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Abstract 
Methods have been proposed to produce multispectral im- 
ages with enhanced spatial resolution using one or more im- 
ages of the same scene of better spatial resolution. Assuming 
that the main concern of the user is the quality of the trans- 
formation of the multispectral content when increasing the 
spatial resolution, this paper defines the properties of such 
enhanced multispectral images. It then proposes both a for- 
mal approach and some criteria to provide a quantitative as- 
sessment of the spectral quality of these products. Five sets 
of criteria are defined. They measure the pe$ormance of a 
method to synthesize the radiometry in a single spectral 
band as well as the multispectral information when increas- 
ing the spatial resolution. The influence of the type of land- 
scape present in the scene upon the assessment of the 
quality is underlined, as well as its dependence with scale. 
The whole approach is illustrated by the case of a SPOT im- 
age and three different standard methods to enhance the 
spatial resolution. 

Introduction 
Many works have recognized the benefit of merging high 
spectral resolution (or spectral diversity) and high spatial 
resolution images, particularly in land mapping applications. 
Some satellite systems offer both kinds of data. The Landsat 
Thematic Mapper (TM) system presents six spectral visible 
and near-infrared bands with a 30-m resolution and a ther- 
mal infrared band with a 120-m resolution. The present SPOT 
system has three spectral bands with a 20-m resolution 
(called XSI, X ~ Z ,  and X S ~ )  together with a panchromatic band 
of 10-m resolution (called P). The next SPOT systems will 
have more spectral bands and enhanced spatial resolutions, 
and will also retain this dual resolution capability. Besides 
these widely used systems, other systems offer either spectral 
capabilities or high spatial resolution, including the Russian 
KFA and KVR systems, with resolutions of 10 to 2 m, and 
other systems to come from the United States and elsewhere. 
This list does not pretend to be exhaustive and is intention- 
ally restricted to the systems presently used for fine-scale 
land mapping. It illustrates the diversity of available data 
which can be merged together for a better knowledge of our 
environment. 

Many methods have been proposed for the merging of 
high spectral and high spatial resolution data in order to pro- 
duce multispectral images having the highest spatial resolu- 

tion available within the data set. We are only concerned 
with those methods which claim to provide a synthetic im- 
age close to reality when enhancing the spatial resolution, 
and not those which only provide a better visual representa- 
tion of the image (e.g., Carper et al., 1990). Some methods 
are specific to the case of SPOT (Anonymous, 1986; Pradines, 
1986), while others are more general (Blanc et al., 1996; 
Chavez et al., 1991; Garguet-Duport et al., 1994; Garguet-Du- 
port et al., 1996; Li et al., 1995; Iverson and Lersch, 1994; 
Mangolini et al., 1992; Mangolini et al., 1993; Munechika et 
al., 1993; Pellemans et al., 1993; Tom, 1987; Yocki, 1996). 
These methods make use of the data having the best spatial 
resolution to simulate multispectral images at this resolution. 
However, no methods propose any assessment of the quality 
of the resulting synthetic images except for Blanc et al., 
Mangolini et al., Munechika et al., and Li et al., the last ap- 
proach being rather inapplicable to Earth images. 

The goal of the present paper is to propose both an ap- 
proach and some criteria for a quantitative assessment of the 
quality. In doing this, we assume that the main demand of 
the user concerns the quality of the transformation of the 
multispectral content when increasing the spatial resolution. 
The better the simulation of the spectral content at the en- 
hanced resolution, the more accurate the classification for 
mapping purposes. Our approach is similar in essence to the 
one used by Mangolini et al. (1992) and, for the case of SPOT, 
by Mangolini et al. (1993; 1995) and Munechika et al. (1993). 
The present work offers a more extensive discussion of the 
approach and proposes a formalism as well as quality crite- 
ria. The influence of the resolution itself with respect to the 
type of landscape upon the assessment of the quality is fi- 
nally discussed. 

Background 
At first, some general comments are needed, in particular re- 
garding the superimposability of images and the simultaneity 
of their acquisition by the sensors. The above-mentioned 
methods require superimposable images, once all images are 
set to the lowest available spatial resolution (e.g., 20 m in 
the case of SPOT). Some images are already co-registered, 
such as Landsat images. Otherwise, this can be done by 
means of standard methods available in public or commer- 
cial software packages for image processing. The images of 
lowest resolution (e.g., xs in the case of SPOT) are projected 
into the geometry of the image of highest resolution (e.g., P 
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right CNES-SPOT Image (1990). 

Figure 4. As Figure 3 but XS1-HR. 
Figure 3. XPI synthetic image (see text for explanations). 

in the SPOT case) degraded to the lowest resolution (e.g., 20 
m in the SPOT case). During the process, a resampling of the 
multispectral images is made. The resampling operator has 
an influence upon the final result. In most cases, a bi-cubic 
interpolator offers a good compromise between the accuracy 
of the result and the required computer time. In the follow- 
ing, for the sake of the simplicity, the term "image of lowest 
resolution" will denote the projected resampled image of 
lowest resolution, if this is required. 

The images of different resolutions may not have been 
acquired simultaneously. Optical properties of the atmo- 
sphere are different from one date to the other. This induces 
further spectral distortion in the set of images. As for the 
landscape, as long as the time lag is small with respect to the 
time scale of the variations in small-size features, its influ- 
ence upon the quality of the transformation of the spectral 
content when enhancing the spatial resolution is low or neg- 
ligible. Such a time scale is greatly variable and does depend 
upon the objects themselves as well upon the spatial and 
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Mean 58 48 5 5 53 
Standard-deviation 12 15 9 15 
Calibration coefficient 1.2181 1.22545 1.29753 1.39198 

spectral resolutions with which they are observed. If the time 
lag is large, the user must weight its consequences. He 
should know precisely the merging method to be used, be- 
cause all methods do not take into account in the same way 
the small structures to be injected from the images of highest 
resolution into the images of lowest resolutions. For exam- 
ple, Anonymous (1986) recommends that its method should 
be used only for coincident SPOT xs and P data. This method 
from the CNES (French space agency) is called p+ XS and is 
certainly the most commonly used method among those 
cited above. However, it is frequently applied to non-coinci- 
dent SPOT data because of the difficulties in obtaining coinci- 
dent couples of images. 

The quality of the resulting synthetic images is usually 
assessed by visual inspection, a necessary step. For example, 
Figures 1 to 4 present a SPOT sub-scene of Barcelona, ac- 
quired on 11 September 1990. Barcelona is a large city lo- 
cated in north-east Spain, on the Mediterranean coast. Its 
harbor is the busiest in Spain. This extract of the SPOT scene 
displays the western, newest districts of the city. Displayed 
is only a part (360 by 360 pixels) of the sub-scene (512 by 
512 pixels) which is dealt with in the following sections. 
The sub-scene is mostly comprised of urban districts, high- 
ways, and railroads. It also exhibits small agricultural lots 
and mountainous areas covered by typical Mediterranean 
vegetation. Such an urban area has been selected for illustra- 
tion because it is certainly the most difficult type of land- 
scape to deal with according to our knowledge. Urban areas 
often point out the qualities and drawbacks of algorithms be- 
cause of the high variability of information in space and 
spectral band, induced by the diversity of features both in 
size and nature. 

The panchromatic band P is shown in Figure 1, while 
the xsl is in Figure 2. The latter has been magnified by a 
factor of two. In Figure 3 is the synthetic image obtained by 
the CNEs method (XPI), and in Figure 4, the synthetic one ob- 
tained by the ARSIS method (XSI-HR). These methods are dis- 
cussed later. When comparing images, one must pay 
attention to the contrast table (look-up table) because it acts 
as a filter (together possibly with the printer) between the in- 
formation and the human observer. In the case of SPOT, the 
radiances observed in the p, xsl, and xsz bands are very 
similar for a spectrally neutral target. For a spectral band i, 
the radiance R, is linked to the digital count DC, by the cali- 
bration factor a,: i.e., 

R, = DCi / a,. 

In this particular case, the calibration factors are very 
similar for the P and xsl bands (see Table I), and, thus, so 
are the digital counts. It follows that the same look-up table 
can be applied to each image in Figures 1 to 4 and that they 
can be visually compared. Beyond demonstrating the interest 
of merging P and xs data, visual inspection clearly shows the 
major drawbacks of both methods. In Figure 3, local con- 
trasts are too much reinforced. The extreme values are also 
reinforced: the white areas are whiter, compared to Figure 2, 
and the dark areas are darker. In Figure 4, on the contrary, 
one may think that local contrasts are too smooth, but gray 
tones are very similar to Figure 2. 

The objective comparison of the visual quality of multi- 
ple images is a difficult and lengthy task to handle. The hu- 
man visual system is not equally sensitive to various types of 
distortion in an image. The perceived image quality is 
strongly dependent upon the observer and also upon the the- 
matic application. Standard protocols have been defined, 
namely in the field of television and image compression. 
Such a protocol is described, for example, in Lu et al. (1996) 
for the compression of still images. A panel of human view- 
ers judge some well-defined aspects of the images. Then 
their notations are weighted and further processed to obtain 
a mean opinion score defining the quality of the result. 
When it comes to the assessment of the quality of a set of 
multispectral images, the mass of data becomes very large. 
This dramatically increases the difficulty in computing a 
quantitative picture quality scale. Beyond the visual inspec- 
tion, mathematical criteria are needed. 

One simple way is to look at the histograms of the syn- 
thetic products and to compare them to the original ones. 
The histograms for the previous images (Figures 1 to 4) are 
presented in Figure 5. On the upper half are those for the 
original images P and xsl. For the latter, the resolution is 20 
m only: it contains four times fewer pixels than P or the syn- 
thetic images. For the comparison, the Xsl histogram has 
been normalized to the others by multiplying the number of 
pixels by four. Though the resolution is increased by a factor 
of two relative to XSI, the histograms of the synthetic images 
are expected to be close to the XSI one in shape. This is true 
for the XSI-Hl? histogram. Its highest frequency is close to 
four times the peak of xsl. On the contrary, the xpl histo- 
gram is much closer to the P one, both in shape and in peak. 
This comparison of histograms is a fairly good estimator of 
image quality, and is easy to handle. However, the effect of 
the spatial resolution upon the statistical properties of an im- 
age should not be neglected (e.g., Kong and Vidal-Madjar, 
1988; Woodcock and Strahler, 1987; Raffy, 1993; Welch et 
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Figure 5. Comparison of histograms of original and syn- 
thetic SPOT images. Scene of Barcelona, Spain. Horizon- 
tal axis is digital count, vertical axis is number of pixels. 
(a) SPOT P, 10-m resolution; (b) SPOT XSI, 20-m resolution; 
(c) synthetic x P l  (CNES method), 10-m resolution; (d) syn- 
thetic xsi-HR (ARSIS method), 10-m resolution. 
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al., 1989). That means that we should not try to identify the 
statistical properties of a synthetic product to those of the 
original image. These discrepancies in statistics depend upon 
the observed type of landscape. Therefore, other mathemati- 
cally sound criteria are needed. 

Another approach is to compare land-use maps obtained 
after spectral (and possibly textural) classification of the syn- 
thetic images. These maps are compared either to the map 
obtained from original low-resolution data (e.g., SPOT XS), or 
to ground truth. In the first case, the same assumption as 
above is made, that some statistical properties are preserved 
through the increase in resolution. Hence, this approach 
should be avoided. More generally, classification greatly re- 
duces the content in information, making discrepancies be- 
tween methods disappear. For example, Munechika et al. 
(1993) compared their method to Price's (1987) for Landsat 
TM. On the one hand, they obtained a large relative differ- 
ence between both methods - which we have estimated at 
about 25 percent (RMS) according to the figures available in 
their paper - while, on the other hand, the classification 
rates were very similar. This classification approach is valua- 
ble because land-use mapping is often the goal of satellite 
image processing. However, it may not reflect the overall 
performance of a method because the results depend too 
much upon the type of landscape, its diversity, its heteroge- 
neity, the time of observation, the optical properties of the 
atmosphere, the sensor system itself (including the viewing 
geometry), the type of classifier (supervised, unsupervised), 
and the classifier itself. 

The type of landscape present within the image used to 
assess the quality of a synthesizing method has a strong in- 
fluence upon the results. Whatever the method, the more 
predictable the change in signal with the scale, the better the 
quality of the final product. Over areas such as the ocean or 
large agricultural lots, which appear very homogeneous at, 
say, 20 m resolution, the error made in assuming that these 
areas are still homogeneous at, say, 10 m resolution, is small. 
On the other hand, urban areas or small agricultural lots are 
among the most difficult cases because they exhibit a large 
number of interwoven objects having different scales. Wald 
and Ranchin (1995) examined the SPOT image of Barcelona 
presented above. They found that, for the homogeneous part 
covering the Mediterranean Sea (not visible in Figures 1 to 4, 
and actually not within the sub-scene used for illustration), 
all information, expressed as variance, is borne by structures 
larger than 40 m. On the contrary, for the urban area, half 
the information is borne by structures having sizes less than 
40 m. Such cases do not possess self-similarity properties, 
though some parameters, such as the growth of city limits, 
can be approximated by fractal functions (e.g., Batty, 1991). 
In other words, structures observed at, say, 10 m resolution, 
cannot be accurately predicted from their observations at 
lower resolution, say 20 m. This is well-known by experi- 
enced image interpreters, and is also sustained by mathemat- 
ical evidence (e.g., Fung and Chan, 1994; Ramstein, 1989; 
Woodcock and Strahler, 1987). The benefit of an image of a 
higher spatial resolution is the greatest in these cases. Hence, 
we recommend that test images should mainly include such 
areas. Such cases also offer a large diversity of spectral signa- 
tures, which is helpful in judging the ability of a method to 
synthesize the spectral signatures during the change in spa- 
tial resolution. 

A Formal Approach for Quality Assessment of the Resulting 
Synthetic Images 
Denote the images of lowest resolution by MI, and the images 
of highest resolution by P,. The subscripts 1 and h denote the 
resolution of image M or P, i.e., low and high resolution, re- 
spectively. The subscript s (for small) is to be used later: it 

denotes a resolution which is lower than 1, say, e.g., two 
times lower. According to the previous section, the images 
MI and PI are superimposable. Both MI and P, have been ob- 
tained by a sensor. The merging method aims at constructing 
synthetic images M*,. 

These synthetic images must have the three following 
properties. First, any synthetic image M*,, once degraded to 
its original resolution 1, should be as identical as possible to 
the original image M,. For example, in the case of SPOT, the 
synthetic image is called XS*,,. Once resampled to 20 m, this 
image should be as close as possible to the original xs image. 
Besides the effects induced by time lag in image acquisition, 
as discussed in the previous section, observing this property 
means that the method takes into account the differences in 
atmospheric effects affecting the images of lowest and high- 
est resolutions which have not been acquired within the 
same spectral bands. Second, any synthetic image M*, 
should be as identical as possible to the image M, that the 
corresponding sensor would observe with the highest resolu- 
tion h.  Because the synthetic image M*, does not match M, 
exactly, a property should be added, dealing with the entire 
set of channels. Third, the multispectral set of synthetic im- 
ages M*, should be as identical as possible to the multispec- 
tral set of images M, that the corresponding sensor would 
observe with the highest resolution h.  In the case of SPOT, 
this set of synthetic images is the triplet (xs~*,,, XS2*,,, XS~*,,). 
The assessment of the quality of the resulting spatially en- 
hanced spectral ima~es is now equivalent to the verification 
of these ~ ro~e r t i e s .  

~ e s t t n ~ i h e  First Property: Any synthetic image M*,, 
once degraded to its original resolution 1, should be as iden- 
tical as possible to the &iginal image M,. 

To achieve this, the synthetic image M*, is spatially de- 
graded to an approximate solution M; of M,. If the first prop- 
erty is true, then M; is very close to M,. The difference 
between both images is computed on a per-pixel basis. This 
difference image should be visually compared to the original 
image in order to detect trends of error, if any, possibly re- 
lated to the type of landscape. Then some statistical quanti- 
ties are to be used to quantitatively express the discrepancies 
between both images. These quantities are similar to the first 
and second sets of criteria described under the second prop- 
erty below. 

An important point here is the way the synthetic image 
M*, is degraded to M;. Some wavelet transforms have the 
ability to separate scales well, that is, to separate small size 
structures from larger ones and, therefore, to fairly well sim- 
ulate what would be observed by a lower resolution sensor 
(e.g., Ranchin and Wald, 1993). Munechika et al. (1993) used 
an averaging operator on a window of 3 by 3 pixels. Such an 
operator does not have this ability and is not as appropriate 
here. Other filtering operators can be used, some of them 
simulating a given modulation transfer function (MTF) of a 
sensor. A comparison was made on a few scenes using some 
operators, such as the truncated Shannon function, bi-cubic 
spline, pyramid-shaped weighted average, and wavelet trans- 
forms of Daubechies (1988; regularity of 2, 10, and 20). It 
showed relative discrepancies between the results on the or- 
der of a verv few ~ercent .  In conclusion. there is an influ- 

J I 

ence of the filtering operator upon the results, but it can be 
kept very small provided the operator is appropriate enough. 

Testing the Second Property: Any  synthetic image M*, 
should be as identical as possible to the image M, that the 
corresponding sensor would observe with the highest resolu- 
tion h. 

The second and third properties are difficult to test, be- 
cause they refer to M,, an image that would be sensed if the 
sensor had a better resolution. This image, of course, is not 
available; otherwise, all the above-cited methods would not 
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have been developed. The difficulty is partly overcome by 
the following approach: 

The available images P, and MI are degraded to PI and Ms, re- 
spectively. For the SPOT case, the P and xs images are 
degraded to P,, (20-m resolution) and XS,, (40-m resolution). 
The images PI and M, are very close to what the correspond- 
ing sensor would have measured with a degraded resolution, 
as discussed previously. 
Then the synthesizing method under assessment is applied to 
PI and M,. It provides a synthetic image M*, (xs*,, in the SPOT 
case). 
This synthetic image M*, is compared to the image truth M, 
(XS in the SPOT case) by means of some criteria described be- 
low. The numerical comparison should be made preferably in 
physical units and also in  relative values. Thus, different 
tests made over different scenes may be compared. 

This comparison provides an assessment of the quality of M*,. 
It is assumed that this quality is fairly similar to that of the 
synthesized high-resolution image M*,. This point will be 
discussed later. 

Such an approach was made by Munechika et al. (1993) 
and Mangolini et al. (1992; 1995). To assess the quality of 
M*,, a difference is computed between MI and M*, in a way 
similar to that used for the first property. After visual inspec- 
tion, the difference image is reduced to a few statistical 
parameters which summarize it. There are a large number of 
candidate parameters. We have computed many for several 
tens of cases. We have retained some whose definitions are 
well-known to engineers and researchers and which clearly 
characterize the advantages and disadvantages of a method. 

Two sets of criteria are proposed to quantitatively sum- 
marize the performance of a method in synthesizing an im- 
age in one spectral band. The first set of criteria provides a 
global view of the discrepancies between the original image 
M, and the synthetic one M*,. It contains 

The bias, as well as its value relative to the mean value of 
the original image. Recall that the bias is the difference be- 
tween the means of the original image and of the synthetic 
image. Ideally, the bias should be null. 
The difference in  variances (variance of the original image 
minus variance of the synthetic image), as well as its value 
relative to the variance of the original image. This difference 
expresses the quantity of information added or lost during 
the enhancement of the spatial resolution. For a method pro- 
viding too many innovations (in the sense of information the- 
ory), i.e., "inventing" too much information, the difference 
will be negative because the variance of the synthetic image 
will be larger than the original variance. In the opposite case, 
the difference will be positive. In information theory, the en- 
tropy describes the quantity of information. However, we se- 
lected the variance difference because most researchers and 
engineers are much more familiar with variance, and entropy 
and variance act quite similarly for our purpose. Ideally, the 
variance difference should be null. 
The correlation coefficient between the original and synthetic 
images. It shows the similarity in small size structures be- 
tween the original and synthetic images. It should be as close 
as possible to 1. 
The standard deviation of the difference image, as well as its 
value relative to the mean of the original image. It globally 
indicates the level of error at any pixel. Ideally, it should be 
null. 

The error at pixel level may be more detailed. Let us 
compute at each pixel the absolute relative error (the abso- 
lute value of the difference between the original and syn- 
thetic values, divided by the original value). Then the 
histogram of these relative errors is computed. It can be seen 
as the probability density function. Therefore, we can com- 
pute the probability of having at a pixel a relative error (in 
absolute value) lower than a given threshold. This probabil- 
ity denotes the error made at pixel level, and hence indicates 

the capability of a method to synthesize the small size struc- 
tures. The closer to 100 percent the probability for a given 
error threshold, the better the synthesis. The ideal value is a 
probability of 100 percent for a null relative error. Here, for 
reasons of computer precision, the lowest threshold "no rela- 
tive error or null error" is set to 0.001 percent. 

Testing the Third Property: The multispectral set of syn- 
thetic images M*, should be as identical as possible to the 
multispectral set of images M, that the corresponding sensor 
would observe with the highest resolution h. 

Visual inspection may be made through color compos- 
ites of, for example, the first three principal components of 
the set of images. Both color composites should agree visu- 
ally. Most methods for color composites use dynamical ad- 
justment for color coding (e.g., Albuisson, 1993). If the sets 
of images are different, even slightly, then the color coding 
will be different for both composites and no comparison will 
be possible. Practically, we recommend the following ap- 
proach. For each spectral band, the MI and M*, images are 
juxtaposed into a single computer file. The principal compo- 
nents analysis as well as the color coding are performed on 
this set of files. The projected MI and M*, images are then ex- 
tracted from these projected files and the color composites 
are displayed, simultaneously or alternatively, onto the 
screen. This approach guarantees that the color composites 
are comparable. Of course, if only three spectral bands are 
available as in the SPOT case, there is no need to perform a 
principal components analysis. The advantage of this visual 
assessment is that it does show trend in errors, if any, possi- 
bly related to landscape features. The drawback of it is that 
it is a subjective assessment and also that this assessment 
may be limited either by physiological factors (e.g., color 
contrast perception by humans), or by technical factors (e.g., 
when a large number of spectral bands are present). In the 
latter case, and if the landscape offers a large variety of ob- 
jects, the color re-coding of the first three principal compo- 
nents reduces dramatically the differences between the M, 
and M*, images, particularly if these differences are random, 
i.e., not related to a peculiar landscape feature or to a spec- 
tral band. 

A quantitative assessment can be made using the follow- 
ing three additional sets of criteria which quantify the per- 
formance of a method to synthesize the spectral signatures 
during the change in spatial resolution. The third set (num- 
bered after the two sets described above for the second prop- 
erty) deals with the information correlation between the 
different spectral images taken two at a time. This depend- 
ence can be expressed by the correlation coefficients, with 
the ideal values being given by the set of original images M,. 
As an example, for the case of SPOT, the correlation coeffi- 
cient between P,, and XSI*,, is computed and compared to 
the correlation coefficient for P,, and XSI,,. This is done for 
every pair. The fourth set of criteria partly quantifies the syn- 
thesis of the actual multispectral n-tuplets by a method, 
where n-tuplet means the vector composed by each of the n 
spectral bands at a pixel. It comprises the number of differ- 
ent n-tuplets (i.e., the number of spectra) observed in the 
original M, and in the synthesized M*, sets of images, as well 
as the difference between these numbers. A positive differ- 
ence means that the synthesized images do not present 
enough n-tuplets; a negative difference means too many 
spectral innovations. 

The previous criteria do not guarantee that the synthe- 
sized n-tuplets are the same as in the original image M,. The 
fifth and final set of criteria assesses the performance in syn- 
thesizing the actual n-tuplets. It deals with the most frequent 
n-tuplets, because they are predominant in multispectral 
classification. For a given threshold in frequency, only the n- 
tuplets having a frequency (relative number of pixels) greater 
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dup M2 ARSIS 

Bias (ideal value: 0) -0.01 0.35 0.00 
relative to the mean XS value 0% 1% 0% 
Actual variance-estimate 
(ideal value: 0) 10 -50 7 
relative to the actual variance 7% -35% 5% 
Correlation coefficient between XS 
and estimate (ideal value: 1) 0.94 0.97 0.99 
Standard-deviation of the differences 
(ideal value: 0) 4.0 3.8 1.9 
relative to the mean XS value 7% 7% 3 % 

than this threshold are used. The threshold is set to 0.01 per- 
cent, 0.05 percent, 0.1 percent, and 0.5 percent, successively. 
The greater the threshold, the lower the number of n-tuplets, 
but the greater the number of pixels exhibiting one of these 
n-tuplets. For each of the n-tuplets, the difference is com- 
puted between the original frequency and the one observed 
in the synthesized images. These differences are summarized 
by the following quantities: 

the number of actual n-tuplets, the number of coincident n- 
tuplets in the synthesized images, and the difference between 
these numbers, expressed in absolute and relative terms; 
the number of pixels in these n-tuplets, in absolute and rela- 
tive terms; and 
the difference between the above number of pixels for the 
original and the synthesized images, in absolute and relative 
terms. 

Munechika et al. (1993) partly quantify the performances 
in synthesizing the multispectral information by first com- 
puting the root mean square (RMS) of the differences, pixel 
by pixel, between the synthesized M*, and original MI im- 
ages, for each spectral band, and then by summing up these 
spectral RMS values to obtain a global error, which should be 
as low as possible. This global error can easily be computed 
from our first set of parameters, i.e., the bias and the stan- 
dard deviation. Other criteria may be further defined, dealing 
for example with the performances in synthesizing the actual 
n-tuplet at a given pixel. We do not present them because, in 
the classification process, pixel spectral values are aggregated 
with their spectral neighbors. Hence, a small difference be- 
tween the synthesized and the actual n-tuplets at a given 
pixel may have an impact on classification ranging from null 
to significant. 

Our approach is now illustrated by an example, with 
emphasis on the quantitative criteria. This example consists 
of the same SPOT sub-scene of Barcelona as above. Obvi- 
ously, our objective is the discussion of the quality assess- 
ment and not the evaluation of one or more particular 
methods. However, we felt it necessary to use several meth- 
ods in our example for a better description of the approach. 
We selected a very crude method, a standard one, and an ad- 
vanced one. The discrepancies between the results of these 
methods will be used to illustrate the advantages and limits 
of the criteria. 

Application to a SPOT SubScene of Barcelona (Spain) 
Mangolini et al. (1992, 1993; see also Ranchin et al., 1993, 
1994, 1996a) developed the most advanced concept for the 
type of fusion of concern. They called it ARSIS, an acronym 
for its French name "accroissement de la rhsolution spatiale 
par injection de structures." In the ARSIS concept lies a 
model which permits the synthesis of missing structures of 

small size given the set of spectral high and low resolution 
data. A large variety of models can be developed based on 
differences in the application of the ARSIS concept by the dif- 
ferent authors (see also Blanc et al., 1996; Ranchin and 
Wald, 1996; Ranchin et al., 1996b). Garguet-Duport et al. 
(1994, 1996) and Yocky (1996) make use of this concept but 
with models of poor performance, as demonstrated by Man- 
golini et al. (1992) or Mangolini (1994). The model of Iver- 
son and Lersch (1994) is based upon a neural network. Here 
we use the most recent work made for the SPOT case by Ran- 
chin et al. (1993; 1994), which has been selected by SPOT-Im- 
age and other French organizations. 

Two other methods are also used for illustration. One is 
the duplication of pixels: each original pixel, say at 20 m, 
provides four new pixels at 10-m resolution, each of them 
having the same value as their parent pixel. Though it does 
not take advantage of the presence of the image of higher 
resolution (P in the SPOT case), this method is widely used 
because of its simplicity. Of course, the visual aspects of 
such synthesized images are very bad. We use this method 
here as a baseline to demonstrate the benefits of more so- 
phisticated merging methods. In the following tables, this 
method is denoted "dup." 

The p+xs method of CNES takes into account the modu- 
lation transfer function and the spectral filter of each band P 
and XS. It should be applied to images acquired at the same 
time. However, its mathematical expression is so simple that 
many people are using it even for non-coincident dates. 
Strictly speaking, it cannot be used as such in our scheme 
when resolutions are degraded from 20 m to 40 m. Accord- 
ingly, we define a C N E S - ~ ~ ~  method, dubbed M2 (for second 
method). It synthesizes XS*,, images (in radiances) at a 20-m 
resolution i n  the following way: 

XS1*M, = 2 P,, XSl,, / [xs~,, + XS~,,] 
xsz*,, = 2 P,, xs2,, / [xs~,, + XS~,,] 
XSS*,, = duplication of XS~,, 

For the synthesis of images at 10 m, the M2 method is 
identical to the P+XS one. 

The tests described above are now applied to each 
method for the SPOT sub-scene of Barcelona. For the sake of 
clarity and to avoid duplication of tables, the example will 
only deal with the second and third properties. In fact, the 
duplication and ARSIS methods are inherently built to satisfy 
the first property, with reservations regarding the degradation 
process as discussed earlier. On the other hand, the M2 
method is less satisfying. From its equations, it is obvious 
that there is a strong radiometric influence of P and x s ~  (re- 
spectively XSI) in the synthetic image in Band 1 (respec- 
tively in Band 2). This influence does not disappear when 
reducing the resolution to 20 m. 

In this example, the P and xs images are degraded to a 
resolution of 20 and 40 m, respectively. Then, images are 
synthesized at a 20-m resolution and compared to the origi- 
nal xs images. Table 1 provides the mean and standard devi- 
ation of the radiances for each spectral band as well as the 
calibration coefficients. 

Tables 2 and 3 provide a global view of the discrepan- 
cies between xs and xs*,, for each spectral band (testing the 
second property). The bias is null, or close, for all methods. 
The duplication method leads to a decrease in the quantity 
of information. There is no innovation brought in increasing 
scale. This criterion agrees with the poor visual aspects of 
the duplicated images. The M2 method invents too much in- 
formation (up to 35 percent). The panchromatic band 
strongly reinforces the local contrast in the first two spectral 
bands. It also increases the extreme values, as already shown 
in the discussion of Figures 1 to 4 and of the histograms 
(Figure 5). The ARSIS method is closer to the ideal values but 
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TABLE 3. SAME AS TABLE 2, BUT FOR XS2 AND XS3 BANDS. 

XS 2 XS 3 

dup M2 ARSIS dupIM2 ARSIS 

Bias (ideal value: 0) 0.00 0.26 0.00 0.00 0.00 
relative to the mean XS 0% 1% 0% 0% 0% 

value 
Actual variance - estimate 

(ideal value: 0) 12 -42 7 9 8 
relative to the actual vari- 5% -19% 3% 11% 9% 

ance 
Correlation coefficient be- 0.96 0.98 0.99 0.91 0.95 

tween XS and estimate 
(ideal value: 1) 

Standard-deviation of the 
differences 
(ideal value: 0) 4.4 3.1 1.9 3.8 2.7 

relative to the mean XS 9% 6% 4% 7% 5% 
value 

TABLE 4. PROBABILITY ( I N  PERCENT) FOR HAVING IN A PIXEL A RELATIVE ERROR 
LES THAN OR EQUAL TO THE THRESHOLDS NOTED IN THE FIRST ROW. THE IDEAL 

VALUE IS 100 AS EARLY A S  THE FIRST THRESHOLD 0.001 PERCENT. THE 
RELATIVE ERRORS ARE IN ABSOLUTE VALUE AND IN PERCENT. 

0.001 1 2 5 10 20 50 

 UP 16 17 40 70 91 99 100 
XS1 M2 9 9 27 58 90 100 100 

ARSIS 27 28 63 92 99 100 100 
dup 14 14 26 57 82 97 100 

XS2 M2 12 12 26 60 91 100 100 
ARSIS 26 26 48 86 99 100 100 

XS3 dupIM2 13 13 35 66 88 98 100 
ARSIS 15 16 43 76 95 100 100 

lacks innovation. The correlation coefficient denotes the sim- 
ilarity between structures. It is high for all methods. It is the 
lowest for duplication because the latter does not invent the 
structures of smaller size. The standard deviation of the dif- 
ferences is weak. The worst result is offered by the M2 
method. This criterion does not reflect the visual quality of 
the synthetic image, and may offer too much of a global 
view. 

Error at the pixel level can be described better through 
the second set of criteria (Table 4). For the ARSIS method, al- 
most all pixels (99 percent for XSl and XS2, 95 percent for 
X S ~ )  exhibit a relative error less than or equal to 10 percent. 
For the two other methods, similar results are attained at a 
threshold of 20 percent. Also apparent in the ARSIS method 
is the very high percentage of pixels exhibiting null relative 
errors: more than 25 percent for xsl and xs2. The M2 
method provides the worst results. This Table fully demon- 
strates the discrepancies that can exist between visuallquali- 
tative and quantitative assessments of the quality of a syn- 
thetic image. 

The third property deals with the multispectral character 
of the data set and is verified through the third to fifth sets of 
criteria. Table 5 shows that the M2 method increases the cor- 
relation between the spectral bands x s l ,  xs2,  and P, as evi- 
denced by the equations of the method. The duplication 
method exhibits too low coefficients, due to the lack in inno- 
vation. This table provides a first indication that the multi- 
spectral character of the synthetic images provided by the M2 
and duplication methods may be only partly verified. 

Table 6 reports some spectral characteristics of the 
scene, i.e., the total number of pixels in the image, the num- 
ber of spectral triplets, and the average number of pixels per 
triplet (ratio of total number of pixels to the number of trip- 
lets). The spectral homogeneity is defined as the inverse of 

original dup M2 ARSIS 

TABLE 6. SOME SPECTRAL CHARACTERISTICS OF THE BARCELONA SCENE. 

number of number of average number of spectral homogeneity 
pixels triplets pixels per triplet (in %) 

TABLE 7. PERFORMANCE IN SYNTHESIZING THE MULTISPECTRAL ~NFORMATION. 
DIFFERENCE B ~ E E N  THE ACTUAL NUMBER OF TRIPLETS (XS1, XS2, XS3) AND 

THE ESTIMATES. 

original dup M2 ARSIS 

number of triplets 45 618 23 276 53 162 42 593 
difference with original 

(ideal: 0) - 22 342 -7 544 3 025 
(in %) 49% -17% 7% 

the number of triplets, and is expressed in percent. It charac- 
terizes the spectral diversity of a scene: the greater this 
parameter, the lower the diversity. For a scene exhibiting a 
unique spectral object (i.e., only one triplet), this spectral ho- 
mogeneity would be 100 percent. The present scene has a 
value of 0.002 percent, which demonstrates its spectral di- 
versity. The performance in synthesizing the multispectral 
information is partly shown in Table 7, which presents the 
difference between the actual number of triplets and the 
number found in the synthesized images. The duplication 
method does not invent enough triplets: the number of syn- 
thesized triplets is half the actual number. The M2 method 
invents too many, and the ARSIS method is closer. 

Actually, most of the missing or superfluous triplets 
have a low frequency, i.e., each of them is carried by a few 
pixels. This is demonstrated in Table 8, which exhibits the 
performances in synthesizing the most frequent actual trip- 
lets. Each triplet under consideration has a frequency of at 
least 0.01 percent, which corresponds to 26 pixels in this ex- 
ample. These 1,549 triplets have a cumulative frequency of 
22 percent; that is, 57,096 pixels among 262,144 (total num- 
ber) carry one of these triplets. Hence, synthesizing them is 
of primary importance for classification purposes. The dupli- 
cation and ARsIs methods retrieve all these triplets as well as 
their frequencies (the difference in number of pixels, relative 
to the original, is low). Though the M2 method synthesizes 
the right triplets, it does not produce the right frequencies by 
far (41 percent too low). These observations are in full agree- 
ment with previous tables, and particularly Tables 2 to 4. 

As said previously, the total error proposed by Mune- 
chika et al. (1993) can be computed from Tables 2 and 3. It 
is found (in radiance units): i.e., 

duplication: 1 2  ARSIS: 7 

This global measure agrees with the previous conclusions, 
though it might be difficult from this unique criterion to de- 
cide whether the duplication or the M2 method is more suit- 
able on a case by case basis. For example, if a very low 
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TABLE 8. PERFORMANCE IN SYNTHESIZING THE MULTISPECTRAL ~NFORMATION. 

DIFFERENCE BETWEEN THE ACTUAL FREQUENCY OF A TRIPLET (XS1, XS2, XS3) 
AND ITS ESTIMATE. ONLY THE MOST FREQUENT TRIPLETS ARE TAKEN INTO 

ACCOUNT. THE TOTAL OF PIXELS THEY REPRESENT AMOUNTS TO 22 PERCENT OF 

THE TOTAL NUMBER OF PIXELS IN THE IMAGE. EACH TRIPLET HAS A FREQUENCY OF 

AT LEAST 26 PIXELS, I.E., AT LEAST 0.01 PERCENT OF THE TOTAL NUMBER OF 

PIXELS. 

number o f  predomi- 
nant triplets 

difference w i t h  original 
(ideal: 0) 

( i n  %) 
number o f  pixels 
difference w i t h  original 

(ideal: 0) 
(en %I 

original dup M2 ARSIS 

relative error at a pixel is requested or if preservation of multi- 
spectral content is at stake, it is obvious from Table 4 (left 
columns) or Table 8 that duplication should be preferred. 

Extrapolation of Quality Assessment to the Highest Resolution 
The verification of the second and third properties of the 
synthetic images has been made on degraded images (e.g., in 
the SPOT case, we have synthesized multispectral images at a 
resolution of 20 m). Such an approach alleviates the lack of 
"truth" images. How can the assessment of quality of the 
synthetic images be made at the highest resolution (e.g., 10 
m in the SPOT case) based upon that made at the lowest reso- 
lution (e.g., 20 m in the SPOT case)? In other words, how can 
one extrapolate the quality assessment made at the lowest 
resolution to the highest resolution? Intuitively, one thinks 
that, except for objects having a size much larger than the 
resolution, the error should increase with the resolution, be- 
cause the complexity of a scene increases with the resolu- 
tion. That is, one may expect the error made at the highest 
resolution to be greater than that at the lowest resolution. 
However, several recent works have demonstrated the influ- 
ence of resolution on the quantification of parameters ex- 
tracted from satellite imagery. Many works have dealt with 
clouds. Of particular interest are the works of Welch et al. 
(1989) for satellite imagery and of Kristjansson (1991), who 
addresses the problem of resolution in weather prediction 
and climate models. Rowe (1992) studies the influence of the 
distribution of the elementary reflectors within the pixel 
upon the observed signal. Also relevant are the works of 
Kong and Vidal-Madjar (1988) and Woodcock and Strahler 
(1987). Raffy (1993) sets up the mathematical fundamentals 
to explain such a behavior in rather simple cases. The results 
he obtained are very similar to the ones displayed by Welch 
et al. (1989, Figure 3; see also Lillesand and Kiefer (1994), 
Figure 7.53). All of these studies demonstrate that the quality 
of the assessment of a parameter is an unpredictable function 
of the resolution. 

It follows that we cannot predict the quality of the syn- 
thetic images at the highest resolution (e.g., 10 m in the SPOT 
case) from the assessments made with synthetic images at 
the lowest resolution (e.g., 20 m in the SPOT case). To illus- 
trate this discussion, we have assessed the quality of a SPOT 
image synthesized at 40 m, starting from a P image degraded 
to 40 m and an xs image degraded to 80 m. The scene is the 
same as before; the method used is the ARSIS one. The re- 
sults are presented in Tables 9 and 10, under the heading 
"40 m." In these tables are reported the results obtained for 
20 m, output from Tables 2 and 4. One can see that, for all 
parameters, the values displayed for 20 m are better than for 
40 m. Hence, the method provides better estimates in synthe- 

TABLE 9. SOME STATISTICS ON THE DIFFERENCES BETWEEN THE OR~G~NAL AND 

SYNTHESIZED IMAGES (IN RADIANCE OR RELATIVE VALUE) FOR XS1 BAND. 

20 m 40 m 

Bias (ideal value: 0) 0.00 0.00 
relative to  the mean XS value 0% 0% 
Actual  variance - estimate (ideal 

value: 0) 7 1 2  
relative to the actual variance 5% 9 % 
Correlation coefficient between XS and 

estimate (ideal value: 1) 0.99 0.98 
Standard-deviation o f  the differences 

(ideal value: 0) 1.9 2.2 
relative to  the mean XS value 3% 4 % 

TABLE 10. PROBABILIN (IN PERCENT) FOR HAVING IN A PIXEL A RELATIVE ERROR 
LESS THAN OR EQUAL TO THE THRESHOLDS NOTED IN THE FIRST ROW. THE IDEAL 

VALUE IS 100  AS EARLY AS THE FIRST THRESHOLD 0.001 PERCENT. THE 
RELATIVE ERRORS ARE IN ABSOLUTE VALUE AND IN PERCENT. FOR XS1. 

sizing images at 20-m resolution than at 40 m. Such compar- 
isons were made for the three above-mentioned methods and 
for a few different scenes, comprising mostly urban areas. It 
has been found in each case that the quality was best at 20 
m, and also that the ranking of a method relative to the 
others was the same at 20 m and 40 m. Though our conclu- 
sions were always the same, it does not prove that estimates 
should be better at 10 m than at 20 m. However, we can rea- 
sonably assume that the quality of the synthetic images at 
the highest resolution (e.g., 10 m) is close to that at the low- 
est resolution (e.g., 20 m). 

Conclusion 
Many methods have been proposed for the merging of high 
spectral and high spatial resolution data in order to produce 
multispectral images having the highest spatial resolution 
available within the data set. Very few propose an assess- 
ment of the quality of the resulting synthetic images. The 
present work proposes both a formal approach and some cri- 
teria to provide a quantitative assessment of the synthetic 
images. The approach is based upon simple concepts, easy to 
understand and easy to implement and use. Together with 
the visual evaluation of the synthetic images, these criteria 
may be used by to select a method among others, according 
to its performance for the criteria which are the most impor- 
tant for the application. For mathematicians, these criteria, 
somewhat extended to more complex statistical quantities, 
provide a tool to assess the merits and drawbacks of a 
method under development. 

This text is illustrated by the case of SPOT images, but 
the concept can be applied to other combinations of sensors. 
For example Mangolini et al. (1992) have assessed the per- 
formances of the ARSIS method to synthesize Landsat TM6 
(thermal infrared band) at a resolution of 30 m. 
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