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Abstract 
Soil drainage strongly affects the patterns and processes of 
ecosystems, including biomass production, vegetation com- 
munity distribution, soil development, aeration, hydrologic 
processes, and trace gas fluxes. To obviate the need for ex- 
tensive field surveys, we present a technique to use a re- 
motely sensed optical image and digital elevation data to 
predict soil drainage class a t  a 6- by 4-km research site in a 
mixed conifer forest in Howland, Maine. Elevation, de- 
trended elevation, slope, aspect, and pow accumulation were 
determined from a 10-m resolution digital elevation model 
(DEM) of the site. Normalized Difference Vegetation Index 
(NDVI) data derived from the Advanced Visible and Infrared 
Imaging Spectrometer (AVIRIS) were used to represent differ- 
ences in vegetation cover. Classification tree analysis pre- 
dicted soil drainage class with an average of 78 percent 
accuracy. 

Introduction and Background 
Natural soil drainage is an important factor influencing many 
biophysical processes, such as biomass production and pat- 
tern, nutrient cycling, and trace gas fluxes (e.g. see Jenny, 
1941; Ferwerda and Young, 1981; Harley and Smith, 1983; 
Chapin and Shaver, 1985; Sahrawat and Keeney, 1986; 
Brady, 1990; Meng and Seymour, 1992; MacDonald et al., 
1993; Levine et al., 1994). Natural soil drainage is the fre- 
quency and duration of periods when the soil is free of 
saturation or partial saturation (Brady, 1990). State and 
county soil surveys which report this soil characteristic refer 
to it qualitatively as a drainage class with categories ranging 
from "very-poorly'' to "excessively-well'' drained. 

Determining soil drainage class is laborious, time consum- 
ing, and costly because it requires field examination of a soil 
profile. Typically, a soil pit must be excavated and filled with 
water to produce saturation, allowed to drain naturally, then 
refilled in order to measure the time it takes for the water to 
recede. A level of subjectivity is also included because the 
drainage class is determined based on this direct observation 
and on inference from other local landscape observations (see 
Soil Survey Staff (1993) for further information on determin- 
ing soil drainage class). These difficulties have led investiga- 
tors to seek alternate methods of mapping drainage class. 

Jenny (1941), in a classic study, identified the five essen- 
tial components of soil formation as topography, vegetation, 
parent material, climate, and time. Information on two of 

Department of Applied Science, Brookhaven National Labo- 
ratory, Bldg. 490D, Upton, NY 11973-5000. 

R.C. Dubayah and W.T. Lawrence are presently with the 
Department of Geography, University of Maryland, LeFrak 
Hall, Room 2137, College Park, MD 20742. 

E.R. Levine is presently with the Biospheric Sciences 
Branch, NASAIGoddard Space Flight Center, Greenbelt, MD 
20771. 

Jenny's soil forming factors, topography and vegetation, is 
available without resorting to in situ observations. Both of 
these in turn are related to soil drainage. Digital topographic 
databases, such as the 30-m digital elevation model series 
(DEM), exist for most of the U.S. Various studies have shown 
that data derivable from DEMs, such as landscape shape (e.g., 
level, low-lying), slope, aspect, and flow accumulation 
(where and how water will accumulate over a landscape), 
are related to soil drainage class (Troeh, 1964; Kirkby, 1978; 
O'Loughlin, 1986; Wood et al., 1990; Bell et al., 1992; Meng 
and Seymour, 1992). 

Information about vegetation biophysical properties can 
be obtained using remote sensing techniques (Curran, 1983; 
Asrar et al., 1984; Tucker et al., 1985; Prince, 1991; Town- 
shend et al., 1991; Daughtry et al., 1992; Price, 1993; Du- 
bayah, 1994). A general relationship between grouped soil 
series and phytomass development was reported by Lozano- 
Garcia et al. (1991) using a remotely sensed vegetation index. 
Levine et al. (1994) observed statistical differences between 
soil drainage class and variation in species composition, as 
expressed through a vegetation index. 

A statistical technique, classification tree analysis, can (as 
one of its applications) utilize these factors to arrive at predic- 
tions of soil drainage class. Classification tree analysis is based 
on binary recursive partitioning of the predictor variable data 
to arrive at homogeneous groupings of the response variable 
data for each hierarchical level (Chambers and Hastie, 1992). 
(Here, classification trees are differentiated from regression 
trees in that the former may have a categorical response vari- 
able, such as drainage class, while the response variable in the 
latter is numeric, such as would be produced by a least- 
squares regression (Breiman et al., 1993).) The process creates 
a hierarchical tree whose branch points correspond to parti- 
tions of the data, and the leaves at the end of branches are the 
final classes. Classification tree analysis often may provide in- 
sight into the physical structure of the data. It also has an ad- 
vantage in its consideration of categorical data for both 
dependent and/or independent variables, and independent 
variables which may be severely non-normal. Nonadditive be- 
havior is more easily captured in tree-based models as com- 
pared to standard linear models, where interactions between 
variables must be pre-specified and are of a particular multi- 
plicative form (Breiman et a]., 1993). 

Recently, tree-based models have been used as a method 
of classification (e.g., Hockman et al., 1990; Grubb and King, 
1991; Baker et al., 1993). Michaelsen et al. (1987) investi- 
gated factors controlling the establishment of Blue oak 
seedlings in the central Coast Ranges of California using tree 
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tours of a 7.5-minute USGS topographic map at a scale of 1: 
24,000. An image from the Advanced Visible and Infrared 
Imaging Spectrometer (AVWS), a 224-band high spectral reso- 
lution instrument (Lillesand and Kiefer, 1994), was used to 
derive an atmospherically corrected vegetation index - the 
Normalized Difference Vegetation Index (NDVI) - at a 20-m 

1-916 resolution (Plate 1) for bands 0.626 to 0.694pm (red) and 
,&z 0.776 to 0.901km (infrared) (Levine et al., 1994). A soil sur- 

vey identifying major soil series and soil associations at a 

I 
scale of 1:12,000 was conducted with the aid of color aerial 
photographs and SPOT satellite imagery for the 6- by 4-km 

7*m site (Levine et al., 1994). Soil mapping units (composed of 
7113-,751 
m - 7 0 ~  ten soil associations) were created at a 10-m resolution and nam 
sao-sol spatially represented as soil polygons in a geographic infor- 
MO mation system (GIS). A corresponding soil drainage map was 

I also produced from profile description information collected 
during the soil survey (Plate 2). Soil drainage class per soil 
mapping unit was derived by weighted means of drainage 
classes assigned to soil series within a soil mapping unit. A 
complete description of the methodology used to prepare the 
soils database can be found in Levine et al. (1994). 

Plate 1. Broad-band NDVI calculated from AVIRIS for an 
8.5- by 8-km area withln the lnternatlonal Paper Compa- Data Development 
ny's Northern Expermental Forest (NEF), near Howland, From the initial DEM raster data, several other variables were 
Maine. So11 associations are outlined In black for the 6- derived. A grid of flow accumulation was produced using an 
by 4-km study area. algorithm for calculating flow direction and accumulation 

(Jenson and Domingue, 1988). Slope and aspect grids were 
also computed from the DEM. 

structures. Davis et al. (1990) predicted a continuous vegeta- The initial NDVI grid included areas of human distur- 

tion index as a site classifier from digital terrain and land- bance, such as roads and managed clear cuts, as well as un- 

use data and Davis and Dozier (1990) applied tree techniques disturbed vegetation. The disturbed areas were masked from 

to develop an ecological land classification to classify terrain the grid to reduce the possibility of introducing error into the 

for a complex region in southern California. Most recently, relationship between the vegetation index, NDVI, and soil 

Michaelsen et al. (1994) applied a tree-based model to clas- drainage class. 

sify a tall grass prairie landscape using digital terrain, land- The terrain of the site has a gradual rise in elevation 

use, and land-cover data. They concluded that tree-based from the southeast corner to the northwest corner. This rise 

model analyses are useful for analyzing complex hierarchical overwhelms any local variations in topography. The overall 

relationships often found in multivariate data sets. elevation trend was removed from the surface to leave only 

Inspired by these results and Jenny's (1941) soil forming local variations. Therefore, grids of flow direction and flow 

factors, we have applied classification tree analysis to predict 
soil drainage class. This technique incorporates physical en- 
vironmental factors that control soil drainage that are deter- 

I - - 
mined from remotely sensed and digital elevation data. In 
particular, we use remote sensing to derive a vegetation in- 
dex, and digital elevation data for finding topographic prop- 
erties including slope, aspect, and flow accumulation. From 
these data, a classification tree is constructed and used to 
produce maps of soil drainage class. 

Methodology 
Study Area 
The field site is a 6- by 4-km section of boreal forest located 
near Howland, Maine (Latitude: 45.Z0N; Longitude: 68.7"W) 
within the International Paper Company's Northern Experi- 
mental Forest (NEF). This area of central Maine has a cold 

4 
and humid climate with annual precipitation between 80 
and 100 cm. The temperatures range from -20°C in the win- m y  PWIUY-14% 

ter to less than 30°C in the summer. The site is low lying POORLY-12% 

and relatively flat, with a maximum relief of 110 metres from 
east to west. Soil drainage ranges from excessively drained to 
very-poorly drained soils. Glacial activity played a critical EXBSSIV~LY-14. 

role in the formation of the soil and its characteristics which 
now exist in the area (Levine et al., 1994). 

Data Acquisition 
A DEM was created for the 6- by 4-km site at a 10-metre grid 
spacing. The DEM was interpolated from hand digitized con- 

Plate 2. Soil drainage classes by soil associations for the 
study area derived from ground-based measurements. 
Percentage of total area for each drainage class is found 
in the plate. 
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(b) 
Plate 3. (a) Predicted soil drainage classes by soil asso- 
ciations using a sampling technique with a fixed fraction 
from each drainage class, totaling 500 datapoints. The 
percent correctly classified for each drainage class is 
found in the plate. (b) Predicted sol1 drainage classes by 
soil associations using a random sampling technique of 
500 datapoints. The percent correctly classified for each 
drainage class is found in the plate. 

Classification Tree Analysis 
Our analyses were performed using the S-Plus statistical soft- 
ware (Statistical Sciences, Inc., Seattle, Washington). Class$- 
cation tree analysis requires a set of classification or predic- 
tor variables and a single-response variable, any or all of 
which may be categorical. The initial tree-growing methodol- 
ogy employs an algorithm based on binary recursive parti- 
tioning of the predictor dataset to arrive at increasingly 
homogeneous regions of the space of predictor variables (3, 
such that within each region the conditional distribution of y 
given x, f(y l x),  no longer depends on x. At an individual 
node, j, x j  is partitioned into xj, LEFT and xj, RIGHT such that 
f(yj I xj, LEFT) and f(yjI xj, RIGHT) are most different. The best 
splits are determined for each individual predictor variable 
by this recursive looping. The best of all splits is chosen as 
the split for that node. At each node all variables contribute 
some amount to the total predictability, but a node is as- 
signed based on the one variable that is the most predictive. 
The tree branching continues until the number of datapoints 
is too small to split and still remain reliable (Chambers and 
Hastie, 1992). 

Creating Samples 
Because the data in our study were composed of ten 6- by 4- 
km grids (one each for vegetation, soil drainage class, eleva- 
tion, detrended elevation, slope, aspect, flow accumulation, 
flow direction, and localized flow accumulation and flow di- 
rection), each 548 by 404 pixels, there was an abundance of 
data points with which to grow and test !he tree. However, 
these data were sampled to minimize the possibility of spa- 
tial autocorrelation (Cliff and Ord, 1981). A tree's accuracy 
was investigated with a test dataset chosen from a set of 
points resenred from the total pool. Exploratory trees were 
created to test both the sample size of the dataset used to 
create the tree and the sample size of dataset used to test the 
tree. 

Pruning 
Once the tree was grown in the manner described above, a 
misclassification error rate for the tree was reported, based 
on the average misclassification error rates for each node. 
The error rate reported an estimate of the number of points 
that were incorrectly classified out of the total number of 
points (e.g., 110/500 = 0.22). This error rate is determined 
within the classification tree analysis based on the inverse of 
the probability of classifying a pixel correctly. The more 
splits there are in the tree, the smaller the probability of mis- 
classification; however, the predictive capability of the tree is 
reduced with a larger tree. The tree was grown as large as 
possible and then selectively pruned upward, producing a 
sequence of trees of decreasing complexity. Each tree's pre- 
dictability was tested with an independent test dataset. Test 

were tested On pruned trees of various sizes to 
choose the sub-tree having the lowest estimated misclassifi- 
cation error rate. 

Testing the Accuracy 
accumulation (hereafter referred to as localized flow direc- While the misclassification error rate is a measure of the pre- 
tion and localized flow accumulation) were produced to re- dictive power of the tree, that rate is calculated on a per- 
flect this detrended elevation surface. pixel basis. The smallest unit of ground-based measured soil 

Correlational analyses using Spearman's Rank Order Cor- drainage class data available to us was a soil association, or 
relation were conducted between soil drainage class and the soil mapping unit, spatially represented by soil polygons 
physical variables of elevation, slope, aspect, NDW, flow ac- across the site. Thus, the only test of predictability that 
cumulation and direction, detrended elevation surface, and could be verified was by soil associations. The prediction 
localized flow direction and flow accumulation. All data data output from each tree were grouped by soil polygons 
were aggregated by soil polygons because the smallest and compared to the ground-based measurements. A 
ground-based measurements available were at the soil poly- weighted-by-area count of correctly classified pixels (within 
gon level. polygons) showed which tree's classification compared best 



Size of Sample Mean Misclassification Number 
(pixels) Error Rate (%) of Endnodes 

"fixed fraction from each drainage class 

with the ground-based measurements. However, because soil 
polygons are not pure with respect to drainage class, yet they 
are treated as such, the validation map itself will have errors. 
A pixel falling within a given polygon may be assigned a 
class different from the polygon and be labeled as misclassi- 
fied. In reality, the pixel may be correctly classified, but 
without sub-polygon scale validation data, this is impossible 
to tell. Hence, we cannot distinguish map errors from model 
errors, and our accuracy test is somewhat weakened. 

Predictor Variable Analyses 
Datasets used to create the trees were varied as to the combi- 
nation of predictor variables included. Some variables 
showed more predictive power than others. One predictor 
variable was removed from the dataset at a time and a new 
tree created to ascertain its influence on predictability. Mean 
misclassification error rates were noted with each new tree. 

Cost versus Complexity 
The number of terminal nodes in a classification tree has a 
direct effect on the mean misclassification error rates pro- 
duced by the tree. Too many nodes increases the complexity 
and the likelihood of misclassification. Too few nodes cre- 
ates poorer fits, though the cost of the tree measured in num- 
ber of terminal nodes is reduced (Breiman et al., 1993). An 
analysis was conducted where a cost complexity parameter, 
k, (Breiman et al., 1993) was varied from 1 to 10. The grad- 
ual reduction and then increase in mean misclassification 
error rates was noted as the number of terminal nodes de- 
creased. The most cost-effective tree was determined by the 
lowest mean misclassification error rate for a given cost com- 
plexity parameter. 

Results ~~ - -  

Several trees were produced with varying sample sizes and 
two sampling techniques, and their mean misclassification 
error rates were compared (Table 1). The sample sizes varied 
from 100 to 40,000 points. The two sampling techniques 
were (1) random sample and (2) a fixed fraction from each 
soil drainage class, selected randomly. For both sampling 
techniques and varying sample sizes, the smallest mean mis- 
classification error rate was reported with a sample size of 
500 pixels. Thus, two trees created with 500 pixels by each 
sampling technique were chosen for analysis. 

When sample size of a test dataset (data used to test the 
accuracy of the tree) was varied from 15,000 pixels to 1,000 
pixels, the misclassification error rate increased by only 0.3 
percent for the smaller test sample. The larger sample size 
was chosen to estimate the accuracy of the tree for both sam- 
pling techniques, so that a representative sample of pixels 
within each soil polygon would be available. 

An analysis was conducted to estimate the best pruned 

sub-tree based on the cost versus complexity associated with 
the number of terminal nodes (Breiman et al., 1993). The 
cost-complexity analysis is reported in Table 2 for both trees: 
one created with 500 random sample points (TREE-A) and the 
other created with a fixed fraction from each drainage class, 
selected randomly, totaling 500 points (TREE-B). The table 
lists the mean misclassification error rates of trees pruned for 
a range of cost complexity parameter values, k, for both the 
pruned tree and a test data sample. The k values of 4 and 5 
yielded the same lowest misclassification error rates for a test 
sample for TREE-A (a k value of 5 was chosen arbitrarily). Al- 
though k values of 1 and 2 yielded the lowest misclassifica- 
tion error rates for TREE-B, a k value of 6 was nearly equiva- 
lent in terms of error rates and was chosen due to its fewer 
number of terminal nodes. Two trees were pruned using 
those k values, resulting in structures with 51 and 43 termi- 
nal nodes. Characteristically, the gradual reduction in esti- 
mated error rate observed in Table 2 is caused by a tradeoff 
between too few splits in a tree, creating poor fits, and too 
many splits, increasing the likelihood of predicting many of 
the wrong class (Breiman et al., 1993). 

Two prediction trees were created using the best pruned 
trees and a predictor dataset. These prediction trees provided 
the data necessary to produce soil drainage class maps. Plate 
3 shows the drainage class maps created from the two pre- 
diction trees as compared to the soil drainage class map cre- 
ated from ground based measurements (Plate 2). PRED-B, a 
map created from the pruned tree with a fixed fraction from 
each soil drainage class, was 7 percent more accurate (Plate 
3a) than the map created from a random sample, P ~ D - A  
(Plate 3b). In particular, PRED-B more accurately estimated 
the very-poorly drained and poorly drained soil polygons 
than did PRED-A. Both maps predicted the single excessively 
drained soil polygon accurately. The percentages of correctly 
classified polygons (by pixel) per drainage class are reported 
in Table 3. The weighted mean percent accuracy was 75.3 
percent for PRED-A and 81.0 percent for PRED-B. 

The percentages of misclassification for each drainage 
class (errors of omission) are reported for PRED-A and PRED-B 
in Table 4. When PRED-A misclassihed a soil polygon, it was 
classified as either the largest or second largest soil drainage 
class of the map, moderately well drained and well drained. 
However, misclassifications of soil polygons in PRED-B were 

TABLE 2. COST-COMPLEXITY PRUNING TABLE. 

Mean Misclassification 
Classification Number of Error Rates (%) 
Tree k terminal nodes Pruned Tree Test Sample 

TREE-A 1 6 1 22.2 45.9 
2 5 7 22.8 45.5 
3 5 5 23.0 44.5 
4 51  23.8 43.9 
5 51  23.8 43.9 
6 48 24.6 44.5 
7 45 26.0 45.9 
8 36 29.8 45.5 
9 32 30.6 44.8 

10  27 31.8 44.1 

TREE-B 1 49 20.4 46.9 
2 49 20.4 46.9 
3 4 7 20.4 47.1 
4 46 20.6 47.3 
5 44 21.0 47.1 
6 43  21.2 47.0 
7 39 23.0 48.4 
8 30 25.0 47.3 
9 3 0 25.0 47.3 

10 2 6 26.6 49.7 
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Prediction Map Drainage Class % Area % Correct 

PRED-A Very Poorly 14  27.1 
Poorly 12 62.7 
Moderately Well 48 91.6 
Well 2 5 76.2 
Excessively 1 100.0 

Percent overall accuracy 75.3 

PRED-B Very Poorly 14  60.7 
Poorly 12 91.3 
Moderately Well 48 86.1 
Well 2 5 77.0 
Excessively 1 100.0 

Percent overall accuracy 81.0 

most often classified as a drainage class with similar charac- 
teristics. 

Partial dendrograms of pruned TREE-A (Figure l a )  and 
pruned TREE-B (Figure lb) show comparisons of the nodes 
and class predictions for each tree. Both trees initially split 
on the predictor variable of elevation. The left and right 
splits at the next level were also made on the same predictor 
variables for both trees; detrended elevation and NDVI, re- 
spectively. Below those splits, the trees begin to deviate in  
the number of nodes and the variables on which the splits 
occurred. 

Table 5 gives the mean misclassification error rates for 
TREE-A and TREE-B, with individual predictor variables re- 
moved singly. The greatest change in misclassification rates 
was produced for both trees when the elevation was ex- 
cluded from the predictor variables dataset. Excluding de- 
trended elevation surface, reflecting local topographic 
position, produced the second greatest change in misclassifi- 
cation rates for both TREE-A and TREE-B. Omitting vegetation, 
as expressed by NDvI, produced the next greatest change in 
misclassification rates for TREE-B. The next largest change for 
TREE-A was produced when aspect was excluded, although 
excluding NDVI produced similar results. 

Accuracy of the Estimation 
The prediction map created from a sample composed of a 
fixed fraction from each soil drainage class produced a more 
accurate estimate than did the map created from a random 
sampling of the data. Because the greater part of the area was 
moderately well drained, the training set used to grow the 
tree from a random sample incorporated more moderately 
well drained data in the tree. Fewer pixels from the drainage 
classes with smaller percent areas were included in the train- 
ing set. Hence, the prediction tree created from a random 
sample was biased toward the moderately well drained class. 
Using a simplified analytical model, Breiman et al. (1993) 
suggest that constructing a test sample from a fixed fraction 
from each class produces a more accurate estimation, as we 
found. 

Spatial analysis of soil drainage misclassification sug- 
gests that the data manipulation procedures used to create 
the validation (ground truth) map may have contributed to 
some misclassification. First, the process of aggregating soil 
drainage class data from the soil series level to the soil asso- 
ciation level forced a single drainage class to be assigned to a 
soil association, as discussed earlier, leading to possible vali- 
dation map errors. Further, this assignment was the weighted 
average of each drainage class for each series within the as- 
sociation, with these averages then rounded to the nearest 

whole number (Levine et al., 1994), leading to more generali- 
zation. In addition, some soil series were too small to map, 
although they may have still shown variation in  NDW and 
terrain variables. 

Explanatory Properties of the Classification Tree 
One advantage of this classification method is that it may 
provide insight into the structure of the data. The underlying 
physical mechanisms that generated the predictor variable 
data were interpreted through tree dendrograms and split 
competitions at the top of the trees. Topography had the 
greatest correlation with soil drainage class. In particular, an 
elevation of approximately 240 ft was consistently assigned 
the first split in both trees. This data split value can be ex- 
plained through physical features of the landscape. Broad ri- 
parian swamps (including alder swamps, beaver swamps, 
flowage, and bogs) occurred below that contour interval. The 
detrended elevation surface, reflecting local topographic po- 
sition, was also highly influential. Removing the horizontal 

TABLE 4a. ACCURACY OF PREDICTION VS. GROUNDBASED MEASUREMENTS 
(PRED-A). 

Prediction (%) 

Ground- moderately 
Based very-poorly poorly well well excessively 
Measurements drained drained drained drained drained 

very-poorly 27.1 6.1 51.5 13.5 1.6 
poorly 0.0 62.7 12.5 24.7 0.0 
moderately well 0.8 0.0 91.6 7.6 0.0 
well 4.7 2.2 16.9 76.2 0.0 
excessively 0.0 0.0 0.0 0.0 100.0 

TABLE 4b. ACCURACY OF PREDICTION VS. GROUNDBASED MEASUREMENTS 
(PRED-B). 

Prediction (%) 

Ground- moderately 
Based very-poorly poorly well well excessively 
Measurements drained drained drained drained drained 

very-poorly 60.7 15.9 11.2 10.5 1.6 
poorly 0.0 91.3 4.7 4.0 0.0 
moderately well 9.1 0.7 86.1 4.0 0.0 
well 4.1 7.4 11.4 77.0 0.0 
excessively 0.0 0.0 0.0 0.0 100.0 

TABLE 5. MEAN M~SCLASS~FICAT~ON ERROR RATES FOR EXCLUDED PREDICTOR 
VARIABLES. 

Classification Predictor Misclassification 
Tree Variable Excluded Error Rate (%) 

TREE-A (none) 22.0 
elevation 27.0 
slope 22.2 
aspect 23.8 
detrended DEM 25.2 
NDVI 23.4 
accumulation 22.2 
local accum. 21.2 

TREE-B (none) 
elevation 
slope 
aspect 
detrended DEM 
NDVI 
accumulation 
local accum. 
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Figure 1. Dendrogram of TREE-A and TREE-B simplified to four levels. The predicted response variable, 
soil drainage class, is centered in each node (oval symbol). The best predictor variable for that node 
is labeled between tree levels. The end nodes (rectangular symbol) represent the final predictions. 
The value under each node represents the misclassification error rate (number of points incorrectly 
classified out of the total number of points). Elevation is denoted by "elev" in feet; detrended eleva- 
tion by "elevde" in feet; NDVl by "NDVI" (values are 1000X); aspect by "aspect" in compass direc- 
tion. 

trend in slope enhanced the local relief, exposing upland 
slopes, for example, and the hummocky terrain of the study 
site. 

Vegetation, as expressed by NDvI, was the next strongest 
predictor of soil drainage class. The NDvI values for this 
study area may have effectively separated conifers from the 
hardwoods, with conifers generally having a lower NDVI. 
Conifers are known to grow on more poorly drained soils 
than hardwoods. 

Slope, flow accumulation, and localized flow had little 
correlation with soil drainage class for this study area. If 
these data were used to construct a stream network and dis- 
tance from the stream was added as a dataset, they may have 

had a higher correlation. Aspect also may be more important 
in an area with steeper slopes than the study area because, 
in general, aspect influences soil formation and vegetation 
with slopes greater than 15 percent (Klingebiel et al., 1988). 

Finally, it should be noted that, although previous stud- 
ies have shown the appropriateness of a classification tree 
approach (Davis et al., 1990; Michaelsen et al., 1994), we are 
imposing a hierarchichal structure as a model assumption 
when no such structure may exist. Examination of our tree 
structures shows the importance of elevation; many of the 
splits are on this variable and detrended elevation. Succes- 
sive splits on a single variable, even if non-monotonic in na- 
ture, suggest that a non-hierarchical structure may be present 
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i n  the  data. I n  particular, a class of relatively n e w  models  
known as  general additive models  may b e  appropriate a n d  
warrant further s tudy (Chambers a n d  Hastie, 1992). 

Future Applicability 
The  primary limitation to  applying classification tree analy- 
sis (and to all  statistical tree-based models) in other s tudy ar- 
eas is  that  some representative sampling of soil drainage 
class data is  required to  produce a classification tree. The 
number  of soil drainage class training data  points required to  
produce accurate estimates is  no t  known.  Our  results suggest 
that  a min imum of 100  point pedon  samples would  be  re- 
quired for a reasonably accurate estimate (see Table 1). A n  
important future s tudy would b e  to  test a larger region where 
the  soil drainage class data were available at  specific point 
locations, rather than  aggregated to the  soil polygon level. 
The amount  of point  data  required to  make accurate esti- 
mates could then  b e  investigated, as  well  as  the  overall ap- 
plicability of the technique a t  a regional scale. 

Conclusion 
A technique was  developed that  incorporates a physically 
based statistical procedure to  estimate soil drainage class 
from physical variables that  can  b e  derived from remotely 
sensed a n d  digital elevation data. Our  results suggest that 
soil drainage class can  b e  predicted w i t h  reasonable accuracy 
from these data  for a boreal forest s tudy site. In  addition, the  
technique c a n  provide insight into the physical factors that 
exert the  strongest influence over soil drainage class for a n  
area. In  the future, wi th  minimal  amounts  of soil drainage 
class training data, this technique might be  appl ied to  pro- 
duce  a continuous m a p  of soil drainage class at  a regional 
scale that  would  be  valuable for investigations of a wide  
range of ecosystems processes. 
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