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Abstract 
When assessing map accuracy, confusion matrices are fre- 
quently statistically compared using kappa. While kappa al- 
lows individual matrix categories to be analyzed with respect 
to either omission or commission error rates, kappa is  not 
used to compare individual matrix categories with respect to 
both rates concurrently. When this concurrent comparison is  
desired, the ma  trices are typically normalized and then scru- 
tinized on a cell-by-cell basis by  inspection. While no para- 
metric test of significance exists for such a cell-by-cell exami- 
nation, sampling distributions for these main diagonal entries 
can be estimated by  repeated subsampling of the original 
sample data (i.e., bootstrapping), allowing inferences to be 
made about the population. In this research, the procedure 
for estimating the sampling distribution of normalized cell 
values is  described. Three methods for determining the stan- 
dard error of normalized cell value sampling distributions 
are also outlined. Using these sampling distributions and 
their attendant standard error, the statistical comparison of 
cell values from two normalized confusion matrices is illus- 
trated. One illustrated method requires a mild parametric 
assumption, whereas the other is  completely nonparametric. 
Nevertheless, the two distinct bootstrap methods produce 
nearly identical results. 

Introduction 
In remote sensing and geographic modeling, disagreement 
between nominal maps and reality is frequently tabulated 
and displayed in a confusion matrix. When multiple classifi- 
cation or modeling methods are used, the resulting confusion 
matrices are typically compared for significant differences. 
Because it is one of the few measures which can be tested 
for significance, Cohens kappa (K) (Cohen, 1960) has been 
the preferred statistic for this confusion matrix comparison. 

Recently, however, researchers have been urging caution 
in the indiscriminate use of K without regard to its proper 
interpretation (Ma and Redmond, 1995) or its correct formu- 
lation under stratified sampling schemes (Stehman, 1996). 
While K has been traditionally chosen over other alternatives 
because it is adjusted for agreement due to random chance 
alone, Foody (1992) has indicated that K is too pessimistic- 
it underestimates the proportion of agreement by overesti- 
mating the random chance component of the concordance. 

For detailed confusion matrix analysis, conditional 
kappa (K) can also be calculated against row or column mar- 
ginal totals for every matrix class, allowing the accuracy of 
individual categories to be quantified. K also allows catego- 
ries between two confusion matrices to be statisticallv com- 
pared with respect to either actual or predicted c1ass"mem- 
bership (Rosenfield and Fitzpatrick-Lins, 1986). While the K 

technique facilitates comparison of individual category error 
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rates with respect to either actual or predicted class member- 
ship, it cannot be applied with respect to both predicted and 
actual categories concurrently. In other words, when using K 

to discuss class-by-class accuracy, the practitioner must con- 
stantly specify whether the context is the predicted or actual 
class membership rate. 

Matrix normalization is another well established confu- 
sion matrix analysis procedure (Feinberg, 1970). In contrast 
to kappa-based methods, matrix normalization provides four 
principle advantages: 

For any class represented in the normalized matrix, its main 
diagonal entry provides a single summary measure of the 
class accuracy with respect to both the predicted and actual 
marginal totals. Unlike K, there is no need to refer to the ac- 
tual or predicted dimension. 
For any class in the normalized matrix, its main diagonal en- 
try takes direct account of both the errors of omission and 
commission for the class. This incorporation of the off-diago- 
nal cell values is a result of the iterative balancing process 
which creates the normalized matrix (Congalton et al., 1983). 
Given that the row and marginal totals of normalized confu- 
sion matrices sum to a constant, respective cell values in two 
confusion matrices can be compared directly by inspection. 
When comparing normalized matrices, any two cells in the 
matrices can be compared. In contrast, K is limited to the ex- 
amination of main diagonal cells only. 

Statistical significance has been the historical bane of nor- 
malized matrix analysis. Normalized cell values have no 
known parametric sampling distribution; thus, there is no 
parametric way to determine whether a cell value is signifi- 
cantly different from zero. Furthermore, when contrasting 
cell values in two normalized matrices, there is no paramet- 
ric method of determining whether apparent differences are 
statistically significant-the user is limited to comparison by 
visual inspection. 

Bootstrapping is a Monte Carlo method of estimating a 
statistic's sampling distribution when a parametric estimator 
is nonexistent. The bootstrapping process randomly resam- 
ples the original sample data many times. For each new sam- 
ple, the statistic of interest is calculated and recorded. The 
frequency distribution of the statistic produced from the rep- 
etitions is then used as an approximation of the statistic's 
sampling distribution. After its creation, estimates of stan- 
dard error (a,) and tests of significance can be derived from 
the frequency distribution using a variety of methods (Efron 
and Gong, 1983). 

Unless there is some reason for suspecting that the sam- 
pling distribution of a statistic is non-normal, there is little 
reason to determine its standard error by bootstrapping when 
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TABLE 1. THREE METHODS OF ESTIMATING THE STANDARD ERROR OF A STATISTIC Unless a complete census has been taken, the population dis- 
USING A BOOTSTRAPPED SAMPLING DISTRIBUTION. tribution is unknown. The second distribution of interest is 

the frequency distribution created by sampling the popula- 
tion. From the sample, the researcher traditionally estimates 
the population parameter by use of a sample statistic. The 
third distribution is often overlooked, but is implicit in every 
inferential test-the statistic sampling distribution. Like the 
population distribution, the sampling distribution is always 
unknown. For many statistics (e.g., arithmetic mean), theory 
provides an estimate of its shape. The parameters of the sam- 
pling distribution shape (e.g., mean, variance) are determined 
by theoretically based equations which relate the shape to 
sample characteristics. 

As described by Mooney and Duval (1993), the sampling 
distribution of any statistic (0 )  "can be thought of as the rel- 
ative frequency of all possible values of 8 calculated from a 
sample of [constant and predetermined] size drawn from a 
given population." As long as a random sample having ade- 
quate diversity and size is used, and the function relating the 
sample characteristics to the sampling distribution is unbi- 
ased, the parametric approach to estimating the sampling 
distribution can be effective. However, it is important to re- 
member that a distribution estimated using the parametric 
approach is only an approximation to the true, unknown dis- 
tribution (DiCiccio and Romano, 1989). 

a parametric formula is available. However, when the as- Bootstrapping as described by Efron and Gong (1983) is 
sumption of normality cannot be made, or when statistics an entirely different approach to estimating the sampling dis- 
such as normalized cell values have no parametric method to tribution for 0 .  Only possible since the advent of modern 
determine their standard error, bootstrapping ~rov ides  an al- computers, bootstrapping is simple in its general form: 
ternative approach (Efron and Tibshirani, 1993). (1) Randomly extract a sample of size n from the population 

using an appropriate sampling strategy. 
Problem (2) Extract b random samples from the original data sample. 
Assume that the main diagonal entries for category i in two Each sample should also be of size n. It is also critical that 
normalized confusion matrices (,N and ,N) are represented this sampling be done with replacement. The value of b 

by ,a, and ,ai with respective population parameters ,Ai and should be very large (b > ZOO). 

,A,. Can bootstrap methods be applied to the two confusion (3) Determine 8 for each of the b samples. Sort the set of 0, 
creating a distribution. This distribution is an estimate of 

matrices to estimate the ,A, and ,A, sampling distributions? If the sampling distribution for 8. 
so, can ,ai be evaluated against ,aj to determine any statisti- 
cally significant difference in their magnitude? In this paper, Once the sampling distribution for 8 is created, it can be 
we will demonstrate that both are possible. used to make inferences about 0 's  corresponding population 

After some theoretical background is provided, we pre- parameter. The inferential approach chosen depends on re- 
sent two bootstrapped approaches to comparing ,a, and ,a,. searcher preference and analysis goals. In some instances, 
The first approach requires a mild parametric assumption, the distribution itself can be visually inspected to determine 
whereas the second requires none. We conclude the paper the significance of 8. Alternatively, the standard deviation of 
with a discussion of empty cells in the confusion matrix and the bootstrapped distribution can replace 8 ' s  parametric 
how to handle them in the bootstrapping process. standard error in traditional inferential tests (e.g., Z-test, t- 

Given the procedures and algorithms described in this test). Three methods to determine this standard error are out- 
paper, matrix normalization becomes a more powerful tech- lined in Table 1. 
nique than before. The usual advantages of comparing nor- One of the earliest conceptual discussions of bootstrapping 
malized matrices visually are retained, but now statistical can be found in Efron (1981). Bootstrapping has been used in a 
significance for the comparison can be cited as well. The variety of physical and social science disciplines. These are re- 
techniques described in this paper also provide a framework viewed by Mooney and Duval (1993) in a short, easily read vol- 
for a generalized approach to confusion matrix analysis. Al- ume with a valuable bibliography covering the subject through 
though this paper is limited to describing a method for com- 1992. Bootstrapping is not entirely new to geography. The use 
paring corresponding main diagonal cells in two matrices, of bootstrapping to validate climatic and other geophysical 
the identical procedure is used to contrast any  two cells in a models is described by Willmott et al. (1985). 
pair of confusion matrices. 

This paper emphasizes bootstrapping in relation to nor- Bootstrapping Normalized Matrices 
malized confusion matrices. While a lengthy discussion of AS discussed in Congalton et a]. (1983), ai can be used to 
the relative merits of K, K ,  and normalization is possible, this contrast class accuracy in two confusion matrices. The data 
paper will not provide that forum. TO further focus on meth- displayed in Table 2 appeared in Congalton and Mead 
odolog~,  no new data will be presented, and the two confu- (1983), and was chosen as fodder for this demonstration. Ta- 
sion matrices published by Congalton and Mead (1983) will ble 3 is the normalized version of Table 2. Table 4 is the 
be examined. normalized version of a second confusion matrix presented 

in the same paper. Consider a test for significant difference 
Theoretical Background which could be conducted on the oak category (a,&). As the 
For most descriptive statistical measures such as the arith- matrices show, ,a,,, = 0.376 and ,a,,, = 0.427. Is the appar- 
metic mean, there are three frequency distributions of inter- ent difference statistically significant, or just a result of ran- 
est to the researcher. The first is the population distribution. dom sampling? Representing the population parameters 
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TABLE 2. THE ORIGINAL CONFUSION MATRIX ADAPTED FROM CONGALTON A N D  

MEAD (1983). I N  THE MATRIX NORMALIZATION EXPERIMENTS, THE FOCUS IS ON 

THE OAK CATEGORY. 

Actual Class 
PredictedClass Pine Cedar Oak Cottonwood Total 

Pine 3 5 4 1 2  2 5 3 
Cedar 14 11 9 5 39 
Oak 11 3 38 1 2  64 
Cottonwood 1 0 4 2 7 

Total 61 18 63 2 1 

TABLE 3. NORMALIZED VERSION OF TABLE 2. ROWS AND COLUMNS MAY NO1 

SUM TO 1.0 DUE TO ROUNDING. 

Actual Class 

Predicted Class Pine Cedar Oak Cottonwood Total 

Pine 0.512 0.232 0.176 0.080 1.000 
Cedar 0.209 0.485 0.121 0.184 0.999 
Oak 0.142 0.150 0.376 0.331 0.999 
Cottonwood 0.137 0.133 0.326 0.404 1.000 

Total 1.000 1.000 0.999 0.999 

corresponding to ,a,,, and ,a,,, for the two matrices by ,A,,, 
and ,A,,,, the following test can be conducted: 

Level of measurement: Nominal frequencies, normalized 
Model: Random sampling, population characteristics un- 
known 
Null hypothesis: ,A,, = ,A,, 
Research hypothesis: ,A,, > ,A,,, 
Test statistic: Z-test 
Rejection region: Z,,, = -1.64 (one-tailed, ol = 0.05) 

The closed form formula for a two-sample Z-test is common 
knowledge. In the context of this problem, substitution pro- 
duces 

where ,6,, is the standard error associated with ,a,,, and 
,a,,, is the standard error associated with ,a,,,. The proper 
use of this formula depends on whether the sampling distri- 
butions of ,a,,, and ,a,,, are normal, and whether the stan- 
dard errors are correctly estimated. Neither of these precon- 
ditions can be satisfied using any known theoretical assump- 
tion or closed formula. However, the following bootstrap 
process can be used to estimate ,6,,, and ,6,,, as well as to 
verify the requisite assumptions. These steps must be per- 
formed on both matrices independently: 

(1) Convert the original confusion matrix into a list of records 
where the number of records is equal to n. The number of 
list records for each cell in the matrix is equal to its original 
cell count c,,. Each record contains a row and column indi- 
cator showing the matrix cell which owns it. 

(2) Extract a random sample (with replacement) of size n from 
the list. Using the row and column indicators, constitute a 
new matrix. 

(3) Adjust the matrix for any empty cells. This adjustment is 
discussed in the next section. 

(4) Normalize the matrix using the method established by Fein- 
berg (1970). 

(5) Extract a,,, from the normalized matrix. Record the value. 
(6) Repeat steps 2 through 5 1000 times (b  = 1000). 
(7) Sort the recorded a,,, values and display them as a histo- 

gram. This is the estimate of the sampling distribution for 
the statistic. 

(8) Use a Kolmogorov-Smirnov (K-S) test to verify that the sam- 
pling distribution is normal. 

(9) Estimate 8,,, using the three methods listed in Table 1. 
Should the K-S test indicate that the sampling distribution 
is not normal, Method 1 should probably be avoided. 

Once the 6, estimates for the oak category have been es- 
timated, the Z-test can be applied. However, because there 
are three estimates for 6,,, the choice of one in preference to 
the other alternatives requires consideration. Mooney and 
Duval (1993) describe the relative merits of each approach. 
Unless there is a reason for preferring one estimate of 6,, 
over the other two, the median 6, of the three might be used. 
We usually conduct the Z-test using all nine possible pairs of 
6, from the two matrices. If the nine Z-tests agree, then the  
null hypothesis can either be rejected or accepted1 without 
worry. 

Figure 1 shows the a,, sampling distributions produced 
from 1000 bootstrap iterations for the two matrices. The K-S 
test tends to support the normality hypothesis2 for both 
curves (In both cases, d = 0.032, p = 0.27, where d and p . 
denote, respectively, the K-S statistic and its significance). 
The results of the nine possible Z-tests are summarized i n  
Table 5.  Each of the Z values and their associated probabili- 
ties (p) are shown. The table also shows the standard error 
produced for each method outlined in Table 1. Although the 
different combinations of variance estimates produce differ- 
ent Z-statistics, the null hypothesis is never rejected, i.e., the 
Z-statistic never approaches the boundary of the rejection re- 
gion. All the Z-statistics are within 6.6 percent of one an- 
other. From these results, it follows that the oak category of 
the second matrix is not classified significantly better than 
the oak category of the first matrix. The apparent difference 
between ,a,, and ,a,,, can be attributed to random sampling. 
Unlike K, there is no need to conditionally reference either 
the a,,, statistics or the Z-test against predicted or actual col- 
umn totals. The normalizing process accounts for both. 

The use of Equation 1 in  the test above required the mi- 
nor parametric assumption that the two sampling distribu- 
tions be normally distributed. The K-S test suggested the 
assumption was met. However, on occasions when the devia- 
tion from normality is severe or the three different estimates 
of standard error disagree, a completely nonparametric alter- 
native method should be adopted. Again, using the oak cate- 

'In statistical parlance, the phrase "not rejected" is technically more 
precise. In this paper, the term "accepted" is used as a synonym to 
avoid the awkward double negative. 

2When verifying the assumption of normality prior to conducting a 
parametric test, typical significance levels such as 0.1 and 0.05 used 
to reject the null hypothesis (of normality) may be too generous. In 
this research, we chose to reject the null hypothesis if the p value 
associated with the K-S test was 0.25 or smaller (closer to zero). In 
our daily practice, if the null is rejected, we employ one of the non- 
parametric methods for estimating standard error. 

TABLE 4. NORMALIZED VERSION OF A SECOND CONFUSION MATRIX. THE ORIGINAL 
CONFUSION MATRIX APPEARED IN CONGALTON AND MEAD (1983). ROWS AND 

COLUMNS MAY NOT SUM TO 1.0 DUE TO ROUNDING. 

Actual Class 

Predicted Class Pine Cedar Oak Cottonwood Total 

Pine 0.397 0.295 0.127 0.182 1.001 
Cedar 0.226 0.370 0.150 0.254 1.000 
Oak 0.061 0.171 0.427 0.341 1.000 
Cottonwood 0.317 0.164 0.297 0.223 1.001 

Total 1.001 1.000 1.001 1.000 
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gory from the two original confusion matrices as an example, TABLE 5. A COMPARISON OF THE Z-TEST RESULTS USING DIFFERENT STANDARD 

the test can be generalized using the following approach: ERROR ESTIMATES. REGARDLESS OF THE METHOD USED TO ESTIMATE STANDARD 
ERROR, THE p VALUE REMAINS RELATIVELY UNAFFECTED. 

Level of measurement: Nominal frequencies, normalized 
Model: Random sampling, population characteristics un- Matrix 1 (Table 3.) 
known Method 1. Method 2. Method 3. 
Null hypothesis: ,A,, = ,A,, 

Matrix 2 ,a,,, = 0.376 ,a,, = 0.376 ,a,,, = 0.376 Research hypothesis: ,A,,, > ,A,, 
Test statistic: Manual inspection of the sampling distribution 

(Table 4) ,6,, = 0.00511 ,6,, = 0.00473 ,6,,, = 0.00444 

of d,., created in 1000 bootstrap iterations (b = 1000). The ~ ~ t h ~ d  1. Z = 0.509 Z = 0.519 Z = 0.527 
statistic ,a,, = 0.427 p = 0.305 p = 0.302 p = 0.299 

(21 
,6,,, = 0.00491 

d2.l = ZOO& - 1ao* 
Method 2. Z = 0.514 Z = 0.524 Z = 0.532 

Rejection region: one-tailed, a = 0.05 ,a,, = 0.427 p = 0.304 p = 0.300 p = 0.297 

The bootstrap procedure is slightly more complicated than z6ouk = 0.00475 

the previous example: Method 3. Z = 0.474 Z = 0.482 Z = 0.488 

(1) Convert the first original confusion matrix into a list of ,a,, = 0.427 p = 0.318 p = 0.315 p = 0.313 

records where the number of records is equal to n, i.e., the = 0.00649 

total of all the cell values of the confusion matrix. The 
number of list records for each cell in the matrix is equal 
to its original cell count c,. As before, each record contains is accepted (t = 315, ba = 50, = 0.315). ~h~ probability 
a row and column indicator showing the matrix cell it cor- 
responds to. 

from this experiment also agrees very favorably with the 

(21 Extract a random sample of size from the first list with probability values determined with the Z-test (Table 5) 
replacement. Using the row and column indicators, consti- (0.297 P 5 0.318). 
tute a new matrix. Adjust the matrix for any empty cells 
(see the next section). Empty Confusion Matrix Cells 

(3) Normalize the matrix created from the first list. Contrary to popular belief, matrix normalization is not a 
(4) ~ x t r a c t  a,,, from the normalized matrix. Record the value. completely objective procedure. Empty cells in the confusion 
(5) Repeat steps 2 through 4 1000 times (b = 1000). matrix are usually assigned some arbitrary value k by the re- 
(6) Repeat step 1 for the second matrix. 
(7) Repeat steps thmugh times for the second matrix, ex- searcher in order for matrix normalization to converge. The 

tracting and recording a,,, for each of the b trials. cell values (a,) produced in matrix normalization are par- 
(8) For each of the b trials performed, calculate d,., and record tially dependent on the k chosen (0.5 and 1.0 are popular). 

it. Another selection heuristic is k = l / r ,  where r represents the 
(9) Sort the recorded d,, values and display them as a histo- number of categories displayed in the matrix. In the oak ex- 

gram. This is the estimate of the sampling distribution for ample described earlier, this value would be 0.25. 
d~.,. As described by Fienberg and Holland (1970) and re- 

(10) Count the number of trials where d,., < 0. Designate this viewed recently by Zhuang et al. (1995), zero cells in a con- 
frequency as .$. tingency table can be either fixed or random. Fixed zeros 

(11) Reject the null hypothesis if .$ is less than ba. indicate natural impossibilities whereas random zeros result 
Figure 2 shows the distribution of d,., produced from from small or inadequate sample sizes. The empty cells in 

following the eleven steps described above. Inspecting the confusion matrices qualify as random zeros. Fienberg and 
tail of the histogram divulges that 315 of the 1000 d,., values Holland (1970) recommend three procedures suitable for ad- 
are less than or equal to zero. As before, the null hypothesis justing a confusion matrix with empty cells. The interested 

108 
rza0g 0.427 

6 
8 

q14 . I8  .22 .26 .30 .35 .38 .42 .47 .51 .55 .59 .63 .67 .71 .75 
soak 

Figure 1. The estimated A,,, sampling distributions produced from 1000 bootstrap iterations ( b  = 1000) 
for the two normalized matrices. A K-S test suggests that both curves are normal. 
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315 bootstrapped iterations 
I? with d7-, less than zero. 

4-1 
Figure 2. The distribution of 4,. Inspection of the histogram tail divulges that 315 of the 1000 

values are less than or equal to zero. Given the statistical criterion, the null hypothesis is 
not rejected (6 = 315, bol = 50, p = 0.315). 

reader is referred to that article for the theoretical justifica- 
tion and comparison of the three methods. The method used 
by Zhuang et al. (1995) is described by Fienberg and Holland 
(1970) as the "shrink the matrix to its independent projec- 
tion" approach. This was the method used to adjust empty 
confusion matrix cells in this research. It can be described in 
the following algorithmic form: 

(1) Designate the original confusion matrix as M with cells m,, 
where i and j are used to index rows and columns, respec- 
tively. 

(2) Create a new matrix E with cells e,]. The value for any cell 
e ,  can be determined by 

where m+, is the marginal total for column j, and m,, is the 
marginal total for row i. Matrix E contains the expected cell 
counts for the original confusion matrix under the assump- 
tion of independence. 

(3) Determine the number of pseudo-counts v to be distributed 
among the cells in  the expected confusion matrix E by us- 
ing the formula 

where r is the rank of the confusion matrix. 
(4) Designate a pseudo-count matrix P with cell values p,]. Allo- 

cate the v pseudo-counts to matrix P using the rule 

(5) Add P to M on a cell-wise basis. After the addition is com- 
plete, multiply every cell in  M by the ratio n -; ( n  + v) to 
preserve the original table total of n .  

Conclusions 
Historically, K and K have been the statistics of choice when 
comparing two confusion matrices for significant differences. 
K is appropriate when comparing two complete tables, and K 

is useful for comparing categories with respect to row or col- 
umn marginal totals. In contrast, matrix normalization has 
been recommended when matrix cell values in two tables 
need to be compared directly. However, unlike K, no theoret- 
ical process for comparing normalized cell values (a,) for sig- 
nificant differences has existed. Bootstrapping provides a 
method of assessing the statistical significance of these nor- 
malized cells. 

In this research, we demonstrated three methods for cal- 
culating the standard error of a,. We also presented two 
methods of comparing normalized matrix cells directly for 
statistical significance. One method required the assumption 
that the sampling distribution be normal. The second method 
required no such assumption. 

Although this demonstration has been limited to com- 
paring values in the main diagonal of confusion matrices, 
any other pairwise comparison between cells in two matrices 
can be conducted using the same bootstrapping method. In 
this paper, several alternative questions regarding the two 
test matrices could have been addressed. For example, is the 
error commission rate of the oak-cedar category of the first 
matrix equal to the error omission rate for the cedar-oak cat- 
egory of the second matrix? 

This discussion has also been limited to bootstrapping 
a,. Other confusion matrix heuristics seldom reported in the 
literature can also be assessed for significance using boot- 
strapping methods. These include the method of Turk(1979), 
Hellden(1980), and Short(1982). 
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Washington, D.C. 

Mark your calendar NOW to attend the second specialty conference on 
Land Satellite lnformation in the Next Decade II: Sources & Applications. 
Based on the response to our highly successful Land Satellite Information 
conference in 1995, this conference will bring the user community up to 
date on the changes in the satellite providers' plans in the last two years, 
and will provide detailed discussions on the expansion in applications 
that the new satellites will make possible. This conference is co- 
sponsored by the American Society for Photogrammetry and Remote 
Sensing (ASPRS), the North American Remote Sensing Industries 
Association (NARSIA), the Landsat Management Team (NASA, NOAA, and 
USGS), and several other Federal agencies. 

The three-day conference is structured to provide two non-competing 
plenary sessions-one by the satellite data providers (U.S. and foreign, 
government and commercial) who will present their systems capabilities, 
their targeted markets and data products, and how the products will be 
available to customers; and one by the value-added and information 
providing firms who will present their product plans with emphasis on 
their data integration capabilities. There will be seven technical sessions 
offering in-depth coverage of the application of the new data in the 
following areas: crops and forestry, mineral and petroleum, national 
security, mapping, science, natural hazards, and environmental 
monitoring. There will be a wrap-up session giving a summary of all three 
days, plus users response. 

In addition, state-of-the-art workshops will provide opportunities for 
hands-on instruction and the exhibition will complete your exposure to the 
latest technological developments in the industry. 

For more information, contact ASPRS: 
301-493-0290; fax 301-493-0208; 

June 1997 PE&RS 


