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Abstract 
A subpixel spectral analytical process was used to classify 
Bald Cypress and Tupelo Gum wetland in Landsat Thematic 
Mapper imagery in  Georgia and South Carolina. The sub- 
pixel process enabled the detection of Cypress and Tupelo 
trees in  mixed pixels. Two-hundred pixels were field verified 
for each tree species to independently measure errors of 
omission and commission. The cypress total accuracy was 89 
percent and the tupelo total accuracy was 91 percent. Field 
investigations revealed that both cypress and tupelo trees 
were successfully classified when they occurred both as pure 
stands and when mixed with other tree species and water. In 
a comparison with traditional classification techniques (ISO- 
DATA clustering, maximum likelihood, and minimum dis- 
tance) the subpixel classification of cypress and tupelo 
yielded improved results. Large areas of wetland where cy- 
press was heavily mixed with other tree species were cor- 
rectly classified by  the subpixel process and not classified b y  
the traditional classifiers. 

Introduction 
Forested wetland ecosystems are increasingly under pressure 
for conversion to commercial (e.g., timber extraction, agricul- 
ture, hotels, marinas) and residential land use (single- and 
multiple-family dwellings). The type and geographic location 
of wetland within the parcels of interest must be identified 
and delineated to determine if the land should be developed. 
This involves intensive field work, and, for large parcels, it 
is often impractical to manually survey the entire area. To 
reduce the extent of the field work, aerial infrared photogra- 
phy and digital remote sensing imagery are often used to lo- 
cate overstory indicator species that can be used to delineate 
upland to wetland gradients. There has been significantly 
more success using aerial infrared photography than digital 
remote sensing imagery for this application. The aerial infra- 
red photographs are generally acquired at large enough 
scales to resolve individual tree crowns, allowing indicator 
wetland species to be detected based on their color, spatial, 
and textural characteristics. 

Scientists have been trying to extract wetland informa- 
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tion from coarse spatial resolution digital Landsat Multispec- 
tral Scanner (MSS) imagery (80 x 80 m) since 1972, Landsat 
Thematic Mapper (TM) imagery (30 x 30 m) since 1982, and 
SPOT multispectral data (20 x 20 m) since 1986 (Hodgson et 
al., 1988; Jensen et al., 1995). Investigators have successfully in- 
ventoried large monospecific stands of wetland plant species 
using pattern recognition image classification techniques. How- 
ever, heterogeneous wetlands containing several plant species 
plus standing water often cannot be classified correctly using 
the coarse spatial resolution remote sensor data. This is because 
the traditional per-pixel classification algorithms cannot disag- 
gregate the individual materials of interest within the instanta- 
neous field-of-view (IFOV) of the sensor system. 

For example, consider the hypothetical TM pixel data 
shown in Figure 1 that contains approximately equal percent- 
ages of cypress (33 percent), tupelo (33 percent), and water 
(33 percent). Table 1 and Figure l a  reveal that the integrated 
digital number (DN) value output of this pixel in six bands 
(TM thermal Band 6 is excluded) is substantially different from 
any of the spectral reflectance spectra associated with "pure" 
cypress, "pure" tupelo, and "pure" water land cover. The in- 
tegrated "mixed pixel" frequently causes classification confu- 
sion, and it can prohibit the classification of individual mate- 
rials of interest because the mixed pixel composite spectral 
signature is unlike the spectral signature of the individual sur- 
face materials occurringas subpixel components. 

Individual wetland plant species and surface materials 
that occur as subpixel components in TM mixed pixels have 
the potential to be spectrally resolved and classified using 
subpixel processing techniques that can distinguish surface 
materials smaller than the spatial resolution of the sensor. 

Subpixel Processing 
Remote sensing image analysts typically deal with the mixed 
pixel problem by labeling "mixed pixels" with "mixed la- 
bels." For example, a pixel containing 70 percent cypress and 
30 percent tupelo may be labeled "mixed cypress-tupelo" be- 
cause there has been no mechanism for extracting information 
about the proportion of individual materials of interest within 
pixels using traditional per-pixel classification logic. The tradi- 
tional classifiers have generally performed well for classifying 
large, monospecific stands of tree species, but they have not 
been successful in the identification of the proportions of sev- 
eral materials of interest found within the IFOV of a sensor 
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system (Jensen et al., 1995). An approach for doing this is 
subpixel processing, defined as the search for specific materi- 
als of interest from within a pixel's mixed multispectral image 
digital number spectrum. Subpixel processing does not pro- 
vide information on where the material of interest occurs 
within the pixel. It does provide important information on the 
relative proportion of the material of interest found within a 
pixel (e.g., this pixel contains 77 percent cypress). 

This paper describes a subpixel image classification pro- 
cess.' It is demonstrated by classifying wetland Bald Cypress 
(Taxodium distichurn) and Tupelo Gum (Nyssa aquatics) in 
TM imagery of South Carolina and Georgia study areas. The 
results of an accuracy assessment involving a Global Position- 
ing System (GPS) field verification of 200 pixel locations for 
each tree species is presented. The subpixel classification pro- 
cess is also compared with more traditional image classifica- 
tion algorithms. 

How the Subpixel Processor Works 
The general subpixel processing steps are summarized in Fig- 
ure 2. Unrectified multispectral remote sensor data are pro- 
cessed to remove atmospheric radiance and attenuation 
effects. Then, a signature is derived for a material of interest 

'The Applied Analysis Spectral Analytical Process (AASAP) is an 
ERDAS Imagine module. 

TABLE 1. HYPOTHETICAL LANDSAT THEMATIC MAPPER DATA OF FIVE 30 -  BY 30-M 

PIXELS CONTAINING, RESPECTIVELY, PURE CYPRESS, PURE TUPELO, PURE WATER, 
AND EQUAL PROPORTIONS OF CYPRESS, TUPELO, AND WATER. 

TM Cypress Tupelo 
Bands (pure) (pure) 

Tupelo Cypress (33%) + 
Water (33%) + Tupelo (33%) + 
(pure) Water (33%) Water (33%) 

24 17 24 
2 1 1 2  18 
12 13 24 

9 17 3 3 
6 13 27 
3 10 33 

(MOI). Each pixel is then classified as to its fraction of material 
of interest present. For example, if the MOT is cypress, each 
pixel in the scene will contain a number from 0 to 1.0 identi- 
fying the proportion of cypress within the pixel. Information 
about the various stages are presented below. 

To address the mixed pixel problem, the subpixel proces- 
sor assumes that each image pixel, P,,,, contains some fraction, 
f,, of the material of interest, M, (e.g., cypress), and the re- 
mainder, 1 - f,, contains other background materials, B,: i.e., 
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Figure 1. A schematic diagram of how a material of interest (MOI) (cypress in this example) is extracted using subpixel pro- 
cessing from a hypothetical Landsat TM 30- by 30-m mixed pixel containing equal proportions of cypress, tupelo, and water. 
(a) The integrated spectrum for the pixel bears little resemblance to the pure spectrum of any of its constituents. (b) The 
background reflectance spectrum is identified. (c) The background reflectance spectrum is subtracted from the original inte- 
grated spectrum, leaving only information about the proportion of the material of interest, cypress, within the pixel. 
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Figure 2. Typ~cal stages in subpixel processing. 

In Figure 1, if cypress were the material of interest (M), then 
f, would equal 0.33 and the remainder of the background sur- 
face cover materials (B,) would be (1 - f,) = 0.67. In Equa- 
tion l, M is a single specified material of interest such as 
cypress. The value B, in Equation 1 refers to all of the other 
materials in the pixel, treated as a single combined set of 
"background" materials. The value f, is an areal fraction. 
Equation 1 assumes that M is invariant from pixel to pixel, 
while P,, f,, and B, vary from pixel to pixel. In this paper we 
report results for two materials, cypress and tupelo. It is im- 
portant to remember that each material of interest was 
searched for independently, i.e., in one analysis M was cy- 
press and in another analysis M was tupelo. 

For the applications reported here, M and B, were as- 
sumed to be optically thick (no transmittance through the ma- 
terial) in at least one of the spectral bands. Therefore, the 
radiant contributions from M and B, were assumed to be ap- 
proximately linearly additive in spectral bands, n:  i.e., 

where, R,[n], Tlnl, and L,[n] are the radiances from, P,, M, 
and B, in pixel m and band n ,  respectively. k,[n] is the radi- 
ant fraction contributed by T[nl in pixel m and band n.  Note 
that the radiant fraction, k,[n], can vary from band to band, 
because the radiant contrast between the material of interest 
and the background can vary from band to band. In bands for 
which there is little radiant contrast between the material of 
interest and the background, kJn]  will be approximately 
equal to f,. In bands for which the background radiance is sig- 
nificantly lower than that for the material of interest, then 
k,[n] will be greater than f,. 

The subpixel process detects the material of interest in a 
pixel under investigation by subtracting fractions of candidate 
background spectra, and then identifying the background and 
fraction that produces the residual spectrum that most closely 
matches the spectrum for the material of interest. For each 
candidate background, residuals are computed that produce 
the best spectral match to the spectrum for the material of in- 
terest. The residual, T,[n], is calculated according to the ex- 
pression 

where k ,  is the fraction of the material of interest in the pixel, 
and (1 - k,) is the fraction of background, L,[n], removed 
from the pixel radiant spectrum, R,[n]. The degree of spectral 
match between the residual T,[nl and the signature spectrum 
Tlnl is computed by the expression 
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where N is the number of image planes. The set of candidate 
backgrounds, L,[n], is unique for each pixel under investiga- 
tion. It is assumed that the background for the pixel under test 
can be represented by other pixels in the scene. The set of 
candidate backgrounds is independently selected for each 
pixel under investigation, because the background in each 
pixel can be unique. Selected candidates may include local 
neighbors to the pixel under test, as well as pixels from else- 
where in the scene. For the application here, local neighbors 
were not generally selected, because those pixels frequently 
also contained significant fractions of the material of interest. 

The residual spectrum found using Equation 3 is consid- 
ered valid when all of its values are greater than zero. An in- 
valid residual indicates that a candidate background is not 
representative of the actual background in the pixel under in- 
vestigation. If all of the candidate backgrounds fail to generate 
a valid residual, then the pixel under test does not contain a 
detectable amount of the material of interest. 

The residuals that are valid are next screened according 
to the boundaries of a feature space, which is defined during 
the signature derivation process described below. If the resid- 
ual passes the screen, then the reported fraction is stored in 
the appropriate row by column location in an output image. 
The output image thus takes the form of a fraction plane for 
the material of interest. 

Environmental Correction Process 
To use Equation 2 to search for the materials of interest, the 
raw digital numbers for pixel m, D N , [ ~ ] ,  are corrected to re- 
move the atmospherically scattered solar radiance component 
and the sensor offset factors. An environmental correction 
module uses sampled pixels fkom the scene being processed 
to derive a correction factor, A R A D [ ~ ] ,  that is subtracted from 
D N , [ ~ ]  to provide the requisite proportionality to R,[n] in 
Equation 2. The proportionality factor includes the sensor gain 
factor and the atmospheric attenuation of the incident and re- 
flected solar and sky radiance in each spectral band, n. These 
latter factors plus the incident solar and sky radiance terms 
are included in a second factor calculated by the module, 
 SF[^].  SF[^] is only used for scene-to-scene applications, i.e., 
applications in which a signature developed in one scene is 
used in another scene. 

The A R A D [ ~ ]  factor used for this study was automatically 
derived by the process using subpixel detection of pseudo-cal- 
ibration materials in the scene. These are materials that are in- 
digenous to the scene and that can be used in a manner simi- 
lar to deployed calibration panels. The principal difference is 
that the indigenous materials are rarely usable as calibration 
materials across all spectral bands. To compensate for this 
limitation, AASAP blends the spectra from several of these 
pseudo-calibration materials to form the desired calibration 
spectra. 

The pseudo-calibration materials used to calculate 
A R A D [ ~ ]  are the darkest materials in the scene, such as deep 
clear water and shadowed terrain materials. The contribu- 
tions of these dark surface materials to the overall pixel radi- 
ance are generally minimal, allowing the atmospherically 
scattered solar radiance component to dominate. The use of 
dark water and shadowed terrain pixels to remove atmos- 
pherically scattered solar radiance from scene pixels is com- 
mon practice in multispectral image analysis. The success 
has been mixed, however, because water pixels and shad- 
owed terrain pixels often contain significant unwanted sur- 
face reflectance contributions, such as reflected sky radiance 
and sun glints in water pixels and solar illuminated terrain 
in predominantly shadowed pixels. By using the subpixel 



process, the unwanted glints and illuminated terrain contri- 
butions are effectively suppressed, allowing a generally more 
accurate atmospheric radiance spectrum to be derived. 

The A R A D [ ~ ]  factor is scene-specific, and it is assumed to 
be invariant from pixel to pixel within the scene. Pixel-to- 
pixel variations of haze and other environmental factors are 
not directly compensated for by ARAD[~] .  Although only 
A R A D [ ~ ]  was used for the in-scene application reported here, 
both ARAD[~]  and  SF[^] were automatically calculated and 
stored with the signature to allow the signature to be used 
for scene-to-scene applications. 

Obtaining the Training Signature of the Material of Interest 
The signature of the material of interest consists of a signa- 
ture spectrum and a non-parametric feature space. The signa- 
ture spectrum is the equivalent of a spectrum of an image 
pixel comprised entirely of the material of interest. AASAP 
uses the signature spectrum to (1) control the selection of 
candidate backgrounds for removal from each image pixel, 
and (2) control the determination of what fractions of the 
background to remove from the pixel. The non-parametric 
feature space is used to filter the residuals created by re- 
moval of the background during the classification process. 

A signature derivation module derives the signature 
spectrum and feature space from user-specified training pix- 
els and parameter values. The training set consists of image 
pixels that were estimated to contain a relatively consistent 
amount of the material of interest. For this application, each 
of the training set pixels was estimated to contain >90 per- 
cent cypress or tupelo. The user-specified parameter values 
include the estimated fraction of the material of interest in 
the training set pixels (mean material pixel fraction) and the 
estimated probability that any given training set pixel actu- 
ally contains the material of interest (confidence factor). For 
both the cypress and tupelo, the material pixel fractions and 
confidence factors were 0.90. 

The subpixel processor uses the specified material pixel 
fraction to determine the amount of background to remove 
from each training set pixel. The confidence factor is used to 
determine how many of the training set pixels need to be in- 
cluded and how many can be excluded during the signature 
derivation process. The residuals (after background removal) 
derived from the included pixels are combined to create the 
signature spectrum. 

A multi-dimensional spectral feature space is created to 
set tolerances on the spectral variability of the residuals (de- 
tected during classification) relative to the signature spec- 
trum. The variability can arise from two principal sources, 
variations in the spectral properties of the material of interest 
and errors inherent in the background removal process. The 
resultant signature represents the material that was common 
to the set of training pixels at the specified material pixel 
fraction. This differs from traditional classifiers where the 
variance of the training set defines the range of materials in- 
cluded in the classification. The subpixel classifier does not 
simply accommodate the material variance of the training set 
pixels. Instead, it extracts the signature of the material that is 
common to the training set pixels. This has the advantage of 
allowing signatures of relatively specific materials of interest 
to be derived from mixed pixels, rather than deriving signa- 
tures of the mixture of materials in the training set. The sig- 
nature spectrum, feature space, and environmental correction 
spectra are stored in a signature file. 

Subpixel Processing in Relation to Other Approaches 
The subpixel processing may provide a more robust discrim- 
ination than traditional per-pixel multispectral classifiers for 
pixels where the material of interest is mixed with other ma- 
terials. It also provides more uniform performance away 

from the training sites. This is a consequence of the en- 
hanced purity of reference signatures, discussed above. It is - - 
also a consequence of the baEkground suppression capability 
used durine classification. The snectral contribution of the 
backgroundu materials in the pix;l can significantly distort 
the pixel spectrum from that of the material of interest. By 
suppressing these background contributions, discriminations 
can be maintained between spectrally similar materials even 
when the material of interest occupies only a small fraction 
of the pixel. Traditional multispectral classifiers are not able 
to directly suppress the background contributions. Instead, 
the variances imposed by the background materials are ac- 
commodated by the other classifiers. If too little variance is 
accommodated, then only the purest pixels can be discrimi- 
nated. If too much variance is accommodated, then mixed 
pixels can be included in the classification but the discrimi- 
nation sensitivity is reduced. The traditional classifiers have 
successfully performed species level discrimination for large 
contiguous stands. They have had mixed success, however, 
when the species were mixed with other terrain units. 

The subpixel processing approach used for signature deri- 
vation and background suppression yields discrimination per- 
formance characteristics generally different from the Linear 
Mixing Model (LMM) (Adams et al., 1986; Smith et al., 1990). 
The LMM evaluates each pixel spectrum as a linear sum of a 
basic set of image end-member spectra. These typically in- 
clude a "shade" spectrum and n-2 other scene-representative 
orthogonal spectra, where n is the number of sensor spectral 
bands. The end-member spectra include "background" end- 
members, such as bright soil, vegetation, and water, and "re- 
sidual" end-members, such as concrete, tarmac, and roofing 
material. The background end-members are assumed to be in 
every image pixel, and the residual end-members are assumed 
to be in only some of the pixels. The output is typically pre- 
sented in the form of fraction planes for each end-member 
spectrum, which give the derived fractions of each end-mem- 
ber spectrum for each pixel. A residual plane is also produced 
that gives the root-mean-square error of the fit for each image. 
The LMM has been most reliably used to classify pixels in a 
manner analogous to a principal components analysis. There 
have also been attempts to use the LMM for subpixel analysis 
by either substituting the material-of-interest spectrum for one 
of the residual end-member spectra, or by comparing the error 
spectrum to the material-of-interest spectrum. The LMM can 
produce reasonable subpixel results when the material of in- 
terest has a spectrum that is both orthogonal to the other end- 
member spectra and unique in the scene. The LMM can 
classify subpixel occurrences of shade, soil, or scene vegeta- 
tion but it is generally not appropriate for detecting subpixel 
occurrences of specific vegetative species (Smith et al., 1990). 

The non-parametric AASAP subpixel process also yields 
results different from those produced using fuzzy set classifi- 
cation logic (Wang, 199Oa; Wang, 1990b; Jensen, 1996). 
Fuzzy classification also yields subpixel "membership grade" 
information (i.e., a pixel might have a fuzzy set membership 
grade value of 0.7 cypress, 0.2 tupelo, and 0.1 water). How- 
ever, it arrives at the membership grade statistics using su- 
pervised fuzzy set maximum-likelihood or fuzzy c-means 
clustering logic, and the results are not the same as the sub- 
pixel processing described here. Unlike AASAP, both the LMM 
and the fuzzy set logic assume that the overall composition 
of each pixel is constrained to be some combination of the 
defined image classes (or end-members for LMM). 

Application of Subpixel Processing to Discriminate Cypress and 
Tupelo Materials of Interest in Landsat Thematic Mapper Imagery 
The subpixel processing logic was tested on forested wetland 
study areas in South Carolina and Georgia using Landsat 
Thematic Mapper data. 
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Remotely Sensed Data 
Landsat TM imagery obtained on 4 May 1992, after spring 
leaf-out, was analyzed. Four study areas from within the 
Landsat TM scene were analyzed (Figure 3). Two 150- by 
150-pixel areas were used for signature training and classifi- 
cation refinement. The two training areas were processed to 
detect the locations of individual cypress and tupelo trees. In 
addition, two 256- by 256-pixel test areas were classified us- 
ing the subpixel processor. 

Low altitude color infrared (CIR) aerial photography was 
obtained at a nominal scale of 1:7,000 and 1:22,500 for the 
two training areas 14 and 15 days after the TM overpass. 
Large stands of cypress and tupelo, and in some cases indi- 
vidual tree crowns, could be identified in the 1:7,000-scale 
photographs. National Aerial Photography Program CIR aerial 
photographs (1:40,000 scale) were used to analyze regions of 
the study area outside the two training areas. 

In SituField Data Collection for Training and Error Assessment 
In situ field sampling was conducted to 

(1) identify pure, homogeneous stands of cypress and tupelo for 
signature training; 

(2) identify locations of cypress trees mixed with other tree 
species, and tupelo trees mixed with other tree species, for 
classification refinement; and 

(3) measure errors of omission and commission in the accuracy 
assessment phase of the project. 

Sampling was restricted to areas that were accessible by 
foot. However, due to an exceptionally dry field season 
(summer 1993), many deep wetland areas that normally are 
inaccessible by foot were accessible. The locations of TM pix- 
els were found in the field using a TM pixel grid that was 
registered and overlaid on the 1:7,000-scale CIR photographs. 
A Global Positioning System (GPS) unit was used to identify 
ground control points for georeferencing and to acquire 
ground coordinates for training areas. Further discussion of 
the sampling methodology is found in Karaska et al. (1995). 

Application of Subpixel Processing to Extract Individual Specie Materialof- 
Interest Information 
The Landsat TM scene was acquired with nearest-neighbor 
resampling, 30- by 30-m pixels, and spacecraft path orienta- 
tion. Nearest-neighbor resampling is preferred over cubic 
convolution or bilinear interpolation resampling methods for 
subpixel processing because it minimizes spectral degrada- 
tion. Resampling for geometric correction is minimized with 
spacecraft path oriented and 30- by 30-m pixel data. Preser- 
vation of the spectral relationships between pixels and band- 
to-band spectral relationships within a pixel increase the po- 
tential for subpixel spectral discrimination. Geometric cor- 
rection of the imagery for cartographic and cosmetic 
purposes was performed with cubic convolution resampling 
after subpixel processing. 

Georeferencing was required to associate the ground co- 
ordinates of training and accuracy assessment sites with the 
corresponding Landsat TM pixels. To avoid additional resam- 
pling of the TM imagery, the ground coordinates of these 
sites were plotted on a digitized base grid map. This map 
was geometrically registered to the TM image. To find the lo- 
cation of classified pixels in the field, another form of image 
registration was performed. The TM pixel grid was registered 
to the 1:7,000-scale CIR photographs and printed on transpar- 
encies for overlay on the photographs. The georeferenced TM 
image was not used for subpixel processing. 

As previously discussed, the subpixel processing in- 
volved using one set of training pixels to develop the cypress 
spectral signature and one set to develop the tupelo spectral 
signature. Another set of training pixels was used to refine 
the classification. All training pixels and the classification 

Training area 

Figure 3. Approximate location of training and 
test study areas in South Carolina and Georgia. 

evaluation and refinement occurred in the two 150- by 150- 
pixel training image areas. A signature can be developed for 
almost any material for which the analyst can identify a 
training set. The principal restrictions are that (1) the amount 
of material in the training pixels should exceed 20 percent of 
a pixel, (2) the material should have relatively unique and 
consistent spectral properties within the set of training pix- 
els, and (3) each training pixel should contain approximately 
the same amount of the material of interest. The training set 
does not need to come from the same image being classified 
(Huguenin, 1994). After the spectral signatures were devel- 
oped and refined, the remaining two test image areas were 
processed. 

Known locations of relatively homogeneous stands of cy- 
press and tupelo trees were used as training pixels. Fifty-one 
TM pixels of cypress from one training area were used. Field 
verification revealed that each of these pixels contained ap- 
proximately 85 percent cypress. Seventy-two pixels of tupelo 
were used as training pixels. These pixels contained approxi- 
mately 90 percent tupelo. These training pixels were used by 
AASAP to create a spectral signature for each species. The 
processor then evaluated each pixel in the image to deter- 
mine if the pixel contained a subpixel spectral component 
that resembled the species spectral signature within a speci- 
fied range of tolerances (refer to the subpixel classification 
phase in Figure 2). A variety of tolerances (thresholds) were 
evaluated in an iterative fashion until an optimal set of re- 
sults were obtained. 

Classification refinement involved evaluating the classifi- 
cation output from each iteration of the thresholds. These 
preliminary classification results were evaluated with the 
1:7,000-scale aerial photographs, some field work, and the 
use of another set of training pixels. These training pixels 
were known to contain subpixel occurrences of the species. 
The classification results were refined until the maximum 
number of pixels containing some cypress (or tupelo) were 
correctly classified with the minimum number of incorrectly 
classified pixels. 

Comparison with other Classification Algorithms 
It is important to know how accurate the subpixel process is 
compared to traditional classification processes (e.g., unsu- 
pervised ISODATA clustering, supervised minimum distance, 
and supervised maximum likelihood). These algorithms were 

PE&RS June 1997 



Plate 1. Tupelo land cover derived from subpixel processing of Landsat TM data for a region in South Carolina. Valuable 
information about the proportion of tupelo found within each pixel is summarized in the inset table and is color coded. 

applied to the study area by an independent research team at 
Clemson University who were not involved with AASAP clas- 
sification. The traditional classification process utilized the 
same resources available to the AASAP classification (the 
same nearest-neighbor resampled image, the CIR aerial photo- 
graphs, and in situ field data). The Clemson University re- 
searchers were experienced at performing multispectral 
classifications and knew the study area well. The objective of 
the traditional classifications was to produce the most accu- 
rate classification of both cypress and tupelo trees using 
whichever traditional classifier worked best. The ISODATA, 
maximum-likelihood, and minimum-distance classifications 
used the same training and classification refinement areas 
(two 150- by 150-pixel areas) and classified the same four ar- 
eas (the two 150- by 150-pixel training areas and the two 
256- by 256-pixel test areas) as the AASAP classification. 

The unsupervised ISODATA clustering process was elimi- 
nated from the comparison because it yielded inferior classi- 
fication accuracy when compared with the supervised 
classifiers. ISODATA clusters were obtained that contained cy- 
press and tupelo trees. Unfortunately, these clusters con- 
tained a large proportion of pixels that did not contain 
cypress or tupelo trees (a high level of commission error). 
The pure cypress and pure tupelo training pixels used by 
AASAP were used in both the maximum-likelihood and mini- 
mum-distance classifications. When using these pure training 
pixels, these classifiers did well in classifying other pixels of 

pure cypress and pure tupelo. However, most occurrences of 
tupelo and almost all the occurrences of cypress in this 
study area occurred in mixed pixels. To classify the pixels 
which contained cypress mixed with other wetland tree spe- 
cies and tupelo mixed with other tree species, training pixels 
containing these mixtures also had to be used. The overall 
best traditional classification result for cypress and tupelo 
was obtained using a mixed-pixel training set and optimizing 
the threshold on the minimum-distance classification. The 
identical accuracy assessment methods used to quantify the 
AASAP classification performance (100 pixels field verified for 
commission accuracy and 100 pixels field verified for omis- 
sion accuracy for each species) were performed for the final 
minimum-distance classification. The accuracy assessment 
measures and the spatial distribution of the minimum-dis- 
tance and AASAP classification were compared and evaluated. 

Accuracy Assessment 
The AASAP classifications yielded two output maps - one 
for cypress and one for tupelo. These maps contained mate- 
rial-of-interest fraction data in 10 percent increments about 
the amount of cypress or tupelo found in each pixel. The 
ideal subpixel processor error evaluation would compare (1) 
the remote sensing derived per-pixel fraction information 
(e.g., 60 percent in a pixel) with (2) in situ derived material- 
of-interest fraction data for the exact location on the ground 
(e.g., 70 percent). Unfortunately, it is difficult to quantify the 



TABLE 2. ACCURACY ASSESSMENT RESULTS FOR THE CLASSIFICATION OF CYPRESS 
AND TUPELO USING SUBPIXEL PROCESSING. 

Commission Omission Total Species 
Class Accuracy Accuracy Accuracy 

Cypress 95/100 821100 89% 
Tupelo 931100 891100 91% 

material-of-interest pixel fraction information for native tree 
species in TM imagery because of the uncertainty in  deter- 
mining the precise location of the TM pixel on the ground, 
and the difficulty in quantifying the amount of the tree spe- 
cies present. Small errors in pixel position estimation signifi- 
cantly effect the assessment. Therefore, only the presence or 
absence of cypress or tupelo in a pixel was used in the error 
evaluation. All material-of-interest fraction information was 
i g n ~ r e d . ~  

For both the AASAP and minimum-distance classification 
results, random sampling techniques were used to select 200 
locations that were field verified for the occurrence of cy- 
press trees and 200 locations that were field verified for the 
occurrence of tupelo trees. For both cypress and tupelo, 100 
pixel locations were field verified to measure errors of com- 
mission (approximately 25 locations in each of the four im- 
age areas), and 100 pixel locations were field verified for 
errors of omission (approximately 25 locations in each of the 
four image areas). 

To measure errors of commission for cypress, 100 of the 
pixels classified as containing cypress were selected using a 
random cluster sampling technique. Five pixels classified as 
containing cypress were randomly selected in each of the 
four image areas. The four nearest pixels to each randomly 
selected pixel, that were classified as containing cypress, 
were also selected. Random cluster sampling was employed 
to reduce the areas of field verification to localized clusters. 
This same method was used to measure errors of commis- 
sion for tupelo. 

Field verification involved orientation with the TM grid 
overlaid on the 1:7,000-scale CIR aerial photographs and the 
hand-held Global Positioning System receiver. Due to a large 
abundance of natural ground reference features that were vis- 
ible in the aerial photographs (for example, large tree 
crowns, canopy openings, and waterways), it was possible to 
identify the ground location of individual TM pixels with a 
reasonable level of certainty. If one or more cypress trees oc- 
curred within the estimated ground location of the TM pixel, 
it was recorded as a correctly classified cypress pixel. This 
method of determining the TM pixel ground locations was 
not precise enough, however, to permit the measurement of 
the amount of cypress or tupelo in each pixel. Additional de- 
tails about the accuracy assessment are found in Karaska et 
al. (1995). 

=Other government sponsored studies have quantified the AASAP pro- 
cedure's ability to correctly estimate subpixel proportions (fractions) 
of materials of interest. For example, in one study several thousand 
panels were deployed in a variety of settings (open grass, open 
woodland, fallow field, morning, midday, wet, dry, clear, partly 
cloudy). The panels ranged in size from 0.05 to 4.0 pixels. They 
were deployed in a uniform grid pattern and grouped according to 
size. This allowed the sizes of detected panels to be identified based 
on their positions within the detected grid. The panels were bright 
relative to the background, allowing pixel brightness to be used as a 
measure of the relative fractions of a panel that fell in neighboring 
pixels for those targets that overlapped pixel boundaries. The study 
revealed a strong correlation (r > 0.90) of measured material pixel 
fractions with known panel sizes. 

Results and Discussion 
Approximately 75 percent of each of the four study areas 
was vegetated, and cypress and tupelo trees occupied ap- 
proximately 20 to 30 percent of the vegetated regions. Sub- 
pixel classification results for tupelo wetland for one of the 
training areas are shown in Plate 1. The classified pixels are 
draped over a Landsat TM Band 4 image in various colors 
ranging from yellow through orange to green that represent 
the proportion (fraction) of tupelo found within each pixel 
(refer to inset table in Plate 1). For example, there were 365 
pixels within this subscene that contained >90 percent tu- 
pelo. The location of these pixels corresponded to the loca- 
tion of dense stands of tupelo observed in the aerial 
photographs. Pixels with a high concentration of tupelo ran 
throughout the center of the region in a well defined wetland 
area. Pixels classified as containing a small amount of tupelo 
(< 30 percent) typically occurred in  small isolated wetland 
areas. Although individual tupelo trees where often difficult 
to distinguish on the aerial photographs, the presence of 
some tupelo was identified in the immediate vicinity of these 
low fraction pixel locations. The reported fraction of tupelo 
and cypress in classified pixels was qualitatively compared 
to estimations of the amount of tupelo and cypress inter- 
preted from the aerial photograph. Although some uncer- 
taintv existed in the determination of the Dresence and 
amount of cypress and tupelo trees, and in the precise loca- 
tion of the classified pixel on the aerial photograph, there 
was good agreement. 

The error evaluation revealed that 95 of the 100 selected 
pixels classified as cypress contained cypress, and 93 of the 
100 selected pixels classified as tupelo contained tupelo. Cy- 
press thus had a 5 percent error of commission and tupelo 
had a 7 percent error of commission (Table 2). To evaluate 

Plate 2. @SAP and minlmum-dlstance classification re- 
sults for cypress in one trainlng area. Detections by 
AASAP only are in red. Detections by the minimum-dis- 
tance classifier only are in green. Detections made by 
both AASAP and the minimum-distance classifier are In yel- 
low. Much of the wetland area contained cypress mlxed 
with other tree species and was only classified by AASAP. 



TABLE 3. AASAP AND MINIMUM-DISTANCE CLASSIFICATION ACCURACY 
ASSESSMENT RESULTS 

Class AASAP Minimum Distance 

Tupelo Total 91 85 
Commission 931100 881100 
Omission 891100 811100 

Cypress Total 89 7 1 
Commission 951100 821100 
Omission 82/100 591100 

errors of omission, ten stands of cypress and ten stands of 
tupelo in each of the four study areas were identified using 
the CIR photography and field verification. Five of these 
stands in each study area were randomly selected and five 
pixels within these selected stands were selected using strati- 
fied random sampling. For cypress, 82 of the 100 pixels (25 
from each image area) known to contain cypress were suc- 
cessfully classified as cypress. For tupelo, 89 of the 100 
known tupelo pixels were classified as tupelo. Table 2 lists 
the total accuracy for cypress, 89 percent (177/200), and tu- 
pelo, 91 percent (182/200). 

Of the 182 pixels correctly classified as tupelo, all 182 
sites contained tupelo trees mixed with other tree species. At 
most of these sites, the pixel area was predominantly occu- 
pied by tupelo (greater than 50 percent), but at some sites tu- 
pelo trees occupied less than 50 percent of the pixel area. In 
approximately a dozen of these sites, only a few tupelo trees 
occurred, representing as little as 20 percent of a pixel area. 
In evaluating the classification accuracy of tupelo in each of 
the four study areas, it was observed that the accuracy in 
each area was not significantly different. The accuracy in one 
training area was slightly better than in the other three areas, 
but no area had a total accuracy lower than 84 percent. 

Based on this sample, it can be stated with 95 percent 
confidence that 93 percent a 1.2 percent of all pixels classi- 
fied as tupelo were correctly classified, and that 89 percent 
i. 1.2 percent of all areas containing tupelo were correctly 
classified. For cypress, also at the 95 percent confidence 
level, 95 percent _+ 1.2 percent of all pixels classified as cy- 
press were correct, and 82 percent, i. 1.3 percent of all areas 
containing cypress were correctly classified. 

Table 3 lists the accuracy assessment results of cypress 
and tupelo for the AASAP and the minimum-distance classifi- 
cation. The AASAP classification performed 6 percent better 
than the minimum-distance classifier on tupelo and 18 per- 
cent better on cypress. For Tupelo, both the AASAP and the 
minimum-distance classifier performed well, 91 percent and 
85 percent, respectively. The high minimum-distance tupelo 
classification results are due to several factors. Most impor- 
tantly, the tupelo trees in  this study area grew in clusters of 
several to many trees. Thus, most pixels containing tupelo 
contained a large amount of tupelo. The minimum-distance 
tupelo training set contained this high percentage tupelo 
mixture and thus did well in classifying most of the tupelo 
in the study area. Also important were the high quality in 
situ field data utilized for training in a study area that was 
well known. 

For Cypress, AASAP performed 18 percent better than 
the minimum-distance classifier (89 percent versus 7 1  per- 
cent total accuracy). Cypress trees in this study area did not 
grow in clusters but typically occurred as isolated trees. 
The crown of individual cypress trees was typically < 30 m 
in diameter and therefore occurred in mixed pixels. Al- 
though mixed pixels of cypress were used in the training 
set, the minimum-distance classifier did not detect 41 per- 
cent of the cypress (59 percent omission accuracy). It is sus- 

pected that the mixture of cypress and other tree species in 
the training set pixels represented the more common 
mixtures, but there were other mixtures of tupelo with 
other tree species that were not represented in the training 
set. To classify these missed occurrences of tupelo, addi- 
tional signatures would need to be developed. The AASAP 
signature detected more of the tupelo (82 percent omission 
accuracy) because its signature was of the pure tupelo, and 
it could detect subpixel occurrences of tupelo in pixels 
mixed with other materials. 

Plate 2 depicts the AASAP and minimum-distance classi- 
fication results of cypress for one of the 150- by 150-pixel 
training areas. A large wetland over 1 km in width runs 
north to south through this area. The yellow pixels are those 
classified by both processes. The green pixels were classified 
only by the minimum-distance classifier. Analysis of the aer- 
ial photographs revealed that a significant number of these 
locations (especially the isolated occurrences) probably did 
not contain cypress (18 percent of the minimum-distance 
classified pixels are errors of commission). The others repre- 
sent a condition of tupelo that was not classified by AASAP 
(presumably not represented in the training set). The red pix- 
els were pixels classified by AASAP and missed by the mini- 
mum-distance classifier, which had a 41 percent error of 
omission. Large areas of the wetland were detected only by 
AASAP. Aerial photography and field verification confirmed 
that almost all of these locations contained cypress mixed 
with varieties of other wetland hardwood tree species [AASAP 
cypress commission accuracy was 95 percent). 

Conclusions 
Spectral subpixel processing classified tupelo at 91 percent 
accuracy and cypress at 89 percent accuracy in Georgia and 
South Carolina wetlands. Extensive field investigation re- 
vealed that both tupelo and cypress trees were successfully 
classified when they occurred both as pure stands and as 
mixed stands. In an extensive comparison with traditional 
classifiers (ISODATA clustering, maximum likelihood, and 
minimum distance), the subpixel classifications of cypress 
and tupelo was significantly better. For cypress, AASAP per- 
formed 18 percent better and for tupelo 6 percent better than 
the best traditional classification results (minimum distance). 
Large areas of wetland, where cypress occurred heavily 
mixed with other tree species, were correctly classified by 
AASAP and not classified by the other classifiers. 

The subpixel process can detect spectrally unique mate- 
rials in most multispectral data sources. The process ad- 
dresses the mixed-pixel problem and enables the 
classification of materials smaller than the spatial resolution 
of the sensor by (1) extracting a pure subpixel signature of 
the material of interest (units of the pixel that are not the 
material of interest are removed from the signature), and (2) 
extracting and analyzing subpixel components of each pixel 
in an image and identifying those subpixel components that 
match the material-of-interest spectral signature. While the 
analyst could use a library of pre-existing spectral signatures, 
the algorithm presented here provides the analyst with a sig- 
nature development capability that produces signatures tai- 
lored to a specific material of interest in the study area with 
its unique environmental conditions. 

The improved accuracy of wetland species classification 
should allow Thematic Mapper and other multispectral data 
sources to more reliably support field operations in forested 
wetlands mapping. Although the satellite imagery will not 
replace field work or even the use of aerial photographs, it 
can potentially reduce the required area of coverage for the 
field work and photo interpretation efforts. The AASAP ap- 
proach to classifying materials in mixed pixels is new and 
unique. The ability to classify individual tree and plant spe- 
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cies and report the amount of the species in each pixel has
the potential to benefit many other diverse wetland, forestry,
agriculture, and ecological applications.
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