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Abstract 
Spectral unmixing experiments were done to explore the ap- 
plicability of linear unmixing models, especially the basic 
least-squares method for mapping sparse vegetation in  
rangeland. Some important theoretical and technical issues 
involved in physical inversion problems were addressed. 
Based on the field reference spectra of image components, a 
constrained least-squares method was applied to Landsat 
Thematic Mapper data over an area in  Long Valley, Nevada 
to calculate vegetation abundance in a pixel. 

A method for formulating a well-conditioned spectral 
mixture by  calculating the cosine of the angles between the 
candidate sugace components was presented. This method 
provides a way to measure the separability of candidate end- 
members quantitatively and derive spectral endmem bers ob- 
jectively. The results of this study suggest that the ambiguity 
or uncertainty in physical inversion problems arises from the 
inability to provide a complete set of representative reference 
spectra and to formulate a well-conditioned spectral mixture, 
not from the least-squares method itself. Some of import im- 
plications of the study include the following: (1) the unmix- 
ing techniques can provide moderate estimates of vegetation 
fractions in arid rangeland, where vegetation is  sparse, with 
TM data; and (2) the degree of spectral pureness of endmem- 
bers should be consistent between endmember spectra that 
are used for unmixing. 

Introduction 
A subpixel mixture problem is one of the unique characteris- 
tics of remotely sensed image data provided in  digital for- 
mat. When surface materials of interest are smaller than the 
spatial resolution of the sensor, the signal sensed at the sen- 
sor is a mixture of the reflected radiance of the target materi- 
als plus an atmospheric contribution. So the value of each 
pixel is the composite spectral signature of surface materials, 
such as soil, rock, vegetation, manmade materials, and shade 
plus atmospheric effects. The interpretation of remotely 
sensed digital image data can be improved by an understand- 
ing of the spectral components within each pixel. This sub- 
pixel mixture problem of remotely sensed digital image data 
has been considered by several researchers (Pace and Detch- 
mendy, 1973; Twomey, 1977; Adams et al., 1986; Boardman, 
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1991; Shimabukuro and Smith, 1991; Roberts et al., 1993). 
Although spectral inversion methods have been utilized for 
estimating subpixel components in various geologic applica- 
tions and in mapping vegetation in arid rangeland, these tech- 
niques have not yet been fully recognized or rigorously tested 
in remote sensing fields. Even though physical inversion prob- 
lems have been recognized as a valuable tool in many science 
and engineering fields, acquiring a reasonable solution to 
least-squares problems has been a difficult task. While intro- 
ducing the mathematics of inversion to the remote sensing 
field, Twomey (1977) discussed the "fundamental ambiguity" 
involved in physical inversion problems. Twomey (1977) ar- 
gued that most physical inversion problems are ambiguous be- 
cause they do not have a unique solution; that the solution 
must be obtained by imposing constraints; that the reasonable- 
ness of imposed condition would dictate whether or not the 
unique solution is also reasonable; and that the ambiguity 
could only be removed if some grounds could be provided 
from outside the inversion problem. 

Objectives and Methods 
The objectives of this paper are (1) to address some of the 
theoretical and technical issues involved in physical inver- 
sion problems, especially constrained least-squares methods, 
and in the modeling of spectral mixtures; and (2) to explore 
the applicability of a linear unmixing model as a tool for 
mapping low density vegetation in a semiarid rangeland. 
First, we addressed the "fundamental ambiguity" problem 
involved in constrained least-squares methods. Then spectral 
unmixing experiments were done to test the applicability of 
the unmixing model for mapping sparse vegetation. Based on 
the field reference spectra of image components, a least- 
squares unmixing model introduced by Shimabukuro and 
Smith (1991) was applied to Landsat Thematic Mapper (TM) 
data over an area in Long Valley, Nevada to calculate vegeta- 
tion abundance in a pixel. Field spectra were used for refer- 
ence spectra because we were not able to find representative 
pixels for each candidate image component in the study area 
image. For modeling a mixture of components, the cosine of 
angles between candidate endmembers were calculated and 
compared to the signal-to-noise ratio of TM data. This study 
involves the following procedures: 

Reviewing the concepts of the basic least-squares methods 
and addressing the theoretical and technical issues involved, 
Measuring field spectra to acquire reference spectra, 
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Calibrating TM and field spectra data, 
Modeling a spectral mixture of image component, and 
Unmixing. 

Field spectra of the study area scene components were mea- 
sured using the SE590 field spectrometer and were calibrated 
to the reflectance. The reflectance data were then convolved 
with the four TM bandpass transmission spectra (bands 
1,2,3,4) to obtain reference spectra for spectral unmixing. 
Only four TM bands were used because the SE59O spectrome- 
ter does not cover the whole TM wavelength ranges. The 
SE590 spectrometer covers the 0.4 to l . lpm wavelength 
ranges in 252 channels and the TM sensor covers the 0.45 to 
2.35pm wavelength ranges in six channels. Field spectra 
were taken from 2 to 7 August 1993. The TM image scene 
used in this study was obtained on 16 August 1989 (Landsat 
4, Path 40, Row 32, scene ID Y4258817540XO). Precipitation 
pattern and any activities that might cause changes in vegeta- 
tion vigor, biomass, and surface parameters in the study area 
were checked. There were no significant changes in precipi- 
tation pattern in the study area during the time period, espe- 
cially several months before image data acquisition and filed 
data collection. No other disturbances that might cause inter- 
annual variation in vegetation vigor and surface condition 
were found. The digital numbers of TM image data were con- 
verted to ground reflectance using the formulation presented 
in Markham and Barker (1985). 

Linear Spectral Unmixing 
Information extraction from remotely sensed digital image 
data using unmixing methods involves three steps. The first 
step is understanding the relationship between observed ra- 
diance and surface reflectance and the sensor mechanism. 
Understanding the parameters controlling surface reflectance 
and the relationship between the observed radiance and sur- 
face reflectance is important for calibrating image data and 
defining a spectral mixture. The next step is modeling the 
spectral mixture. The number of complete and separable im- 
age components, or endmembers in the mixture, should be 
defined. Finally, the model must be inverted for decomposi- 
tion into fractions of image endmembers (Roberts, 1991). In 
many related studies, these necessary steps have not been 
fully considered. The modeling of spectral mixtures and the 
procedures for choosing endmembers appear arbitrary. 

Most related studies have modeled the remotely sensed 
signature as a linear combination of major surface compo- 
nents or spectral endmembers, and applied the least-squares 
approach to decompose the observed signature into compo- 
nent mixtures. The objective of the least-squares method is 
to estimate the proportion of each component in an image 
pixel by minimizing the sum of squares of the errors. Several 
different methods have been employed for obtaining a least- 
squares solution. These methods can be grouped into three 
broad categories: (1) the basic least-squares method, which 
finds the closest point in a given subspace to a given point 
in function space (Shimabukuro and Smith, 1991; Boardman 
1991); (2) Bayesian regression analysis, which assumes the 
normal distribution for data and noise (Pech et al., 1986; 
Smith et al., 1990; Roberts, 1991); and (3) factor analysis 
(Smith et al., 1985; Heute, 1986). Because of its conceptual 
simplicity and elegancy, Shimabukuro and Smith's (1991) 
basic least-squares method was chosen, and the discussion 
will be focused on the basic least-squares method. This basic 
least-squares method does not require prior knowledge of 
cover composition for surface components or the assumption 
of data normality. 

Linear Unmixing and the Least-Squares Method 
A hypothesis of the linear spectral unmixing model is that 
the image spectra are the result of mixtures of surface materi- 

als and shade, and that each of these components is linearly 
independent of the other. The mixtures in the image are ex- 
pressed as linear combinations of their respective spectra in 
the image. Spectral response of each image pixel in any set 
of spectral bands can be considered as a linear combination 
of the responses of each component that is assumed to be in 
the mixture (Shimabukuro and Smith, 1991). Thus, each 
pixel contains information about the proportion and spectral 
response of each component. Each pixel spectrum of a mul- 
tispectral image can be modeled as a linear combination of a 
finite set of components. Given a linear system of m equa- 
tions (bands) and n unknowns (components), a system of the 
form 

or Ax = b has a unique solution: i.e., 

when a system is exactly determined (m = n), where b, is a 
spectral reflectance for the ith band of an image pixel con- 
taining one or more components, a ,  is a spectral reflectance 
of the jth component in the pixel for the ith spectral band, x, 
is a fraction value of the jth component in the pixel, E, is an 
error term for ith spectral band, j is the number of compo- 
nents assumed to be in the mixture (1, 2, ..., n), and i is the 
number of spectral bands (1, 2, ..., m). When the number of 
equations and the number of unknowns are same (m = n), 
the coefficient matrix A is square. As long as a set of col- 
umns of A are linearly independent (rank (A) = m), we find 
a vector x which belongs to one of the column spaces Rn (x 
E Rn) for which Ax equals b (Ax = b) by obtaining the in- 
verse matrix of A in Equation 2. 

If a system of equations involves more equations than 
unknowns (m > n) or involves fewer equations than un- 
knowns (m < n), we cannot expect, in general, to find a vec- 
tor x for which Ax equals b because the coefficient matrix A 
is rectangular. Instead, we are looking for a vector x for 
which Ax is closest to b (Ax b). In this case, it is reasona- 
ble to choose x so as to minimize the average error in the m 
equations (Strang, 1980), and the least-squares problem 
arises. When a system of linear equation is overdetermined 
(m > n), to solve the problem Ax = b, we solve the normal 
equations 

The system of equations has a unique solution if the col- 
umns of A are linearly independent: i.e., 

When a system of linear equations is underdetermined (m < 
n), the rank of (A), r, is less than or equals m (r I m). If the 
system is inconsistent, there will be no solution. If the sys- 
tem is consistent, we can assign n - r free variables arbitrary 
values and solve the problem Ax = b to have an infinite 
number of solutions. As reviewed in this section, solving 
systems of linear algebraic equations involves finding the in- 
verse of the coefficient matrix A. The inverse matrix is a 
very important basic concept for solving the least-squares 
problems even though most of the practical methods for 
computing the solution of Ax = b do not involve explicit 
computation of an inverse matrix, A-l. 
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Constrained Least-Squares Methods 
Often, the general solutions obtained by inversion methods 
are mathematically acceptable but are physically unaccepta- 
ble. For example, a minus value may best fit in mathemati- 
cally but the fractions of surface components should be 
positive and sum up to unity. In most of the practical appli- 
cations of the inversion methods for solving the problem Ax = 
b, the additional boundary conditions, i.e., linear constraints, 
are imposed to obtain a physically meaningful solution. Sci- 
entists in specific fields have developed techniques for the 
constrained least-squares problems of their own discipline. 
The linear spectral unmixing model in remotely sensed digi- 
tal image analysis is one of the examples. 

Shimabukuro and Smith (1991) modeled a TM image 
pixel as a linear combination of a finite set of components 
(Equation 1). Linear constraints are added: i.e., 

2 x, = 1 and q 2 0 for all i. 
i=l 

The linear model (Equation 1) can be rewritten in error 
terms: i.e., 

The function to be minimized is 

For an n = 3 mixture model, by finding a minimum within 
the boundary, 0 I x, 4 1 and 0 < x, < 1, Shimabukuro and 
Smith (1991) solved for x, and x,. According to the outcomes 
of the unconstrained x, and x, values, x, and x, were recal- 
culated if necessary. The values of x, were determined ac- 
cordingly. Numerical methods for solving this problem are 
presented in Shimabukuro (1987) and Shimabukuro and 
Smith (1991). 

Modeling a Spectral Mixture and Cosine of the Angles 
Modeling of a spectral mixture using a certain number of 
spectral bands requires the testing of the orthogonality of col- 
umn vectors in the matrix A. Suppose a linear system of m 
spectral bands in n components is modeled and any of the 
two components are a linearly scaled version of one another, 
i.e., they are linearly dependent and not orthogonal, then the 
system will fail to have a unique solution. If the system in- 
cludes two components that are too close to one another to 
be independent, then the system is ill conditioned and esti- 
mates of the decomposition would not be reliable. Consider- 
ing an mxn matrix A and, the vector space Rn consists of all 
column vectors with n components. A pseudo inverse, or a 
solution to the least-squares problem, exists only when the 
rank r is as large as possible, i.e., when r = m or r = n be- 
cause an mxn matrix cannot have more than m independent 
rows or n independent columns. The rank r is the number of 
independent rows or columns in the matrix A. In the case of 
r = m, Ax = b always has a solution, and in the case of r = 
n, the solution, if it exists, is unique. If mxn matrix A has 
linearly independent columns, so that r = n, then ATA is a 
square, symmetric, and invertible matrix. Then the least- 
squares solution to a system Ax = b of m equations in n un- 
knowns satisfies the normal Equations 3 and the system has 
a unique solution given in Equation 4. 

In the two-dimensional plane spanned by two column 
vectors v, and v,, v, is orthogonal to v, when they form a 
right angle. The inner product of the column vectors v, and 
v,, which is denoted by vlTv,, in n space is zero only when 
the two vectors are orthogonal. If the nonzero vectors v,, ..., 
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b = (bl, ..., bn) 

a ,= (alp ..., an) 

> 
XZ 

X I  

Figure 1. Projections in mdimensional space. From Strang 
(1980), 2nd ed., copyright Q 1980 by Harcourt Brace & 
Company. 

v, are mutually orthogonal, then they are linearly indepen- 
dent and completely separable spectrally. On the other hand, 
if those vectors are extremely close to being linearly depend- 
ent, all the vectors are linearly scaled versions of each other 
and spectrally unseparable. Generally, real reference spectra 
of endmembers are intermediate to these two extreme cases 
(Boardman, 1989) and they are not orthogonal. Even though 
the given vectors v, and v, are not orthogonal, when solving 
the problems of least squares of solution to an overdetermi- 
ned system, the solution to the problem automatically brings 
in orthogonality (Strang, 1980). Suppose we are given a point 
b in n-dimensional space, and we want to find its distance to 
the line in the direction of the vector v,. We are looking 
along that line for the point p closest to b. Then the line con- 
necting b to p (the dotted line in Figure 1) is perpendicular 
to the original vector v,. This fact allows us to fuld the clos- 
est point p, and to compute its distance from b (Strang, 
1980). 

With nonorthogonal vectors, the inner product of the 
two vectors gives a natural definition of the cosine of the an- 
gle between them in n space, and determines the angle be- 
tween any two vectors. By measuring the cosine of the 
angles of the column vectors using this relationship of the 
inner product to the cosine of the angle in n space, we can 
decide if the column vectors are independent and spectrally 
separable in a system of m spectral bands in n unknowns. If 
the angle between the two vectors is larger than the signal- 
to-noise ratio, the two vectors are well differentiated. If the 
angle between the two vectors is smaller than the signal-to- 
noise ratio, then the noise would make it impossible to get a 
reliable decomposition, no matter how accurate the underly- 
ing model is. In Figure 2, for example, the vectors a and b 
are well differentiated because the angle between the two 
vectors, e,,,, is larger than the signal-to-noise ratio. However, 
the vectors b and c cannot be differentiated well because 
they are in the range of noise of one another. 

The cosine of the angle between any two vectors v, and 
v, is 

where llvlll and llv,ll are the lengths of vectors v, and v,. The 
angle 0 is defined by 



X2 

b = (bl,b2) 

a = (a1 ,a2) 

X I  
Figure 2. The angles and the separability between the 
vectors. 

Equation 8 gives the difference in angle between the two 
vectors v, and v,. The unit is radians with values ranging 
from zero to aI2. 

in Figure 3b. In this case, because it is not clear that point p 
is minimum of A or C, the decomposition would not be reli- 
able. This is why it is important to measure spectral angles 
between the candidate endmembers for testing the separabil- 
ity of endmembers, and formulate a well conditioned model 
for unmixing. As long as the model is well conditioned, pro- 
jecting a minimum occurring outside the boundary condition 
to a boundary, and solving the minimum on the boundary is 
very reasonable. 

Ambiguity and Constrained Least-Squares Methods 
In their constrained least-squares method, Shimabukuro and 
Smith (1991) used an iterative method to obtain a solution. 
Starting with an unconstrained global minimum, if the mini- 
mum satisfies the boundary conditions, then it is the last so- 
lution. If the minimum does not satisfy the boundary 
conditions, the minimum is projected to a boundary and the 
problem is solved on this boundary. This is different from 
solving for the constrained minimum directly. It may look 
like Shimabukuro is steering to a solution by projecting the 
minimum to a boundary segment arbitrarily. Shimabukuro's 
method, however, is quite reasonable and safe for a quadratic 
function if the model is well conditioned. If the residual, E, 

is a linear function of the parameters, then E ,  is a quadratic 
function of parameters. If a function f (the function to be 
minimized in our case) is quadratic, then f will be quadratic 
along any linear parametized path through the domain. A 
one-dimensional quadratic function has only one local ex- 
trema, either a global minimum or a global maximum. So a 
one-dimensional quadratic function is monotonic on either 
side of its global extrema. It follows that, for a linear resid- 
ual, the residual squared will increase monotonically along 
any line passing through the global minimum of the function 
f. Stated differently, the minimum of a function f in a region 
cannot occur at a point on the boundary of the region which 
is occluded from the global minimum off by some other 
point on the boundary of the region. For example, in Figure 
3a, the point p, cannot be the minimum off over the region 
R. This means that, if the global minimum is outside the 
boundary, for example, somewhere in A in Figure 3b, we can 
unambiguously pick the boundary segment on which the 
constrained minimum occurs, that is, on the boundary a in 
Figure 3b. For well-conditioned systems, the chances of the 
global minimum being in one of these ambiguity regions are 
very small. Even if we end up in an ambiguity region and 
choose the wrong boundary segment once in awhile, the ef- 
fect is small. 

When a model is ill conditioned, that is, when two end- 
members that are spectrally very close to one another are in- 
cluded together, a minimum can occur in the shaded region 

Study Area and Its Vegetation 
The study area is located in the north-central part of Long 
Valley, White Pine County, Nevada (Figure 4a). The study 
area is roughly a 6.87- by 8.25-km area of the flat valley 
floor. Most parts of the valley average less than 2133 m 
above sea level, and the lowest part of the valley floor is 
about 1844 m above sea level. The valley lowland is under- 
lain by valley fill deposits ranging in age from Tertiary to 
Quaternary. The valley fill includes unconsolidated gravel, 
sand, and clay deposited under subaerial and lacustrine con- 
ditions since the extrusion of the basalt flows. Only intermit- 
tent streams are found in the valley. Small springs in the 

t min 
1 / 

0 /PZ 1 > X I  
/ 

(a) 

XI 

(b) 
Figure 3. (a) Projecting the minimum of a quadratic func- 
tion to a boundary. (b) The minimum occurring in an am- 
biguity region. 
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(b) 
Figure 4. (a) Location of study area in Long Valley, Ne- 
vada. (b) The typical features of vegetation in the study 
area. 

mountains, particularly in the south and west side of the val- 
ley, are supplied from perched ground water and used for 
livestock. The largest spring in the valley, Long Valley 
Slough, is found in the study area. In the Long Valley area, 
precipitation and humidity are generally low and summer 
temperatures and evaporation rates are high. Precipitation is 
very irregular and generally is least on the valley floors. The 
average annual precipitation between 1980 and 1992 in Ely, 
Nevada, the nearest town to the valley, ranges from 1,676 
mm (1989) to 3,945 mm (1982). (Western Regional Climate 
Center, Reno, Nevada) The valley region showed a maximum 
temperature of 36.7"C in 1948, 1954, and 1959. The mini- 
mum temperature recorded was -36.7"C in 1949. Long 
Valley is used for livestock grazing, and several test wells 
were drilled for oil exploration. There is no other activity re- 
corded in its past history (Eakin, 1961). There are no perma- 
nent residents or ranches in the valley. 

Vegetation in the valley floor is characterized by a mix- 
ture of desert shrub dominated by big sagebrush (Artemisia 
trinentata) (Figure 4b). The big sagebrush is found at every 
sample site of the study area. Subdominant species are two 
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types of rabbitbrush (Chrysothamnus nauseosus and Chryso- 
thamnus viscidiflorus), greasewood (Sarcobatus vermicula- 
tus), shadscale (Atriplex confertifolia), gardner saltbush 
(Atriplex gardneri), halogeton (Halogeton glomerata), and 
grasses such as squirreltail (Sitanion hystrix) and indian rice 
grass (Oryzopsis hymenoides). All the subdominant species 
are found only in limited areas. The measured maximum 
height of the shrub was 101.6 cm and the minimum height 
was 12.7 cm. The measured maximum canopy was 101.6 cm 
wide and the minimum canopy was 20.3 cm. Halogeton is 
found mostly in the distributed areas. 

To gain insight into the study area for modeling a spec- 
tral mixture and to collect vegetation information, a field sur- 
vey was done in October 1993. Forty-two sites were chosen 
for measuring the frequency of vegetation and the scene 
components in the study area. Each site was selected to rep- 
resent different regions in the study area through unsuper- 
vised classification of the study area scene. Seven spectral 
clusters were generated for stratified random sampling. 
Through the preliminary field observation, we were con- 
vinced that seven clusters would cover all of the major varia- 
tions in the study area. Dominant features of soil and 
vegetation for seven clusters are in Table 1. The clustered 
image was registered to uTM coordinates. For each cluster, 
five or six sites were selected. To avoid the boundary 
regions, each site was located near the center of a 20- by 20- 
pixel (at least) polygon of the same cluster. The UTM coordi- 
nates for each sample site were recorded from the screen. All 
the sample sites were located on 1:24,000-scale USGS topo- 
graphic maps. At each site, two 30-m line transects were lo- 
cated. At 30-cm intervals along each of the transects, the 
observed ground cover materials were recorded. According 
to field estimates of percent cover, vegetation cover ranges 
from about 15 percent to 38 percent for each site. Through 
this field observation, dark and light color soils, green leaf 
vegetation (greasewood, shadscale, halogeton, rabbittbrush), 
gray and hairy leaf vegetation (sagebrush, saltbush), woody 
materials (dead stems), dry grass, and shade were identified 
as major surface components. 

Unmixing in TM Data 
Sampling and Measurement of Reference Spectra 
Field spectra of candidate image components were measured 
using the SE590 field spectrometer from 2 to 8 August 1993. 

Cluster Dominant features of soil and vegetation 

1 Small sagebrush with clumps of medium size sagebrush* 
Dark and bumpy soil with cryptograms and dark gravelsX* 

2 Small sagebrush or shadscale mixed with dry grass, small 
rabbitbrush, or halogeton 
Dark and bumpy soil with cryptograms 

3 A mixture of medium size sagebrush and rabbitbrush, 
Intermediate brightness soil 

4 A mixture of big and medium size sagebrush and rabbit- 
brush or a mixture of sagebrush and greasewood 
Intermediate brightness and bumpy soil 

5 A mixture of big and medium size sagebrush and grease- 
wood 
Light and bumpy soil 

6 A mixture of medium and small size sagebrush and grease- 
wood 
Light and cracked soil 
Small size saltbush or a mixture of small saltbush and 
small sagebrush, 
Very light and cracked soil 

*small size: about 7 to 18 inches height, medium size: about 20 to 
30 inches height, big size: about 30 to 40 inches height 
**soil color and surface texture 



To preserve the consistency and accuracy of field data, the 
general guidelines suggested by Milton (1987), McCoy et al. 
(1989), and Bammel and Birnie (1994) were followed. Out of 
42 sample sites, 36 sample sites were chosen for field spectra 
measurement. Three of the sample sites were found inappro- 
priate for collecting field spectra. Field spectra were mea- 
sured from the resulting 33 sample sites. For each sample 
site, at least three spectral measurements were averaged for 
each major surface component, including soil and shade. The 
numbers of spectra measured for each component are sage- 
brush 69 (28), rabbitbrush 43 (15), greasewood 45 (16), 
shadscale 40 (8), halogeton 40 (8), saltbush 11 (5), grass 19 
(5), soil 108 (35), stem 74 (27), and shade 60 (28). Numbers 
inside the parentheses are the numbers of spectra after aver- 
aging at each site. Each raw spectrum was examined and dis- 
carded if the spectrum included noise. The 252-band raw 
data were calibrated to reflectance using the reference panel 
measurements taken prior to scanning each data set and 
were convolved with a TM bandpass filter. The TM bandpass 
spectra of each component were averaged to obtain a repre- 
sentative spectrum for each component. The ten average refer- 
ence spectra of surface components are presented in Figure 5. 

Calibration of TM Data 
The digital numbers of the TM image data were converted to 
reflectance data using the formulation presented in Markham 
and Barker (1985). Markham and Barker's (1985) reflectance 
conversion model was based on the assumption of a uniform 
Lambertian surface. This conversion needed to be done for 
combination of the data from two different sensors having 
different calibration, the TM multispectral scanner in Landsat 
4 and the SE590 field spectrometer. The digital numbers of 
four TM bands (0.45 to 0.90 ~ m )  data were converted to re- 
flectance in three steps: (1) haze correction, (2) radiometric 
conversion, and (3) reflectance conversion. Haze correction is 
done using the improved dark-object subtraction technique 
by Chavez (1988). Chavez's haze correction model is an im- 
provement to existing dark object subtraction methods and 
requires no outside information. Once haze effect is removed 
from the digital image data, the conversion from digital num- 
bers to radiance, then to ground reflectance was done using 
the model reported by Robinove (1982) and Markham and 
Barker (1986). 

Formulating a Mixture Model 
Based on the results of the field estimates of surface compo- 
nents and the field spectra measurements of surface compo- 
nents in the study area, ten distinct surface components were 
identified: sagebrush, rabbitbrush, greasewood, shadscale, 
saltbush, halogeton, grass, woody materials, soil, and shade. 
The estimated average percent cover of surface components 
for the study area suggests that the soil (about 50 to 60 per- 
cent), vegetation (15 to 38 percent), and woody materials (2 
to 33 percent) are the major surface components besides the 
shade component. The average percent cover of dry grass 
ranges from about 1.5 to 2.0 percent. Color of soil in the 
study area can be categorized into three groups: dark, inter- 
mediate, and light. Surface texture of the dark and interme- 
diate color soil was mostly bumpy. The surface of light color 
soil was mostly cracked. Also, dark gray, dark reddish 
brown, and dark gravels were found on the surface. Most 
gravels found in the study area were less than 6 mm in di- 
ameter. The measured soil spectra reflects this variance: light 
soil shows high reflectance, intermediate color soil shows 
medium range reflectance, and dark soil shows low reflec- 
tance. 

Based on these observations, spectral angles between soil 
spectra were calculated and compared to the signal-to-noise 
ratio to determine if light, intermediate brightness, and dark 

sagebrush 

0 5 C z  sz 

0 1 2 3 4 5 

bands 
Figure 5. Reference spectra of major surface compo- 
nents. 

soil can be separated spectrally. Barker et al. (1983) reported 
that the TM noise level is less than 1 DN value. The dark sig- 
nal for the study area scene, which is 49 in DN value, was 
decided by examining the minimum histogram value for TM 
bands 1,  2, 3, and 4. Accordingly, the signal-to-noise ratio of 
the study area image was adopted as 1/49 or 0.02041. The 
amount of error introduced in the estimates of the endmem- 
ber fraction can be determined approximately by the'signal- 
to-noise ratio times lIsin(0). When 0, the spectral angle in 
radians, is close to zero, sin(0) approaches 0. So when 0 is 10 
times larger than the signal-to-noise ratio, the endmember 
fractions can be estimated within the 10 percent error range, 
which is acceptable given that the underlying accuracy of 
the model using TM data is probably about 5 to 10 percent. 
This would mean that the column vectors (endmembers) can 
be decomposed to an accuracy of 10 percent when the col- 
umn vectors are about 12 degrees (0.204 in radians) apart 
with 1/49 signal-to-noise ratio. All of the spectral angles be- 
tween the light, intermediate, and dark soil spectra are less 
than 1 2  degrees. The largest angle is 8.6 degrees between the 
soil 10 and soil 3. This suggests that three different soil 
groups (light, intermediate, and dark) may not be separable 
but light and dark soils may be separable using only four TM 
bands data with a moderate error range. Finally, including 
the average soil, soil 3, and soil 10 spectra, 1 2  candidate 
endmembers were chosen to test the spectral separability. 
These include sagebrush, saltbush, greasewood, halogeton, 
rabbitbrush, shadscale, dry grass, stem, average soil, light 
soil, dark soil, and shade. The soil spectra and the reference 
spectra of the 1 2  endmembers used to calculate the angles 
are listed in Tables 2 and 3. The calculated spectral angles 
between the soils and between the 1 2  candidate endmembers 
are listed in Tables 4 and 5. According to the spectral angle 
analysis, with four TM bands, the two groups of vegetation- 
the vegetation with gray and hairy leaves such as sagebrush 
and saltbush, and the vegetation with green and/or shiny 
leaves such as greasewood, halogeton, and rabbitbrush-can 
be separated. Different types of vegetation in the same group 
may not be separable. Dry grass can be separated from the 
two groups of vegetation and soil. Dead stem can be sepa- 
rated from most of the candidate endmembers but may not 
be separated effectively from dark soil. The result of spectral 
angle analysis suggests that, with TM bands 1, 2, 3, and 4, 
the gray leaf vegetation, green leaf vegetation, dry grass, 
stem, soil, and shade components can be differentiated with 
10 percent accuracy. 

June 1997 PE&RS 



Soil Candidates 

Band soil1 soil2 soil3 soil4 soil5 soil6 soil7 soil8 soil9 soil10 

1 0.1820 0.1506 0.1376 0.2983 0.2092 0.2548 0.3019 0.3474 0.4043 0.4701 
2 0.2403 0.1925 0.1801 0.3908 0.2848 0.3402 0.3615 0.4147 0.4790 0.5321 
3 0.2827 0.2215 0.2088 0.4498 0.3358 0.3985 0.3895 0.4424 0.5021 0.5506 
4 0.3203 0.2333 0.2500 0.4701 0.3661 0.4180 0.4064 0.4522 0.5053 0.5571 

Soils 1,2,3: dark soils, 
Soils 4,5,6,7: intermediate brightness soils, 
Soils 8,9,10: light soils. 

In this study, however, with only four spectral bands, a 
mixture model with three endmembers was chosen. The 
three endmembers are vegetation, soil, and shade. The shade 
component is a necessary component and should be in- 
cluded in a mixture for a reliable decomposition. With the 
average soil spectrum and the average shade spectrum, the 
average sagebrush spectrum was included as a representative 
of vegetation endmember because sagebrush was found at al- 
most every sample site. A linear mixing model with four 
spectral bands and three endmembers is formulated as fol- 
lows: 

where b, to b, are the TM image reflectance for bands 1 to 4 
respectively; a,, to a,, are the reference spectrum of vegeta- 
tion for bands 1 to 4; a,, to a,, are the reference spectrum of 
soil for bands 1 to 4; a,, to a,, are the reference spectrum of 
shade for bands 1 to 4; x, to x3 are the unknown fractions for 
vegetation, soil, and shade respectively; and E, to E, are the 
error terms for each band. If all six TM bands data are used, 
at least one more endmember can be included in the mix- 
ture. 

Unmixing in TM Data and Vegetation Fraction 
The linear mixing model (Equation 9) can be expressed in er- 
ror terms: i.e., 

The function to be minimized becomes 

Now considering the first constraint, xl+x,+x3= 1 or 
x ,= l  -xl-x,  and substituting x ,= l  -xl-x,  into Equation 10, 
the function to be minimized becomes 

where the coefficients c1 to c, are the functions of the end- 
member reflectance values (a,) and image pixel reflectance 
(b,). To solve this problem, we need to find a minimum 
within the boundary, 0 2 x, 2 1 and 0 5 x, 5 1. The mini- 
mum of this function will occur when its partials are zero: 
i.e., 

Solving for x, and x,: 

According to the outcomes of the unconstrained x, and x, 
values, x, and x, are recalculated if necessary. The values of 
x, were determined accordingly. 

The numerical method described in Shimabukuro (1987) 
was applied to unmix pixels in the TM image of the study 
area. A vegetation fraction image was produced by scaling 
the fraction values 0 to 255 (Figure 6). The vegetation frac- 
tion image was registered to UTM coordinates, and the calcu- 
lated vegetation fractions of sample sites were compared 
with the field measurement (Figure 7). As shown in the Fig- 
ure 7, the estimated range of the calculated vegetation frac- 
tion and field measurement corresponds quite well. The 
calculated vegetation fractions of the study area range from 
0.24 to 0.38. The field measurements range from 0.18 to 0.37. 
It shows, however, a systematic distribution of errors. In ar- 
eas of cluster 4, which has medium brightness soil color and 
medium size sagebrush mixed with greasewood, the vegeta- 
tion was moderately well estimated. Vegetation was underes- 
timated in the areas of clusters 1 ,  2, and 3 where soil color 
was dark. Vegetation was overestimated in the areas of clus- 
ters 5, 6, and 7 where soil color was very light. This result 

TABLE 3. REFERENCE SPECTRA OF CANDIDATE ENDMEMBERS USED FOR SPECTRAL ANGLE MEASUREMENT 

Candidate Endmembers 
-- - 

Band 1 2 3 4 5 6 7 8 9 10 11 12 

1: sagebrush, 2: saltbush, 3: greasewood, 4: halogeton, 5: rabbitbrush, 6: shadscale, 7: dry grass, 8: stem, 9: soil, 10: shade, 11: soil3, 12: 
soillo. 



TABLE 4. SPECTRAL ANGLES BETWEEN SOILS 

Angle in 
Soil cos(t3) radians 

Angle in 
degrees 

soil2, soil1 
soil3, soill 
soil3, soil2 
soik, soil1 
soil4, soil2 
soik, soil3 
soil5, soill 
soil5, soil2 
soil5, soil3 
soil5, soil4 
soil6, soill 
soil6, soil2 
soil6, soil3 
soil6, soil4 
soil6, soil5 
soil7, soill 
soil7, soil2 
soil7, soil3 
soil7, soil4 
soil7, soil5 
soil7, soil6 
soil8, soill 
soil8, soil2 
soils, soil3 
soil8, soil4 
soils, soil5 
soils, soil6 
soils, soil7 
soil9, soil1 
soil9, soil2 
soil9, soil3 
soil9, soil4 
soil9, soil5 
soilg, soil6 
soilg, soil7 
soil9, soil8 
soillo, soill 
soillo, soil2 
soillo, soil3 
soillo, soil4 
soillo, soil5 
soillo, soil6 
soillo, soil7 
soillo, soil8 
soillo, soil9 

suggests that  dark soil a n d  light soil should  be included as 
separate endmembers. The following are also possible causes 
that may contribute to some of the mismatches between the 
calculated vegetation fraction of t h e  pixel in t h e  image and 
the field measurement of corresponding sample point on the 
ground: 

Because of the limited number of spectral bands and the 
practical problem of solving an underdetermined system, it 
was not feasible to include more endmembers that could be 
differentiated. If green and gray vegetation, and light and 
dark soil were included as separate endmembers instead of 
the average soil as the representative of soil, and the average 
sagebrush spectra as the representative of all vegetation, the 
result of unmixing could have been improved; 
The decomposed fractions are density of greenness or bio- 
mass. On the other hand, the field measurements are the fre- 
quency of occurrence. The density and vigor of vegetation 
canopy were not considered in the field measurement; and 
locational errors are involved in locating sample sites on the 
map, i n  the image, and in the field, and also in registering 
the image to the UTM coordinates. 

W h e n  greasewood was included as a vegetation endmember 
instead of sagebrush, vegetation w a s  also underestimated in 

areas of clusters 1, 2, and 3, and moderately well  estimated 
in areas of cluster 4. When darkest soil, most  vigorous vege- 
tation spectrum, and shade were used  as endmembers for 
unmixing, vegetation was almost undetectable. 

TABLE 5. SPECTRAL ANGLES BETWEEN CANDIDATE ENDMEMBERS 

Angle in Angle in  
Candidate endmembers cos(8) radians degrees 

sagebrush, saltbush 0.99854 0.05410 3.09984 
greasewood, sagebrush 0.98628 0.16581 9.50026 
greasewood, saltbush 0.97660 0.21673 12.41796 
halogeton, sagebrush 0.98720 0.16015 9.17592 
halogeton, saltbush 0.97775 0.21136 12.11028 
halogeton, greasewood 0.99913 0.04173 2.39089 
rabbitbrush, sagebrush 0.99588 0.09085 5.20541 
rabbitbrush, saltbush 0.99224 0.12467 7.14304 
rabbitbrush, greasewood 0.99325 0.11625 6.66053 
rabbitbrush, halogeton 0.99163 0.12945 7.41677 
shadscale, sagebrush 0.99567 0.09306 5.33168 
shadscale, saltbush 0.98972 0.14349 8.22156 
shadscale, greasewood 0.99700 0.07746 4.43831 
shadscale, halogeton 0.99765 0.06856 3.92795 
shadscale, rabbitbrush 0.99722 0.07464 4.27636 
dry grass, sagebrush 0.97753 0.21241 12.17032 
dry grass, saltbush 0.98672 0.16313 9.34677 
dry grass, greasewood 0.93883 0.35157 20.14352 
dry grass, halogeton 0.94003 0.34809 19.94384 
dry grass, rabbitbrush 0.97064 0.24293 13.91881 
dry grass, shadscale 0.96006 0.28357 16.24747 
stem, sagebrush 0.91805 0.40765 23.35672 
stem, saltbush 0.93687 0.35724 20.46807 
stem, greasewood 0.84016 0.57321 32.84262 
stem, halogeton 0.84557 0.56316 32.36694 
stem, rabbitbrush 0.88850 0.47673 27.31474 
stem, shadscale 0.87852 0.49804 28.53567 
stem, dry grass 0.96122 0.27941 16.00917 
average soil, sagebrush 0.88926 0.47508 27.21988 
average soil, saltbush 0.91140 0.42411 24.29984 
average soil, greasewood 0.80176 0.64056 36.70144 
average soil, halogeton 0.80686 0.63198 36.20983 
average soil, rabbitbrush 0.85700 0.54137 31.01836 
average soil, shadscale 0.84398 0.56614 32.43734 
average soil, dry grass 0.94377 0.33695 19.30579 
average soil, stem 0.99747 0.07114 4.07578 
shade, sagebrush 0.89634 0.45936 26.31922 
shade, saltbush 0.91533 0.41446 23.74675 
shade, greasewood 0.81201 0.62320 35.70692 
shade, halogeton 0.81986 0.60963 34.92921 
shade. rabbitbrush 0.85867 0.53813 30.83263 
shade, shadscale 
shade, dry grass 
shade, stem 
shade, average soil 
dark soil, sagebrush 
dark soil, saltbush 
dark soil, greasewood 
dark soil, halogeton 
dark soil, rabbitbrush 
dark soil, shadscale 
dark soil, dry grass 
dark soil, stem 
dark soil, average soil 
dark soil, shade 
light soil, sagebrush 
light soil, saltbush 
light soil, greasewood 
light soil, halogeton 
light soil, rabbit brush 
light soil, shadscale 
light soil, dry grass 
light soil, stem 
light soil, average soil 
light soil, shade 
light soil, dark soil 
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I 15U1G V. v c s c L a L I u I I  I I ~ ILL IV I I  UI LIIC study area, Long 
Valley, Nevada. With sagebrush spectrum as  a vegetation 
endmember. Calculated vegetation fractions range from 
0.24 to 0.38. The image is produced by scaling the frac- 
tion values 0 to 255. Dark tone is less and brighter tone 
is more vegetation. 

Conclusions 
To explore the applicability of the inversion method, the dis- 
cussion was focused on the theoretical and technical issues 
involved in this unmixing technique. The discussion in this 
study suggests that solving the minimum on the boundary 
condition is not necessarily the source of ambiguity in physi- 
cal inversion problems. As discussed in the previous sec- 
tions, even though it was not possible to formulate a 
complete mixture model due to the data and limitations in 
solving underdetermined systems, we have tested Shimabu- 
kuro and Smith's constrained least-squares method and dis- 
cussed some important theoretical and technical issues 
involved. The results of the study suggest that, as long as a 
model is well conditioned, and with more spectral bands, 
the constrained least-squares method will provide the esti- 
mates of component fraction with a moderate error-range. 
The algorithm adopted for solving least-squares problems 
with an inequality constraint is reasonable. 

A method for testing the separability of candidate end- 
members by calculating the angle of cos0 between column 
vectors was presented in this study for the first time. This 
method provides a way to formulate a well-conditioned 
model for unmixing. This method also provides an idea 
about how many and what kind of components can be differ- 
entiated using a certain number of bands. For example, in 
spite of the popular belief that dry grass and soil have a sim- 
ilar spectral response pattern, and cannot be easily distin- 
guished, the wide spectral angle (degree) between soil and 
dry grass suggests that their spectral pattern is not similar 
even with only four spectral bands. Using the method devel- 
oped in this study for spectral angle measurement between 
candidate endmembers, we can measure the separability of 
candidate endmembers quantitatively and derive spectral 
endmembers objectively instead of choosing them arbitrarily. 
Also, the amount of error introduced in estimates of decom- 
posed endmember fractions can be measured by comparing 

the spectral angles between endmembers and the signal-to- 
noise ratio. ~ ~- - 

Unmixing results suggest that it is important to include 
at least distinct scene components for reliable estimates of 
component fraction. As many studies have suggested, espe- 
cially in arid rangeland where background soil is an impor- 
tant factor, at least dark and light soil should be included as 
separate endmembers unless soil has a uniform brightness 
over the entire study area. The following are the implications 
of unmixing experiments: 

The unmixing techniques can give moderate estimates of veg- 
etation fractions in arid rangeland, even with four TM bands 
if the background soil shows a uniform brightness. A study 
area with light and dark soils can be partitioned into several 
regions that have a uniform soil background, and can be un- 
mixed. If we use high spectral resolution data, such as AVIRIS, 
with improved field spectrometer, very low density vegeta- 
tion (below 10 percent) may be mapped. Also, at least green- 
leaf vegetation and gray-leaf vegetation can be mapped as 
separate groups. 
The degree of spectral "pureness" of endmembers should be 
consistent between endmember spectra that are used for un- 
mixing. If an average reference spectrum is used for one end- 
member, then the average reference spectra should be used 
for all the other endmembers in the study area. Also, if a 
spectrum of "pure" green leaves (totally separated from twigs 
and branches) is provided as an endmember, then the spec- 
trum of twigs or branches should be provided also as a sepa- 
rate endmember at the same time to obtain reliable estimates 
of component fractions. 

Spectral angle analysis strongly implies that, with high 
spectral resolution data, it may be possible to formulate a 
mixture with more endmembers than many studies suggest. 
So far, most studies distinguished only three or four end- 
members with high spectral resolution data, such as AVIRIS. 
Recently, Boardman (1991), with AVIMS data, formulated a 
seven-endmember linear mixture model for sedimentary fa- 
c i e ~  analysis and used an unmixing procedure to map and 
remove the partial masking effects of the vegetation and soil 
components. With high spectral resolution image data, and 
with an improved field spectrometer, the inversion tech- 
niques will provide good methods for mapping sparse vege- 
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Figure 7. Comparison between the field measurement of 
vegetation cover and the calculated vegetation fraction. 
With sagebrush spectrum a s  a vegetation endmember. 
For each sample site, the first digit represents the clus- 
ter number. Following the decimal represents the number 
of sample site for each cluster. 
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tation and  information extraction for various geographic 
applications. According to the  results of this paper  a n d  the  
experiments of this study, it seems that  the ambiguity (uncer- 
tainty) problem in t h e  physical inversion problems arises 
from the  inability to  provide a complete set of representative 
reference spectra a n d  to formulate a well-conditioned spec- 
tral mixture, not from the least squares-method itself. 
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