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Abstract 
Small strips or patches of woody vegetation, typical land- 
scape elements in many farming areas, are frequently not de- 
tected by standard computer-assisted classification of digital 
satellite imagery because such landscape elements are 
smaller than the pixel size and are mixed with other classes. 
This study essentially compares two artificial intelligence ap- 
proaches-machine-vision and neural-network methods-de- 
veloped to improve classification accuracy for this mixed 
pixel problem. Simulated multispectral and panchromatic 
SPOT HRV imagery of lowland Britain was used to test both 
methods. Compared to standard supervised multispectral 
classification, both methods yield significant improvements 
in detecting subpixel woody vegetation. In general, the ma- 
chine-vision approach outperformed the neural-network ap- 
proach. However, because each method generated different 
types of misclassifications, a classification map representing 
only the woody vegetation found by both methods provided 
the results with the least amount of overall error. 

Introduction 
Hedgerows and other woodland fragments are familiar ele- 
ments in agricultural landscapes in Europe and the eastern 
part of North America. Such woody elements may be forest 
remnants or planted treerows; they may grow spontaneously 
or be intensely managed. In any case, in many agricultural 
settings such woody vegetation constitutes the primary wild- 
life nesting and feeding habitat. The distributions of birds 
and mammals are related to the shape, size, and spatial ar- 
rangement of these woody elements (Baudry, 1984; Forman 
and Godron, 1986). Monitoring these elements and quantify- 
ing changes are necessary for effective land-use planning and 
wildlife habitat management. 

Small strips or patches of woody vegetation are usually 
subpixel targets, landscape elements smaller than the pixel 
size, in digital satellite imagery. Such small woody elements 
are often not detected by standard multispectral classification 
because the spectral values of mixed pixels containing these 
woody elements frequently do not match the spectral values 
of woody vegetation. Because standard multispectral classifi- 
ers operate on single pixels, they ignore spatial information 
in the data. Mixed pixels and indeed all pixels are treated as 
pure picture elements, which repeatedly results in mixed 
pixels being assigned to constituent or extraneous land-cover 
classes. 

Figure 1 illustrates this problem for a two-band case. 
Figure l(a) is a map of ground cover showing the locations 
of four mixed pixels, labeled A, B, C, and D. Each of these 
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pixels contains two or three land-cover classes. Figure l(b) 
represents a hypothetical two-dimensional feature space, cre- 
ated by plotting near-infrared digital numbers (DNS) against 
the corresponding red DNs. The five ellipses in Figure l(b) 
are training set clusters, four representing the land-cover 
classes in Figure l(a) and one representing an extraneous 
class, Crop 3. The four mixed pixels in Figure l(a) are also 
plotted in Figure l(b). Although the mixed pixels do not fall 
in any of their constituent training sets, a Euclidean nearest- 
neighbor classifier would place pixel A in one of its constitu- 
ent classes, Fallow Land, and pixel D in one of its constitu- 
ent classes, Crop 2. Pixel C has the same spectral response as 
Crop 3, the extraneous class. All standard multispectral clas- 
sification techniques, from the simple box classifier to the 
more sophisticated maximum-likelihood classifier, would 
place pixel C in Crop 3. None of the mixed pixels is suffi- 
ciently close to the Various Trees cluster to be placed in this 
class. Different mixtures of classes produce mixed pixels 
scattered throughout the feature space. The same lack of sep- 
aration occurs in the three-dimensional imagery used in this 
study. 

An automated method for detecting subpixel woody veg- 
etation in digital satellite imagery could provide an efficient 
means for mapping and monitoring woody vegetation and for 
quantifying shape, size, and spatial information of use to 
ecologists and resource managers. In this paper, two artificial 
intelligence (AI) strategies were employed to detect subpixel 
woody vegetation: (1) a rule-based scheme based on a ma- 
chine-vision approach and (2) a neural network trained with 
a back-propagation learning algorithm. 

Background 
A rule-based classification scheme organizes a set of decision 
rules into one classification strategy. Such classification 
schemes operate as a series of separate decisions and gener- 
ate datasets at each stage in the process. In theory, any com- 
bination of image-processing techniques may be incorporated. 
Rule-based classification systems encompass a considerable 
variety of algorithms. Among the plethora of algorithms, sim- 
ple cases of rule-based schemes are called layered classifiers. 
A layered classifier may be simply the application of two 
multispectral classification methods in tandem. For example, 
Mather (1987) describes the use of the box classifier to iden- 
tify well-separated classes followed by the use of the maxi- 
mum-likelihood classifier to discriminate the more difficult 
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Figure 1. Four mixed pixels located on the ground and in 
feature space. (a) Map of ground cover showing locations 
of four mixed pixels, labeled A, 6, C,  and D. (b) Two-di- 
mensional feature space. The ellipses represent loca- 
tions of five training sets or classes. 

or overlapping classes. On the other hand, a rule-based sys- 
tem may be a large and complex set of programs functioning 
as an expert system that simulates the higher-order interpre- 
tative processes of human analysts. For example, Nagao and 
Matsuyama (1980) developed one of the first expert systems 
for analyzing digital imagery. Their rule-based system classi- 
fies land cover in high-resolution scan-digitized aerial photo- 
graphs. This system incorporates edge-preserving smoothing, 
segmentation, texture analysis, structural descriptions of pat- 
tern, multispectral classification, measures of elongatedness, 
size descriptions for objects, and decision-tree logic. Argialas 
(1990) provides a review of rule-based AI techniques for cap- 
turing and representing a photointerpreter's expertise in pat- 
tern recognition. When such knowledge representation imi- 
tates or simulates the logic of human perception, it is called 
machine or computer vision. 

A number of rule-based algorithms explicitly address 

mixed pixel problems. For example, Enslin et al. (1987) inte- 
grated Landsat Thematic Mapper (TM) imagery and ancillary 
data in a rule-based system to detect new oil and gas wells 
within forests. Key et al. (1990) developed a rule-based clas- 
sifier to map sea ice leads from a transparency of a Landsat 
MSS Band 4 (near-infrared) image, scan-digitized to a pixel 
size of 200 m. 

Training a neural network is essentially an opposite en- 
deavor from devising a rule-based classification scheme. 
Back-propagation neural networks are designed to function 
as general pattern-recognition algorithms. Such algorithms 
perform a specific task only after training has been success- 
ful. Training a back-propagation neural network does not re- 
quire a priori knowledge of the mathematical relationships 
that constitute a rule-based classification system. 

Since the publication of Rumelhart and McClelland 
(1986), there has been a renaissance of interest in using neu- 
ral networks, particularly back-propagation neural networks, 
for image classification. A back-propagation neural network 
is particularly suitable for image classification because it 
supports supervised training of preprocessed multivariate 
data. Some of the successful back-propagation neural net- 
work applications include the classification of Landsat MSS 
imagery (McClellan et al., 1989; Benediktsson et al., 1990), 
of Landsat TM imagery (Howald, 1989; Hepner et al., 1990; 
Heermann and Khazenie, 1992), and of SPOT HRV imagery 
(Kanellopoulos et al., 1992; Dreyer, 1993). 

Only a few researchers have investigated using neural 
networks as tools for addressing mixed pixel problems. For 
example, back-propagation neural networks have been used 
to locate linear features. Ryan et al. (1991) successfully de- 
lineated shorelines in high-resolution scan-digitized aerial 
photography using a combination of neural-network and tra- 
ditional image-processing procedures. Penn et al. (1993) at- 
tempted to detect geologic edges and linear features, like 
faults and lineaments, in TM data. They concluded that neu- 
ral networks are of only limited use for distinguishing linear 
features, but are capable of detecting edges at various scales. 
Boggess (1994) found that integrating contextual or spatial 
information into a back-propagation neural network was nec- 
essary to locate roads in TM imagery. 

Study Sites and Data 
The study area is located southeast of the city of Winchester, 
in southern England, in an area of mixed farmland and wood- 
land. This region, typical of agricultural lands in lowland 
Britain, contains numerous small woody elements and farm 
fields arranged in "patchwork-quilt" patterns. The majority 
of the woody vegetation is deciduous. Like surrounding areas 
of Hampshire, the study area is a chalkland in a gently roll- 
ing terrain. 

Simulated SPOT HRV imagery, flown on 6 July 1984, was 
available for the study. Panchromatic and multispectral 
bands were simulated using Daedalus DS-1268 scanner 
Bands 3 through 7 singly or in  combination. The wavelength 
intervals of the bands approximate those of real SPOT im- 
agery. The spatial resolutions-20 m in the three multispec- 
tral bands and 10 m in the panchromatic band-match those 
of real SPOT imagery at nadir viewing. 

Two types of preprocessing were necessary: geometric 
correction and radiometric adjustments. The panchromatic 
and multispectral data were not registered to one another be- 
cause they were collected during different flights. In order to 
fit the panchromatic data to the other bands precisely, it was 
necessary to divide the panchromatic data into smaller 
pieces. Due to the small sizes of the features of interest, the 
precision of the geometric correction was judged by overlay- 
ing the imagery on a monitor rather than by statistical meas- 
ures. The four subsites, called WS1 through WS4, resulting 
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Figure 2. Panchromatic Dand for subsite WS3. 

from this process represent areas containing only perfectly 
registered linear features. Resampling was calculated by the 
nearest-neighbor method. Because all of the simulated bands 
were collected as 8-bit data, reduction of the gray-tone range 
was needed to better approximate the SPOT panchromatic 
band. The 8-bit panchromatic data were changed to 6-bit 
data by simply combining every four DNs into one unit. 

The presence of woody vegetation within the sites was 
interpreted from 1:10,000-scale panchromatic aerial photog- 
raphy, flown on 28 July 1984. The locations of single trees, 
single rows of trees, and denser strips and patches of woody 
vegetation were mapped into digital images using the multi- 
spectral data as a template. Woody elements less than two 
metres in width were not included, and species of vegetation 
were not identified. Airphoto interpretations were partially 
checked by ground surveys. 

The four subsites constitute 19922 pixels. Only illustra- 
tions for subsites WS3 and WS4 are included in this paper. 
The panchromatic band for subsite WS3, the largest of the 
subsites, is reproduced in Figure 2. Ground data maps are 
depicted in Figure 3, in which black pixels represent woody 
vegetation. Subsite WS3 contains some of the smallest farm 
fields in the study, and subsite WS4 contains the most reflec- 
tive fallow fields. The linear woody elements in these sites 
range from hedges about one metre wide to belts several 
trees wide. Deciduous patches, scrubland, conifers, main 
roads, farm lanes, and buildings are also present. 

The Rule-Based Machine-Vision Approach 
During a previous study, a rule-based classification scheme 
was developed specifically to detect woody vegetation in 
simulated SPOT HRV imagery (Foschi, 1992). This scheme in- 
corporates two automated classification steps and two auto- 
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mated procedures for integrating image-derived masks into 
the decision process. The overall scheme, shown in Figure 4, 
involves several stages before the map of total woody vegeta- 
tion is generated in the final stage. 

The input datasets, which constitute the first stage in 
Figure 4, are the four simulated SPOT bands: green (G), red 
(R), near-infrared (NIR), and panchromatic (PAN). All subse- 
quent datasets are derived from these four. 

The first dataset in the second stage, Large Woody, is the 
map of woody vegetation produced by the first classification 
step. This step locates large patches of woodland by a stan- 
dard multispectral classifier using the three multispectral 
bands. The nearest-neighbor classifier-using Mahalanobis 
distances and nine training classes derived from 18 training 
sites-was used in this study, but another supervised classifi- 
cation method could be substituted. 

The PMASK dataset, the next dataset in the second stage, 
is generated from the panchromatic band and is the output 
map of a local-difference filter. This filter was designed spe- 
cifically to detect locally darker pixels and to create a mask 
that marks these pixels for further processing. Because small 
woody elements, including many hedges only one metre 
wide, are consistently detectable as darker shapes in the pan- 
chromatic band, the pixels marked in this mask represent 
potential woody vegetation. Relative darkness is calculated 
by comparing the central pixel of a 5 by 5 window with the 
means of four pairs of outer pixels. Because the PMASK data- 
set consists of 10-m pixels, it was necessary to combine the 
information in every 2 by 2 array to produce 20-m marked 
pixels compatible with the multispectral data. The 20-m ver- 
sion of PMASK is the MASKI dataset, which occurs in the 
third stage in Figure 4. Figure 5 depicts the MASK1 datasets 
for subsites WS3 and WS4. 

The last dataset in the second stage, the NDvI dataset, is 
a map of normalized difference vegetation indices, calculated 
from the red and near-infrared bands. This vegetation index 
is defined by the following formula: 

NIR - R 
NDVI=- 

NIR + R 

The MASK2 dataset in the third stage is derived from the 
NDVI dataset. This mask delineates both the darkest NDW val- 
ues, all values less than or equal to zero, and the locally 

WS 3 
Figure 3. Ground data maps for subsites WS3 and WS4. 
Black pixels represent woody vegetation greater than two 
metres in width. One smaller woody element, a 1-m wide 
hedgerow, occurs at location marked with an outlined H. 
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Figure 4. Overall scheme showing five stages of rule-based method. G,  R, NIR, and PAN are 
the four simulated SPOT bands, from which all other datasets are derived. 

darker values, output from the local-difference filter. The 
MASK2 dataset represents unvegetated pixels. 

The second classification step creates the Subpixel 
Woody map, the dataset in the fourth stage in Figure 4. This 
step uses the red and near-infrared bands and the MASKI and 
MASK2 datasets to detect subpixel woody vegetation. The 
classification method relies on an 11 by 1 moving window, 
passed horizontally and vertically over the two spectral 
bands, to collect training sets for adjacent land cover and to 
analyze mixture phenomena at the individual pixel level. 
Figure 6 illustrates two of the 14 moving-window configura- 
tions tested during the development of the method; the 11 by 
1 window yielded the best classification results. In each case, 
the window is partitioned into three functional regions: two 
training sets for the adjacent farm fields and a central region 
expected to contain mixed pixels. The analysis of mixture 
phenomena is based on the construction and division of two- 
dimensional feature spaces derived from window data. Fig- 
ure 7 shows the conceptual divisions of a typical feature 
space. In this figure, the squares represent a woody vegeta- 
tion training set, which is also the deciduous woodland 
training set employed in the first classification step described 
above. The dels and deltas represent the training sets in a 
particular 13 by 3 window, the central pixel of which is 
identified by the line and sample numbers given, and the cir- 
cles represent potential mixed pixels from the central region 
of this window. The dashed line in Figure 7 is the prelimi- 

@ /. 
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WS 3 
Figure 5.  MASK^ datasets for subsites WS3 and WS4. 
Black pixels represent potential woody vegetation. 

nary division line that partitions the feature space into two 
classification zones, potentially woody and non-woody 
zones. The solid line is the final division line, which is the 
preliminary division line shifted three DN values closer to 
the woody vegetation training set to decrease the possibility 
of misclassification. When pixels from the central region of 
the window contain a small woody element, these pixels are 
expected to fall in the potentially woody zone, on the woody 
cluster side of the division line. The circles on the woody 
cluster side of the division line in Figure 7 are, in fact, pix- 
els containing trees. Identifying a potential mixed pixel by 
its spatial position and then locating it in  the woody zone is 
the basis for classifying it as subpixel woody vegetation. At 
each window position, the feature-space configuration and 
the location of the division line vary with the spectral loca- 
tions of the non-woody training sets. Using a computer to 
identify the feature-space configuration, to calculate the divi- 
sion line, and to discriminate mixed pixels expected to con- 
tain woody vegetation is essentially a machine-vision prob- 
lem. Two papers, by Foschi (1992) and Foschi (1994), relate 
further details of the method developed to allow a computer 
to "see" the lines and the relationships. 

The two masks are incorporated into this second classifi- 
cation step in order to locate pixels of interest and to de- 
crease noise. Data for a particblar window are accepted for 
analysis only when the central pixel of the window corre- 
sponds to a marked pixel in the MASK1 dataset, a pixel po- 
tentially containing woody vegetation. The MASK2 dataset is 
employed to locate mixed pixels containing non-woody sub- 
pixel targets, like buildings and roads. Pixels identified as 
unvegetated in  this mask are not classified as subpixel 
woody vegetation. 

In the fifth stage of Figure 4, the Total Woody dataset is 
created. Because the second classification step does not dis- 
tinguish large woody patches, the two classification steps are 
needed to map both large patches and subpixel fragments of 
woody vegetation. The resultant classification maps, the 
Large Woody and Subpixel Woody datasets, are added to- 
gether to yield the Total Woody dataset. Figure 8 shows the 
maps of total woody vegetation for subsites WS3 and WS4. 

The Neural-Network Approach 
In this study, a neural network was trained to detect sub- 
pixel woody vegetation. BrainMakerTM 2.5, software for IBM- 
compatible pcs, was used to simulate a feed-forward multi- 
layer perceptron trained with a back-propagation learning 
algorithm. 

The final version of the neural-network architecture, il- 
lustrated in Figure 9, consists of three layers: eight input var- 
iables or units, 18 hidden units, and one output variable or 
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Figure 6. Window and training set sizes 
for two moving-window configurations. 
The 11 by 1 window is used in the sec- 
ond classification step in the rule- 
based method. 

unit. The network is fully connected and contains one bias 
unit. The sigmoidal function, the most commonly used in 
back-propagation neural networks, is incorporated as the fir- 
ing function, and the default gain of 1.0 is used. 

The eight input variables include six datasets used in 
the machine-vision method: the simulated multispectral 
bands (G, R, and NIR), the NDVI values, and the two masks 
(MASKI and MASKZ). The panchromatic band was resized to 
match the 20-m pixel size by reading every 2 by 2 array in 
the panchromatic data and assigning the darkest value in the 
array to an output band. This process created the PANDK da- 
taset. The NIRlR band ratio was included as an input variable 
because its presence during the trial runs appeared useful. Its 
inclusion is also intuitively appealing because this variable 
gives a rough indication of position in the two-dimensional 
feature space, a characteristic that reflects some of the logic 
of the machine-vision approach. The NDvI values and the 
NIRIR ratios were calculated within BrainMakerTM in order 
to retain real values and the maximum number of decimal 
places. The output variable represents the presence or ab- 
sence of woody vegetation. 

Training Considerations 
The particular network reported upon here is the result of 
dozens of trial runs performed on various architectures. This 
network was judged to be the best by both training and test 
accuracy assessments and by visual inspection of the output 
classification maps. The numbers of input, hidden, and out- 
put units and the types of input and output variables were 
modified during these trials. Up to 15 raw and derived varia- 
bles were used as input variables. Trial architectures with 
and without spatial datasets-i.e., three texture bands gener- 
ated from the multispectral data and the two masks used in 
the machine-vision method-were tested. Because this ver- 
sion of BrainMakerTM does not support self-pruning, the ef- 
fective number of hidden units was determined from a series 
of trial runs in which only the number of hidden units was 
varied. Both one and four output variables were attempted. 
As mentioned above, the single output variable represented 
the presence or absence of woody vegetation. The four out- 
puts represented the coarse land-cover classes occurring in 
the study sites: woodland, dark cropland, bright cropland1 
pasture, and bare soil. Discriminating crop classes was not 
attempted. This list of variations in architecture is by no 
means exhaustive, and some avenues of investigation-for 
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example, the use of multiple output units and their potential 
for proportion estimation-need further study. 

In contrast to traditional practice, both "pure" and 
mixed pixels were selected to train the neural network. Only 
pure pixels were selected for training in the multispectral 
classification and the machine-vision methods. Training with 
one whole subsite and training with selected pixels were 
tested. The final network was trained with input and output 
variables for 1627 pixels: approximately 5 percent pure wood- 
land, 70 percent pure other land cover, 16 percent subpixel 
woody vegetation, and 9 percent other mixtures. Small strips 
of woody vegetation adjacent to the various other land cover 
and larger patches of woodland and of dark cropland were 
particularly well represented by these samples. 

The BrainMakerTM defaults for the training parameters 
were used: randomly initiated weights, a learning rate of 
one, a learning tolerance of 0.1, a testing tolerance of 0.4, 
and a momentum of 0.9 (California Scientific Software, 
1992). Regional, rather than training-set specific, minima and 
maxima were used to normalize the data. The number of it- 
erations for training, 142, corresponded to the point at which 
the highest percentage correct occurred during training. The 
highest percentage correct was approximately 83 percent. 
Any significantly longer training time decreased the percent- 
age correct; convergence never occurred. 

Three techniques have been suggested for increasing the 
generalizing ability of a network (Dayhoff, 1990; Lawrence, 
1993): (1) pruning the hidden units, (2) adding noise while 
training, and (3) changing the input variables. The goal in se- 
lecting various units is to find a network large enough to 
learn the task, but small enough to generalize (Hammer- 
strom, 1993). Because the version of BrainMakerTM used in 

1 0 0 ~ " " " " " ' " " l " . '  
6 o a o 1 0 0  1 2 0  1 4 0  1 6 0  

RED DN VALUES 

A Window Training Set Pixel 
v Window Training Set Pixel 
0 Potential Mixed Pixel 

Woody Vegetation Training Set Pixel 
- - - Preliminary Division Line 
- Final Division Line 

Figure 7. Conceptual divisions of a typical 
feature space, calculated by the second clas- 
sification step in the rule-based method. Left 
of the final division line is the potentially 
woody zone; right of this line is the non- 
woody zone. 



this study does not permit partially connecting layers or per- 
manently setting weights equal to zero, pruning hidden units 
was not possible. The mixed pixels that represent subpixel 
woody vegetation constitute a very noisy dataset; using noise 
with very noisy data is not recommended (Lawrence, 1993). 
Indeed, adding noise was found to be counter-productive 
and resulted in output maps showing virtually no woody 
vegetation. 

Modifying the input variables was productive. Trial runs 
contained as few as three and as many as 15 input variables. 
While not every possible combination was tried, the eight 
variables selected for the final network were repeatedly 
found to be useful in the trials. 

Results and Discussion 
The final network was used to classify subsites WS1 through 
WS4 and resulted in output maps representing the contin- 
uum from non-woody to woody as decimal values from 
0.0000 to 1.0000, respectively. These values, treated here as 
"probabilities," were converted to maps of woody vegetation 
by density slicing. Cut-off points at various probability levels 
were tried. Table 1 summarizes the accuracy assessment for 
woody vegetation in the output maps using various cut-off 
points. The output maps for the 0.85 probability level are 
shown in Figure 10. These maps were selected for compari- 
son because their errors of commission are closest to those 
errors produced by the machine-vision method. 

A summary of the accuracy assessment for all methods 
is given in Table 2. In all cases, the outer four rows and col- 
umns in the classification and ground data maps have been 
dropped from consideration because the window shape in 
the machine-vision method does not permit complete pro- 
cessing of these areas. The remaining 15642 pixels in sub- 
sites WS1 through WS4 have been tabulated. 

The overall percentages of error and accuracy, shown in 
Table 2, are not remarkably different for the various methods 
because the Winchester subsites are dominated by non-woody 
land cover. However, the classification of woody vegetation 
changes significantly. While the standard multispectral method 
correctly classified 24.1 percent of the woody vegetation, the 
machine-vision method found 65.1 percent and the neural- 
network method found 56.5 percent of this vegetation. Both 
AI methods produce maps with relatively large errors of com- 
mission. Generally, the machine-vision method outperforms 
the neural-network method because it detects more woody 
vegetation while it generates similar errors of commission. 

A number of the errors exhibited by the machine-vision 
method are due to registration problems and mapping anom- 
alies. For example, the machine-vision method tends to pro- 
duce linear woody elements wider or thinner than the hand- 
drawn elements on the ground data maps; these differences 
produce larger estimates of error. The detected hedgerow in 
subsite WS4 in Figure 8, corresponding to the woody ele- 
ment labeled H in Figure 3, is not present in the ground data 
map because it is less than two metres in width. Conse- 
quently, the pixels of the hedgerow are counted as errors of 
commission in the machine-vision method. The length of the 
11 by 1 moving window may also produce anomalous classi- 
fications. Negotiating small fields or linear landscape ele- 
ments intersecting at acute angles may cause omitted or 
irregularly shaped woody elements. 

On the other hand, the neural network, essentially a 
point operator, demonstrated greater difficulty locating 
woody vegetation without spatial data. The two masks, de- 
veloped to reduce noise and decrease processing time in the 
machine-vision method, are indispensable input variables to 
the neural network. Although adding and removing some 
variables made little difference, only architectures containing 
the two masks yielded any significant results. Architectures 

WS 3 
Figure 8. Total woody vegetation, mapped by the rule- 
based method, in subsites WS3 and WS4. Black pixels 
represent woody vegetation. 

that did not contain the two masks created maps with virtu- 
ally no woody vegetation. Omission of the masks from the 
machine-vision method does not reduce accuracy as conspic- 
uously. 

The two AI methods generate different types of misclas- 
sification. The machine-vision method confuses increased 
soil moisture andlor relief with woody vegetation and gener- 
ates speckled areas when more highly textured or highly pat- 
terned land cover is present. As a point operator, the neural 
network appears to draw shapes more accurately and is 
much less confused by highly textured and highly patterned 
areas. The neural network frequently confuses "dark red" 
cropland with woody vegetation. Dark red here refers to the 
color of the cropland in standard false-color IR composites. 
The linear elements in MASKI, depicted in Figure 5, that the 
neural network misclassifies as woody vegetation in Figure 
10 are the boundaries of red fields. As the probability level 
decreases in Table 1, the errors of commission increase, pre- 

IGI 

INPUT UNITS HIDDEN UNITS OUTPUT UNIT 

Figure 9. Neural-network architecture. The network is fully 
connected; but, for clarity, many of the connections have 
been omitted. 
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TABLE 1. SUMMARY OF ACCURACY ASSESSMENT FOR WOODY VEGETATION I N  THE 

CLASSIFICATION MAPS GENERATED BY THE NEURAL NETWORK. 

Probability 
level for Errors of 

density slicing omission 
Errors of Percent 

commission correct 

dominantly due to the addition of red cropland including 
pixels not marked in MASKI. 

Because these two AI approaches produced different 
types of misclassification, classification maps representing 
only the woody vegetation found by both methods were gen- 
erated and evaluated. The accuracy assessment for two sets 
of these maps is also summarized in Table 2. If reducing er- 
rors of commission is the primary criterion for assessment, 
this composite mapping provides the most satisfactory re- 
sults. 

Summarv and Conclusion 
A rule-dased machine-vision method was developed and a 
back-propagation neural-network method was employed to 
detect subpixel woody vegetation in simulated SPOT HRV im- 
agery of lowland Britain. These methods represent virtually 
opposite approaches to image classification. While rule-based 
methods are designed to perform a specific task, back-propa- 
gation neural networks are designed to function as general 
pattern-recognition algorithms. A neural network performs a 
specific task only after training has been successful. Training 
a - b a ~ k - ~ r o ~ a ~ a t i o n  neural network does not require a piori- 
knowledge of the mathematical relationships that constitute a 
rule-based classification system. 

The selection of training sets for the two methods also 
represents opposite approaches: pure samples are needed for 
the machine-vision method while both pure samples and 
mixtures are needed for the neural-network method. Because 
mixed pixels containing woody vegetation are scattered 

WS 3 
Figure 10. Woody vegetation, mapped by the neural net- 
work, in subsites WS3 and WS4. Black pixels mark proba- 
bility levels of 0.85 or higher. 
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Errors of Errors of Percent 
Method Class omission commission correct 

Mahalanobis 
distance 

rule-based 
machine-vision 

neural-network at 
0.85 probability 
level 
composite using 
0.85 probability 
level 
composite using 
0.80 probability 
level 

non-woody 
woody 
overall 
non-woody 
woody 
overall 
non-woody 
woody 
overall 
non-woody 
woody 
overall 
non-woody 
woody 
overall 

throughout feature space, aggregate statistics for these mixed 
pixels are roughly equivalent to statistics for the entire im- 
age. No traditional method can successfully utilize this infor- 
mation. The neural network, designed to discriminate com- 
plex patterns, was successfully trained only using mixtures. 

Strategies for improving classification accuracy for the 
two methods are also different. For the rule-based machine- 
vision method, code may be implemented to correct identi- 
fied problems. On the other hand, improving the output of 
the neural network is essentially a trial-and-error process. 
While input variables are somewhat correlated to the output 
variable, the relationships are nonlinear and complex. Pres- 
ently, there is little theory to guide training strategies for 
back-propagation neural networks. 

Both AI methods were tested using simulated multispec- 
tral and panchromatic SPOT HRV imagery for four subsites. 
The results suggest that both methods represent significant 
improvements in detecting subpixel woody vegetation when 
compared to standard supervised multispectral classification. 
Because the two approaches produced different types of mis- 
classification, maps representing only the woody vegetation 
detected by both methods contained the least amount of 
overall error. 
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