mately 350 locations along Ichawaynochaway Creek and the 
Flint River. High water levels were surveyed with Trimble 
Global Positioning System (GPS) Pro XL and Basic Plus re- 
ceivers and differentially corrected ( +  2 m) to a known 
Community Base Station. Maximum water levels were used 
to derive a flood boundary map by overlaying the points on 
topography, and extrapolating along contour lines between 
the points to form a polygon (Figure 1). 

Raster Layers 
The ground-cover and land-cover layers were combined, and 
were used to define a mask containing only forested areas, 
excluding agriculture, urban areas, roads, water, non-forested 
wetlands, and regenerating forest stands. This process re- 
duced the potential confusion between flood-damaged vege- 
tation and other land uses and changes (e.g., crop rotations). 
The combined ground-cover and land-cover layer, as well as 
the transportation and flood boundary layers, were converted 
to raster format (20-m cell size). Elevation spot heights and 
lines were combined to create a triangular irregular network 
(TIN). The was converted to raster format with a 10-m 
resolution. The elevation surface was then divided into par- 
cels based on the elevation of the Flint River or Ichawayno- 
chaway Creek, and flood zones were created at 1.52-111 con- 
tour intervals above bank-full conditions. Parcels were rejoined 
to form a seamless layer that was used to characterize the 
magnitude of flooding (Plate 1). For example, Zone 1 is 
within 1.52 m vertical elevation of the bank and might be 

Plate 1. Zones in the flood-affected area experiencing dif- 
ferential severity of flooding (derived from 5-ft contours); 
Zone 1 is located within 1.5-m elevation of the bank and 
might be expected to experience the longest period of in- 
undation, highest current velocities, and deepest flood 
waters. 

expected to experience the longest period of inundation and 
deepest flood waters. These raster layers were used along 
with in situ reference data for accuracy assessments, and as 
ancillary data for spatial analyses. 

In Situ Reference Data 
One-hundred thirty-nine sites (approximately 650 mZ per 
site) containing wiregrass and longleaf pine seedlings and 
saplings were surveyed throughout the flooded area to quan- 
tify vegetation damage. Data related to longleaf pine mortal- 
ity were collected as part of another study and are reported 
in Michener et al. (1995). Each site contained three randomly 
chosen plots where ground-cover mortality was assessed us- 
ing a 1-m quadrat divided into a 10 by 10 grid (10-cm inter- 
vals). Presence of bare ground, detritus, and wiregrass 
condition (dead, live, or recovering) were recorded at all 
points and the data from the three plots were averaged and 
converted into percentages. All sites were surveyed using the 
GPS techniques described earlier. One-hundred twelve of the 
sites coincided with the combined ground-coverlland-cover 
binary mask used in the remote sensing analysis and were 
included in accuracy assessments. 

Image Classification 
Several general classes of algorithms have been used to detect 
land-use and vegetation change, including post-classification 
change detection, spectral-temporal change classification (S- 
TCC, also known as layered temporal change classification), 
image differencing, image ratioing, PCA, and change vector 

TABLE 1. REGRESSION EQUATIONS~ USED TO NORMALIZE RADIOMETRIC CHARACTERISTICS OF THE 1986 AND 1994 DATA WITH THE 5 OCTOBER 1990 SPOT XS DATA 

Date Band 1 (Green) Band 2 (Red) Band 3 (Near Infrared) 

18 Oct 86 y = 1.23 (x) + 2.43, rZ = 0.93 y = 1.58 (x) - 5.05, rZ = 0.98 y = 1.34 (x) - 1.32, r2 = 0.93 
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28 Sep 94 y = 0.93 (x) + 2.76, rZ = 0.98 y = 1.02 (x) + 0.29, rZ = 0.99 y = 0.98 (x) - 1.40, rZ = 0.99 

I 0.001 for all models. 



analysis Uensen, 1986; Dobson et al., 1995a). Three classes of 
algorithms (s-TCC, PCA, and image differencing) were selected 
for examination in this study. The algorithms were chosen for 
several reasons. First, analyses based on the three algorithms 
require only a single classification of multi-date imagery, un- 
like post-classification comparisons where each image must be 
independently classified. Second, the algorithms differ mark- 
edly in their underlying logical and statistical basis, analytical 
complexity, and interpretability. Third, although the three al- 
gorithms are frequently used for detecting land-use and vege- 
tation change, few studies have employed more than one 
approach and little comparative information exists that can fa- 
cilitate selection of the most appropriate method for a specific 
project (Collins and Woodcock, 1996). Fourth, two of the 
methods (PCA and image differencing) have been suggested to 
offer the greatest potential for automated mapping of vegeta- 
tion change (Muchoney and Haack, 1994). 

Because numerous variations exist for each algorithm, it 
was impractical to compare all change-detection alternatives. 
Five unsupervised change-detection techniques representing 
variations of the three generic algorithms were examined in 
this study. The first, spectral-temporal change classification 
(s-TCC), is based on unsupervised classification of spectral 
data from all three dates. The second approach, NDVI-TCC, re- 
quires that the Normalized Difference Vegetation Index 
(NDVI) be derived for each of the three dates prior to unsu- 
pervised classification. Two change-detection approaches 
were based on PCA, a multivariate statistical technique that 
isolates inter-image differences by transforming linear combi- 
nations of band data into components that account for the 
maximum (first component) and successively lower propor- 
tions (second and higher order components) of variance 
among images. PCA was separately applied to a nine-band 
spectral data set (s-PCA), and a three-band data set comprised 
of NDVI data derived for each date (NDVI-PCA). Selection of 
the two PCA approaches was based on their potential for iso- 
lating changes due to flooding and similarity to methods em- 
ployed in previous change-detection studies. Finally, differ- 
ences in NDVI values observed prior to and following the 
flood (image differencing) were used in an unsupervised 
classification (NDVI-ID). Unless stated otherwise, standard de- 
fault values were employed throughout the image rectifica- 
tion, normalization, and classification processes. Additional 
details related to method development, underlying concep- 
tual and statistical assumptions, and performance expecta- 
tions are discussed below. 

Spectral-Temporal Change Classification 
The basic premise for S-TCC is that spectral data for multi- 
date composite data sets would be similar in areas of no 
change, but would be significantly different statistically in 
areas experiencing change (Weismiller et al., 1977). Potential 
disadvantages of the method include (1) redundancy in spec- 
tral information present in some of the bands, (2) difficulty 
in labeling change classes, and (3) relatively poor perform- 
ance in previous studies (Weismiller et al., 1977; Muchoney 
and Haack, 1994). 

S-TCC was based on unsupervised classification of a 
merged 9-band data set containing spectral data for the three 
dates. An Iterative Self-organizing Data Analysis technique 
(ISODATA; Tou and Gonzalez, 1974) was used in the unsuper- 
vised classification to generate 50 classes. This algorithm 
made multiple passes through the data, classifying pixels 
and updating cluster means, until cluster means did not 
change significantly with additional passes (Richards, 1986). 
Spectral classes were visually inspected and re-classed as 
flooded or non-flooded based on their appearance in the digi- 
tal imagery, knowledge of the study area, and field and aerial 
surveys of flood-affected areas. 

NDVI-Temporal Change Classification 
The conceptual basis and potential disadvantages of this 
method are similar to those identified for s-TCC. Numerous 
studies have demonstrated that vegetation biomass and con- 
dition are often correlated with NDVI and other vegetation in- 
dices (Malingreau, 1989; Sader et al., 1989; Vogelmann, 
1990; Hunt, 1994; Gamon et al., 1995; Nilsson, 1995). On 
this basis, we hypothesized that information present in the 
red and infrared bands would be most directly related to 
vegetation change and that classification accuracy might be 
expected to improve by focusing on NDVI-transformed data. 

The NDVI-TCC technique was similar to S-TCC except that 
a three-band data set containing an NDVI image for each date 
was used in the unsupervised classification. NDVI values 
were transformed to 8-bit digital numbers (DNS) prior to sub- 
sequent analysis (Jensen, 1986). 

Principal Components Analysis 
Because of the high correlation in spectral information that is 
present in multi-date images, PCA has been used to transform 
the data into new images containing bands that are entirely 
uncorrelated. The basic premise for PCA in change detection 
is that one or more of the new PCA bands contains informa- 
tion that can be directly related to change (Byrne et al., 1980; 
Jensen, 1986; Dobson et al., 1995a). Muchoney and Haack 
(1994), for example, demonstrated that multitemporal SPOT 
spectral information related to hardwood defoliation by 
gypsy moths was confined to a single PCA band (3). In their 
study, PCA offered significant improvements in classification 
accuracy over S-TCC. Like S-TCC, however, it is often difficult 
to label change classes and from-to change class information 
is not available (Muchoney and Haack, 1994; Dobson et al., 
1995a). 

Two PCA approaches were developed. The first ap- 
proach, spectral PCA (s-PCA), was based on the merged nine- 
band data set containing all spectral bands from the three 
images. Analysis of the eigenstructure of the transformed 
data and visual inspection of eigenimages indicated that five 
components (3, 4, 6, 8, and 9), accounting for approximately 
28 percent of the spectral variability among the images, best 
represented differences between 1994 and the other two im- 
age dates (Table 2). Components 3 and 4 were attributed to 
inter-image differences among the infrared (IR) bands that 
could be associated with vegetation responses to the rela- 
tively drier conditions in 1986 (especially PCA~),  the flood in 
1994 (especially PCA~), and other changes in vegetation 
cover. Components 6, 8, and 9 contrasted spectral variability 
in the red and green bands among the three images and were 
also retained for unsupervised classification. Components 1 
and 2, which were related to overall brightness in the IR 
(PCAI) and green and red bands (PCAZ), as well as compo- 
nents 5 and 7, which primarily highlighted differences in the 
red and green bands for the 1986 and 1990 imagery, were ex- 
cluded from further analysis. We hypothesized that classifi- 
cation accuracy would be improved over the two temporal 
change classification techniques by focusing analysis on a 
subset of the most relevant uncorrelated data. 

The second approach, NDVI-PCA, was based on the 
merged three-band data set consisting of NDVI images for 
each of the three dates. Like NDVI-TCC, we hypothesized that 
spectral information most directly related to vegetation 
change would be highlighted by focusing on ~ ~ ~ I - t r a n s -  
formed data. The eigenstructure of the transformed data indi- 
cated that the first principal component (PCAI) was related to 
overall brightness of the three NDvI bands with similar load- 
ings for the three images. PCAZ highlighted differences be- 
tween 1994 and pre-flood conditions (1986 and 1990), and 
PCA3 was attributed primarily to differences between 1986 
and 1990, although band loadings were dissimilar for the 

PE&RS December 1997 



TABLE 2. EIGENSTRUCTURE FOR MULTITEMPORAL PCS BASED ON SPECTRAL DATA 

YearIBand 1 2 3 4 5 6 7 8 9 

86 1 0.13 0.24 0.15 0.00 0.50 -0.01 -0.65 -0.48 0.06 
2 0.17 0.42 0.17 -0.00 0.65 -0.08 0.48 0.34 -0.03 
3 0.52 -0.16 0.79 0.05 -0.26 0.00 0.01 0.03 0.00 

90 1 0.16 0.39 -0.11 -0.20 -0.25 -0.19 -0.49 0.63 0.17 
2 0.16 0.56 -0.09 -0.19 -0.38 -0.38 0.27 -0.49 -0.15 
3 0.57 -0.33 -0.34 -0.64 0.15 0.12 0.06 -0.05 -0.02 

94 1 0.07 0.22 -0.04 0.06 -0.08 0.50 -0.13 0.10 -0.81 
2 0.07 0.34 -0.03 0.00 -0.16 0.73 0.14 -0.12 0.53 
3 0.55 -0.04 -0.42 0.71 -0.02 -0.09 -0.00 -0.00 0.05 

Eigenvalues 57.47 43.13 23.74 12.60 10.08 5.28 1.10 0.72 0.35 

% Variance 37.16 27.92 15.37 8.16 6.53 3.42 0.71 0.47 0.26 
% Cumulative 37.16 65.08 80.45 88.61 95.14 98.56 99.27 99.74 100.00 
Variance 

three image dates (Table 3). In this case, components 2 and 3 
were retained for unsupervised classification which followed 
the S-TCC procedures that were previously described. 

NDVI-Image Differencing 
NDVI-ID is a technique whereby changes in N D ~  values be- 
tween two image dates are derived by cell-by-cell subtraction 
of co-registered data sets. The basic premise for image differ- 
encing is that subtraction results in an image data set where 
values less than or greater than zero indicate areas of change 
(Jensen, 1986; Dobson et al., 1995a). Image differencing is 
computationally simple, and threshold values can be easily 
modified for classification improvement (Muchoney and 
Haack, 1994). When used with all image bands, however, im- 
age differencing provides no information on the nature of 
change (i.e., from-to classes) and interpretation can be diffi- 
cult (Dobson et al., 1995a). Interpretability could potentially 
be facilitated by transforming raw spectral data to an appro- 
priate ratio or index that may be correlated with a specific 
type of change. For example, decreases in albedo obtained by 
multi-date image differencing have been used to identify arid 
areas that may have undergone desertification or site degra- 
dation (Robinove et al., 1981). 

In this study, 1994 NDvI values were subtracted from the 
1986 and 1990 NDVI values separately and averaged to obtain 
a single value for each pixel that represents a magnitude and 
direction of change. In the resulting image data set, values 
that are negative or close to zero indicate areas where NDVI 
increased in 1994 or remained relatively unchanged, whereas 
positive values represent areas exhibiting a decrease in NDVI 
in 1994. A critical element in image differencing change de- 
tection is defining threshold values that indicate where signif- 
icant change has occurred (Dobson et al., 1995a). Frequently, 
a standard deviation from the mean is established as the 
threshold value (Jensen, 1986). In other cases, a threshold 
value representing a "realistic amount of change" is empiri- 
cally selected after examining histograms of DN values (Dob- 
son et al., 1995a). Several alternative threshold values were 
examined in this study. A +I SD (>9 DN) was selected as the 
threshold value because the resulting classification appeared 
reasonable based on knowledge of the study area and obser- 
vations made during field and aerial surveys. We hypothe- 
sized that image differencing, like PCA, would result in 
improved classification accuracy over the temporal change 
classification methods, but that the results would be more 
easily interpreted than those obtained using PCA. 

Accuracy Assessment 
Data from 112 ground survey sites were used in the accuracy 
assessment. GPS-derived coordinates for each of the ground 
survey sites were used to relate ground-cover mortality data 

to specific flood zones, as well as binary flood classes gener- 
ated from the five different change-detection methods (binary 
masks where 1 = flood). Sites were classified as live or dead 
based on the percentage ground cover dead (2 40% = dead). 
The number of dead sites classified as flooded versus those 
incorrectly classified as non-flooded, and the number of live 
sites classified as non-flooded versus those incorrectly classi- 
fied as flooded, were used as a measure of how well each of 
the change detection methods performed. Overall accuracy 
and Kappa Coefficients (K,,,) were calculated for each method 
using techniques described by Congalton et al. (1983) and 
Congalton (1991). Two additional techniques, logistic multi- 
ple regression and a probability vector model, were used to 
quantitatively and visually compare the five change-detection 
methods. The quality of any accuracy assessment may be af- 
fected to varying degrees by unavoidable subjective analyst 
input. The methods employed in this study inherently re- 
quired analyst input, and significant attention was devoted to 
minimizing analyst subjectivity by maintaining consistent 
classification and accuracy assessment methods whenever 
possible. 

Logistic Multiple Regression 
Logistic multiple regression was used to ascertain whether 
the five change-detection methods discriminated among sites 
based on overall site characteristics that might differentially 
respond to the severity of flooding (erosion, litter and sand 
deposition or removal, vegetation condition, and other fac- 
tors that may vary by flood zone) or whether the methods 
were primarily sensitive to the proportion of live or dead 
ground-cover vegetation. Logistic regression has been used in 
many scientific disciplines to investigate the relationship be- 
tween response probabilities of binary and ordinal response 
variables, and the explanatory variables (Hosmer and Leme- 
show, 1989). The logistic model has the form 

logit(p) = log(pl(1 - p)) = a + PIX, 

where a is the intercept, /? is the set of slope parameters as- 
sociated with the independent predictor variables, and p is 
the probability that the response (Y) is "1" given a vector of 

TABLE 3. EIGENSTRUCTURE FOR MULTITEMPORAL PCS BASED ON NDVI DATA 

Band 1 2 3 

94 

Eigenvalues 
% Variance 
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explanatory variables (i.e., p = Pr(Y = 1 I a). The binary re- TABLE 4. ACCURACY ASSESSMENT OF FIVE CHANGE-DETECTION TECHNIQUES USED 
sponse variable was defined as flooded (1) or non-flooded (0) TO ASSESS VEGETATION RESPONSES TO FLOODING 
and varied for the different change-detection techniques. Pre- No. Dead Sites No. Live Sites 
dictor variables included percent live ground cover, percent 
dead ground cover, and flood zone. A stepwise selection pro- Method Correct Incorrect Correct Incorrect Accuracy 
cedure was employed using the  AS LOGIGTIC procedure (SAS S-TCC 36 10 3 2 34 0.607 0.248 
Institute, Inc., 1989). Ibl NDVI-TCC 38 8 37 2 9 0.670 0.362 

. . 

(c) S-PCA 33 13 46 20 0.705 0.405 
Probability Vector Model (d) NDVI-PCA 41 5 3 7 29 0.696 0.419 
A probability vector model (PVM) was used to facilitate visu- NDV1-lD 29 17 5 7 9 0.768 0.507 
alization of accuracy assessment for the five classification 
schemes. PVM represents a general error model that was de- 
veloped by Goodchild et al. (1992) for obtaining estimates of 
uncertainty in land-cover maps. In their model, each classifi- 
cation scheme is treated as a "realization" and combined to 
form a data layer from which the uncertainty associated with 
a class at any point (or pixel, ij) is represented by a vector of 
probabilities {pi,,, pi,,, ..., pi,, } defining the probability that a 
pixel belongs to each class 1 through n (Goodchild et al., 
1992; Goodchild, 1994). Maps derived from probability vec- 
tor modeling can be used to visually interpret classifications 
resulting from multiple change-detection methods and may 
enhance understanding of factors that affect accuracy. For ex- 
ample, large areas that are similarly classified by all or most 
methods can be readily identified. Areas of disagreement 
(lower probability scores) may indicate mixed pixels or class 
uncertainty. In addition, changes occurring in a particular 
land-cover class (e.g., vegetation senescence) that are being 
confused with the change of interest (e.g., flood-affected veg- 
etation) may be visually interpreted. 

In this study, the five different binary images were com- 
bined to derive probability values that ranged from 0 to I, 
representing the proportion of times a pixel was classified as 
flooded by the different methods or realizations. Thus, a 
probability value equal to 0.6 indicates that the pixel was 
classified as flooded by three of the five techniques. For the 
area outside of the flood boundary, probability values de- 
rived from the PVM were then combined with land cover 
data for several forest community types to assess sources of 
confusion in the classification process. 

Results 
Overall accuracy and Kappa Coefficient statistics (K,,) were 
used to compare the different change-detection techniques 
(Table 4). Overall accuracy for the techniques ranged from 
0.607 to 0.768. However, K,,,, which indicates the degree of 
improvement over a random classification (0 representing 
chance alone; 1 indicating complete agreement), exhibited 
significant variation, ranging from 0.248 to 0.507. Both meas- 
ures indicated that spectral-temporal change classification 
was least effective in discriminating flood-affected vegetation 
(Table 4a; Figure 2a). 

Classification accuracy was improved when temporal 
change classification was based on NDVI data for the three 
dates (Table 4b; Figure 2b). In contrast, classification accu- 
racy (K,,,) of PCA was only slightly higher when NDVI data 
(Table 4d; Figure 2d) were used instead of the original nine 
spectral bands (Table 4c; Figure 2c). Both PCA methods of- 
fered improved classification accuracy over the temporal 
change classification methods (s-TCC and NDVI-TCC). NDVI im- 
age differencing was the most effective technique for dis- 
criminating vegetation responses to flooding (Table 4e; 
Figure 2e). Examination of the NDVI data indicated that DNS 
were consistently lower (-10 DNS) in both flooded and non- 
flooded areas in 1986, the drier year, in comparison to 1990 
(Table 5). In contrast, post-flood (1994) NDVI values in the 
non-flooded area approximated those observed in 1990, 
whereas those in the flooded area exhibited a 10-DN de- 
crease. These findings indicate that ground cover vegetation 

exhibits a marked spectral response to both flooding and dry 
conditions which can be detected as a decrease in NDVI in 
affected areas. 

Logistic multiple regression results indicated that all 
methods were sensitive to the amount of dead vegetation 
present in the reference plots (Table 6). NDVI image differenc- 
ing was the only method that was also affected by the pres- 
ence of live vegetation (Table 6e). NDVI-TCC was the only 
method where results were also related to the flood duration 
zone (Table 6b). Classifications based on the image differenc- 
ing technique exhibited the highest agreement (concordance 
represents the correlation between the predicted probabilities 
and observed binary responses) with the reference data (Ta- 
ble 6e). 

Based on PVM, it was possible to visualize the degree of 
agreement among the techniques in identifying vegetation 
changes within the flood zone (Plate 2). Most (81 percent) of 
the forested area within the flood boundary was classified as 
flooded by one or more of the five change detection methods 
(P 2 0.2). Within the flood boundary, 80 percent of the area 
classified as flooded was identified by at least two of the five 
techniques (P 2 0.4) and 38 percent of the area was discrimi- 
nated by at least four of the five techniques (P t 0.8). Flood- 
affected vegetation along the Flint River and Ichawaynocha- 
way Creek that was identified by all five techniques (P = 1.0) 
represented 20 percent of the area within the flood boundary 
and generally occurred in areas that experienced highest cur- 
rent velocities and deepest waters as well as in localized de- 
pressions where standing water remained for several days fol- 
lowing the flood. 

In contrast, 44 percent of the area occurring outside the 
flood boundary was classified as flooded by one or more of 
the five change-detection techniques (P 2 0.2). However, al- 
most half (47 percent) of the area outside the flood boundary 
that was classified as flooded was discriminated only once by 
one of the five techniques. Only 4 percent of the area outside 
the flood boundary that was classified as flooded was identi- 
fied by all five techniques (P = 1.0). Examination of classifica- 
tion "errors" outside the flood boundary indicated that pixels 
comprising certain forest types were more likely to be classi- 
fied as flooded than others. For example, pixels occupied by 
cypress wetlands and deciduous xeric communities were es- 
pecially prone to being classified as flooded by four or more 
of the change detection methods. In addition, there was a pos- 
itive relationship between susceptibility to being classified as 
flooded by at least two of the methods and the proportion of 
the community comprised of deciduous trees (e.g., deciduous 
> mixed pinelhardwood > pine). 

Discussion 
Satellite data have been used to reconstruct regional flood his- 
tory (Nagarajan et al., 1993) and map water boundaries and 
changes in major wetland habitat types (Wickware and Ho- 
warth, 1981; Walsh and Townsend, 1995). Although a few 
studies have related agricultural crop damage to severity of 
flooding (Yamagata and Akiyama, 1988; Yamagata et al., 
1988), none have related ground-cover vegetation responses to 
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flooding in natural terrestrial ecosystems. Several factors might 
be expected to constrain flood impact assessments. First, due 
to overflight schedules and cloudiness, the timing of satellite 
data coverages rarely coincides with peak flood conditions, 
thereby leading to underestimates of the severity and areal ex- 
tent of flood inundation (Blasco et a]., 1992). Second, dense 
vegetation canopy and the complex relationship between hy- 
drologic and phenologic cycles may confound vegetation spec- 
tral responses within the floodplain (Walsh and Townsend, 
1995). Third, accuracy assessments generally require reliable 
post-flood ground truth data, adequate digital elevation mod- 
els, or other data that are often lacking or inadequate. Finally, 
vegetation may exhibit a lagged response to secondary flood- 
related factors (anaerobiasis, waterlogging, etc.) in areas that 
do not directly experience the most intense erosion and scour- 
ing (Craighead, 1971). 

TABLE 5. MEAN NDVl VALUES FOR THE 1986, 1990, A N D  1994 SPOT XS 
DATA 

Entire Non- Standar 
Image Date Site flooded Flooded Deviatic 

18 Oct 86 180.2 179.8 182.0 1.6 
5 Oct 90 190.2 189.7 192.5 1.9 
28 Sep 94 186.4 187.6 181.7 4.1 

In this study, cloud-free satellite data could not be ac- 
quired until almost three months after the flood. Relatively 
sparse overstory canopy coupled with a dense ground-cover 
community primarily dominated by a single species (wire- 
grass) characterized the study area and facilitated change-de- 
tection analyses. Classification accuracy exceeded 60 percent 

d) NDVI-PCA - 

e) NDVI-ID - 
Legend 

Flood Class 
tzm Flood Boundary 

Figure 2. Classification maps of the lchauway study area showing results of 
change-detection analyses based on (a) spectral-temporal change classifica- 
tion (s-rcc), (b) temporal change classification based on Normalized 
Difference Vegetation Index data (NDVI-TCC), (c) principal components analysis 
based on all spectral bands (S-PCA), (d) PCA based on NDVI data (NDVI-PCA), 
and (e) image differencing of NDvl data using +1 standard deviation as  a 
threshold (NDVI-ID). 

December 1997 PE&R! 



TABLE 6. LOGISTIC REGRESSION RESULTS COMPARING THE PREDICTION CAPABILIN OF THE CHANGE-DETECTION METHODS WITH THE PERCENT DEAD AND LIVE GROUND 
COVER, AND THE FLOOD ZONE 

Chi-square Test o f  Measure o f  Model  Predictive 
Significance (P-value) Capability 

Method % Dead Yo F lood Yo Yo % 
L i ve  Zone Concordance Discordance T ied  

(a) S-TCC 0.0007 >0.05 >0.05 68.1 28.9 3.1 
(b) NDVI-TCC 0.0010 >0.05 0.0271 74.9 24.4 0.7 
(c) S-PCA 0.0001 >0.05 >0.05 71.3 27.1 1.6 
(dl NDVI-PCA 0.0001 >0.05 >0.05 76.0 21.9 2.1 
(e) NDVI-ID 0.0001 0.0347 >0.05 82.3 16.9 0.9 

for the five methods used in this study, suggesting that all 
techniques offered potential for discriminating vegetation re- 
sponses to flooding. Although accuracy of the various classifi- 
cation methods employed in this study may limit their utility 
for management applications, the two-fold range in Kappa Co- 
efficient Statistics (K,,, = 0.248 - 0.507) indicated that some 
methods outperformed others when chance agreement was re- 
moved. Specifically, it is possible to generalize that (1) tempo- 
ral change classification based on changes in NDW were more 
accurate than similar classifications based on changes occur- 
ring in all spectral bands, (2) PCA techniques (s-PCA and NDVI- 
PCA) resulted in increased classification accuracy over the 
temporal change classification methods, and (3) image differ- 
encing of NDm data represented the most effective method for 
discriminating flood-affected vegetation. 

Results obtained in this and previous studies may facili- 
tate the selection of appropriate methods for discriminating 
change in different ecosystems resulting from different types 
and magnitude of disturbance. First, disadvantages associated 
with S-TCC, including poor classification accuracy in this and 
previous studies (e.g., Muchoney and Haack, 1994), may re- 

duce the utility of this method for detecting environmental 
change. Despite the improvement in classification accuracy 
when TCC was based on N D ~  data, the high degree of correla- 
tion among both spectral bands and vegetation indices (e.g., 
NDW) for multiple dates (collinearity) may have deleterious ef- 
fects on classification accuracy and may violate assumptions 
of many statistical tests. Second, although P(=A offered im- 
provements in classification accuracy over the two temporal 
change classification methods, interpretation was not straight- 
forward and required extensive knowledge of the study area. 
One interesting outcome of the study was the similarity in 
classification accuracy between the S-PCA and NDW-PCA, which 
suggested that minimal benefits may be derived by transform- 
ing data hom a relatively small number of images prior to 
PCA. However, appropriate indices may be useful when large 
numbers of images are included in PCA. Third, image differ- 
encing of NDW data provided the highest accuracy and is a 
relatively straightforward technique that could be automated 
for long-term monitoring of environmental change. In this 
study, statistically significant spectral changes were correlated 
with ecologically signilkant vegetation changes that occurred 

Plate 2. A probability vector model showing the proportion of times that a 
pixel was classified as flooded by the five different change-detection tech- 
niques. 
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in flood-affected areas and results could be readily interpreted. 
Muchoney and Haack (1994) obsenred that image differencing 
of SPOT XS bands was the most accurate of the four change- 
detection approaches they used for identifying hardwood for- 
est defoliation caused by gypsy moth infestation. However, 
like PCA, interpretation of spectral image differencing results 
mav be difficult. whereas the use of meaningful indices, such 
as bv~, may fadilitate interpretation of chanie images. 

Automated change detection requires that baseline condi- 
tions be defined prior to assessmentbf change. In this study, 
accurate results were obtained when baseline conditions re- 
flected the typical range in precipitation that is observed dur- 
ing the fall season (normal to dry). Once baseline conditions 
are established and change is detected in a new satellite im- 
age, ground- or aerial-photography-based assessments are es- 
sential for determining whether "significant" spectral change, 
as defined by the change threshold, is ecologically meaningful. 
One interesting outcome of the logistic multiple regression 
analysis of the ground survey data was the sensitivity of all 
change-detection methods to the percentage of dead ground 
cover, a relatively simple measure of vegetation condition that 
can be easily assessed in the field. The lack of a strong and 
consistent relationship between flood zone and the predictive 
capabilities of the change-detection methods may be related to 
soil, physiographic (slope, aspect, etc.), and other site-specific 
factors that varied considerably within the designated flood 
zones, thereby affecting the magnitude of the disturbance 
(depth, duration, intensity) experienced by the vegetation. 

PVM proved useful for visually assessing classification ac- 
curacy and identifying potential sources of confusion. The 
tendency for pixels located in cypress wetlands and decidu- 
ous xeric communities located outside of the flood boundary 
to be more frequently classified as flooded than were other 
forest types was unexpected. However, at least two mecha- 
nisms may account for this phenomena. First, the two habitats 
comprise a total of only 161 ha and consist of many small 
patches that are scattered throughout the landscape. Some 
misclassification associated with mixed pixels might, there- 
fore, be expected based solely upon patch morphology. Sec- 
ond, spectral changes associated with these habitats may re- 
flect vegetation changes that occurred in response to excessive 
precipitation. Standing water was observed in cypress wet- 
lands for an extended period following Tropical Storm Al- 
berto and likely had an adverse effect on ground-cover vegeta- 
tion. Similarly, extended soil saturation of deciduous xeric 
habitats may have resulted in root stress and enhanced deni- 
trification rates, and concomitant negative effects on above- 
ground vegetation biomass and condition (Craighead, 1971; R. 
Mitchell, personal communication). Because ground-cover 
vegetation was not sampled in either habitat, it would be in- 
appropriate to assume that pixels i n  the two habitats repre- 
sented misclassification errors instead of actual biological re- 
sponses to the disturbance. 

Logistic multiple regression and PVM represent powerful 
analvtical techniques that may prove useful in other evalua- 
tions of change-dkection methods. Binary response variables 
(e.g., defoliated, unaffected) and ordinal response variables 
(e.g., no effect, moderate defoliation, severeAdefoliation) arise 
in many studies of ecological disturbances. Logistic regression 
analysis can be effectively used to investigate the relationship 
between the spectrally defined response probability and po- 
tential explanatory variables (e.g., degree of canopy closure, 
stand condition, etc.). Results of such analyses could be used 
to reduce the number of attributes that are monitored in the 
field, thereby reducing sampling costs. 

Maps derived from probability vector modeling may facil- 
itate visual assessments of classification accuracy when com- 
paring multiple methods, allowing the analyst to identify ar- 
eas of agreement and disagreement. Areas susceptible to 

misclassification may be easily visualized, interpreted, and 
corrected. Such sources of confusion may not be readily ap- 
parent using standard classification accuracy assessment tech- 
niques, especially if the researchers do not have extensive ex- 
perience and/or knowledge of conditions on the ground. 
Goodchild et al. (1992) further discuss how this modeling ap- 
proach can be used to obtain standard errors associated with 
area estimates. 

Conclusion 
Previous change-detection studies have primarily focused on 
applying a single change-detection technique for assessing 
vegetation changes related to alterations in land use (e.g., de- 
forestation) and broad-scale natural disturbances (e.g., hurri- 
canes, drought, insect outbreaks). This study demonstrated the 
feasibility of using satellite data and different change-detection 
approaches to assess and monitor responses in ground-cover 
vegetation dynamics to flooding of a sparse canopy forested 
ecosystem. Two techniques utilized in this study, logistic mul- 
tiple regression and PVM, were useful for relating spectral 
change to vegetation change and visualizing classification ac- 
curacy, and may facilitate future change-detection studies. Al- 
though additional comparative studies in a variety of ecosys- 
tems experiencing different types and intensity of disturbance 
are required, automated change detection offers significant po- 
tential for increasing our understanding of ecosystem- and 
landscape-scale responses to naturaI and anthropogenic distur- 
bances. 
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