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Abstract 
Fuzzy classification, or pixel unmixing, is the estimation of 
the proportion of the cover types from the composite spec- 
trum of a mixed pixel. In this paper, we evaluate how the 
separation between class means, the covariance matrix of 
each class, and the relative location of the class means in 
the spectral space limit the fuzzy representation of mixtures. 
The influence of these factors is illustrated with a fuzzy clas- 
sification using a back-propaga tion artificial neural net. Ex- 
periments using simulated data indicate that a fuzzy classi- 
fication with an average error of less than 10 percent re- 
quires a Bhattacharyya Distance between classes of at  least 
9. The error in the fuzzy representation using a neural net 
also varies as the proportions of the classes changes, with a 
peak error when one class comprises approximately 0.20 to 
0.25 of the mixed pixel. Back-propagation neural networks 
are not necessarily good at spectral unmixing. The back- 
propagation neural network produces spectral-space parti- 
tions between the classes that are generally steep, and that 
are not necessarily midway between the classes. The parti- 
tions tend to be simple, and somewhat linear. In addition, 
the output on nodes does not have to sum to 1.0, which may 
result in situations where high values are predicted for two 
classes simultaneously. Two methods of improving neural 
network behavior for fuzzy classification include use of a 
compound linear-sigmoid activation function, and training 
using synthetic mixed pixels. 

Introduction 
Mixed pixels occur when the instantaneous field-of-view of a 
sensor falls on an area that includes more than one spectral 
cover type. Such pixels are a problem in classification be- 
cause the radiance recorded at the sensor is a composite of 
the individual classes. Changing the spatial resolution so that 
smaller objects can be discerned does not always mitigate 
this problem, as there are typically optimal scales of observa- 
tion (Woodcock and Strahler, 1987). Therefore, a finer spatial 
resolution may change the nature of the classes that are 
mixed, rather than reduce the problem of mixed pixels. 
Thus, for example, mixtures arise from different forest stands 
in low resolution imagery, from different trees in high reso- 
lution imagery, and from different leaves in extremely high 
resolution data. In many cases, mixing takes place at such a 
fine scale, such as the case with minerals in a rock, that this 
problem will probably never be eliminated. Finally, it is 
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worth considering that it may sometimes actually be desira- 
ble to produce a fuzzy classification. For example, to re- 
motely sense a forest community response to an environ- 
mental gradient, it may be necessary to quantify a subtle 
change in the ratio of certain species, rather than to map a 
change from one pure class to another (Warner et al., 1994). 

If a pixel has a spectral radiance that is intermediate be- 
tween two classification cover classes, one interpretation is 
that this is a mixed pixel. Both classes are assumed to be 
present in the pixel, and the pixel spectral radiance repre- 
sents the sum of the spectra of the individual classes, 
weighted by the proportion of each class in the instantane- 
ous field-of-view. (For a recent discussion of non-linear mix- 
ing of vegetation and soils, see Ray and Murray (1996).) An 
alternative interpretation, however, is that only one cover 
class is present. The fact that the cover class has a spectral 
reflectance intermediate between the two previously chosen 
classification classes may be a result of chance. Often, how- 
ever, the pixel cover class is itself transitional between the 
two previously chosen classes; for example, if two previously 
chosen classification classes are, respectively, Mature and 
Young Forest, an intermediate class might be Intermediate 
Age Forest. Intermediate classes can be described by a fuzzy 
membership function, which can also be used in a classifica- 
tion scheme. However, in this case there is no a priori rea- 
son that there will necessarily be a linear relationship be- 
tween the change in spectral reflectance and the change in 
the class itself. Therefore, in the rest of this paper we limit 
our discussion to spectral unmixing. 

Spectral unmixing has become particularly important 
with the advent of hyperspectral imaging because the tre- 
mendous number of bands facilitates the simultaneous map- 
ping of multiple classes (Fox et al., 1990; Boardman, 1994; 
Resmini et al., 1996). Drawing on a linear mixing assump- 
tion, models have been developed to identify component 
end-members in the spectral space (for example, Adams et 
al. (1989), Smith et al. (1990), and Foody and Cox (1994)). In 
a different approach, more traditional parametric classifica- 
tion methods have been adapted to relate classifier output to 
class proportion, rather than to probability (Wang, 1990; 
Foody et al., 1992; Maselli et al., 1994). Recently, it has been 
suggested that the output of artificial neural networks can be 
related to the mixtures present within a pixel (Civco and 
Wang, 1994; Foody, 1996). Artificial neural networks are dis- 
cussed in greater detail in the next section. 
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With such interest in pixel unmixing, it is important that 
the factors that limit the potential for fuzzy classification be 
understood. Clearly, the factors involved will be interrelated 
in a complex manner, and must include both the sensor and 
the scene. The sensor characteristics that are most important 
include the number, spectral width, and spectral region of 
the sensor bands; the sensor quantization, bias, and gain; and 
the sensor spatial resolution. The most important scene char- 
acteristics are the number of spectral classes in the scene, 
the covariance matrices of the classes, and the relative distri- 
bution of the classes in the spectral space, including both the 
relative separation and the relative spatial arrangement of the 
classes. 

In this paper we investigate how the spectral classes in 
the scene determine the potential for fuzzy classification. 
The role of sensor characteristics in fuzzy classification goes 
beyond the scope of this paper. We use simulated data to in- 
vestigate the basic principles, and then apply those princi- 
ples to real data. Although a back-propagation neural net- 
work is used to estimate the fuzzy membership function, 
many of the issues raised are of significance to pixel unmix- 
ing methods in general. 

Neural Networks 
Neural Networks and Image Classification 
Artificial neural networks (ANNS) - also known as connec- 
tionist models, parallel distributed processing models, or 
simply neural networks - developed out of investigations of 
human cognition, and the belief that they could be useful in 
understanding aspects of perception, learning, memory, and 
language. Neural networks are constructed as a set of nodes 
connected by weighted, directed edges. This structure is 
thought to be a mathematical analog of the interaction of the 
brain's neurons through a web of axons (Schalkoff, 1992). 

The most common network structure used for classifica- 
tion problems organizes nodes into several layers, in which 
each node in one layer is connected to every node in the 
succeeding layer, while nodes within a layer are not con- 
nected. These feed-forward networks usually consist of three 
or more layers. During operation, the data vector is presented 
to an input layer and then propagated through one or more 
hidden layers to an output layer. Each node in the hidden 
and output layers calculates a weighted sum of all its inputs 
and applies the result to an activation function to produce 
the node's output. Neural networks develop functional rela- 
tionships by adjusting the values of these weighted connec- 
tions between nodes, using an appropriate learning algo- 
rithm. The back-propagation learning algorithm, developed 
by Rumelhart et al. (1986), is commonly used with feed-for- 
ward networks. This algorithm incrementally reduces error 
between actual and desired outputs during iterative presenta- 
tions of a training set until a preset error threshold has been 
reached. At that point the network is considered ready to 
process real data. 

Neural networks form one branch of artificial intelli- 
gence research. However, unlike more common expert sys- 
tems, neural networks develop functional relationships 
between evidence and conclusions automatically from exam- 
ples, without the need for constructing an extensive and 
complex set of rules. One disadvantage with this "black box" 
approach is that it does not generally facilitate an under- 
standing of the relationship between the input data and out- 
put categories. Mapping the partition boundaries, a tech- 
nique employed in this paper, is one way of overcoming this 
limitation. 

Neural networks have been shown to compare favorably 
with more conventional classification methods for classifica- 

tion of remotely sensed data (Key et al., 1989; Decatur, 1989; 
Hepner et al., 1990; Benediktsson et al., 1990; Lee et al., 
1990; Heerman and Khazenie, 1992; Bischof et al., 1992). Be- 
cause the algorithm is non-parametric (Lippmann, 1987, 
Foody et al., 1995), neural nets are particularly useful for in- 
tegrating disparate data types (Key et al., 1989) and ancillary 
data, such as topographic information (Benediktsson et al., 
1990), measures of texture (Lee et al., 1990; Bischof et al., 
1992; Civco and Wang, 1994), and property ownership data 
(Zhuang et al., 1991). Neural networks also are able to "gen- 
eralize" inputs, producing correct outputs for new inputs 
that the neural network has not been trained to recognize 
(Rich and Knight, 1994). 

Artificial Neural Networks and Fuzzy Image Classifications 
Neural networks are commonly trained to produce a set of 
output values, usually in the range of [0,1], with a high value 
on the node corresponding to the desired class, and a low 
value for all others. The output of a neural network with suf- 
ficient hidden units has been found to approximate the a 
posteriori probabilities of the training classes, (Ruck et al., 
1990), and thus has greater similarities with statistical classi- 
fication techniques than is often assumed. The interpretation 
of neural network output, however, has usually conformed to 
the convention of a "hard" classification by assuming that 
only one actual cover class is possible for a particular pixel. 
Recently, an alternative approach has been suggested in 
which the continuous range in output values of neural net- 
works is interpreted as the fuzzy membership values (Bez- 
dek, 1993; Foody, 1996). In the following discussion we 
discuss the use of back-propagation neural networks and 
fuzzy classification, although it is important to recognize that 
there are other fuzzy neural network classifiers that do fuzzy 
classification efficiently (see, for example, Carpenter et al. 
(1992) and Kosko (1992)). 

In fuzzy classification approaches utilizing neural net- 
works, the difference between the two highest output values 
has been related to classification confidence (Bischoff et al., 
1992) and used as an indicator of the likelihood of a mixed 
pixel (Civco and Wang, 1994). Foody (1996) related the node 
output of a neural network classification to the proportion of 
each cover type present in mixed pixels. The partitions be- 
tween the pure classes were found to be rather steep, and 
thus unsuitable for fuzzy classification. However, these parti- 
tions were made more gradational by replacing the conven- 
tional sigmoid activation function used in training the neural 
network with a linear activation function for the final classi- 
fication. The fuzzy classification was applied to two case 
studies in which synthetic low-resolution mixed pixels were 
produced by combining adjacent pixels of high-resolution 
imagery. 

A recurrent problem in pixel unmixing methods is that 
in a group of mixed pixels there is variability contributed by 
both the normal variation in the pure spectral classes, as 
well as from the varying proportions of the mixed classes. As 
will be shown, the covariance matrix of the pure classes is 
therefore very important in limiting the potential accuracy of 
the estimation of class proportions because, as the variability 
of the pure classes increases, likewise the spectral variability 
of each specific mixture also becomes greater. 

Methods 
Fuuy Classification of Simulated Data 
A C program was used to develop simulated, bivariate, nor- 
mally distributed classes with user-specified class means, 
standard deviation, and sample size. Each class is assumed 
to represent a "pure" spectral class. Mixed pixels were pro- 
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Figure 1. Shape of the fuzzy partition produced by the 
neural network using a sigmoidal activation function. As- 
suming the linear mixing indicated by the dotted line, the 
curved shape of the partition causes over- and under-esti- 
mation of the proportions of the two classes occurring in 
simulated mixed pixels. 

duced by averaging varying proportions of randomly selected 
pixels from the pure classes. A simulated scene comprised 
1,000 pixels, with 100 in each of the two pure classes and 
eight mixtures of varying proportions. For each experiment, 
ten trials were carried out by repeating the exercise ten 
times. 

The neural network used in the classification was based 
on the back-propagation algorithm of Rumelhart et al. (1986), 
described in the previous section. The neural net consisted 
of two input nodes, four hidden nodes, and two output 
nodes. Each input was associated with a simulated spectral 
band, while each output node was associated with a cover 
class. The number of hidden nodes was determined empiri- 
cally by determining the minimum number of nodes for 
which the network produced repeatable and accurate classifi- 
cation. The neural network was trained to produce a scaled 
output of 1.0 at the node corresponding to the correct cover 
class, and a n  output of 0.0 for the other node, using a 5 per- 
cent random sample from each pure class. Various combina- 
tions of learning rates and momentum terms were tried 
during the experiments. It was found that increasing the 

1 learning rate improved training times until the network be- 
gan to oscillate, and failed to converge. Optimal learning 
rates were in the range of 0.2 to 0.3, and momentum terms 

1 varied between 0.6 and 0.9. Within those ranges, varying 
1 these terms did not appear to affect the final results. Because 

of the varying spectral separability of the training data, it 
was not practical to specify an absolute error level for train- 
ing to end. Instead, a threshold level of a 1 x change in 
error between iterations provided a more consistent point to 
exit training. 

One concern in neural network classification is over- 
training. This is where the neural network produces a parti- 
tion of the classification space that is so narrowly defined 
around the training pixels, that the partition becomes only 
valid for the specific pixels used in training, and, conse- 
quently, the neural network's ability to generalize is compro- 
mised. Where such a problem occurs, the solution is to halt 
the training early, once a good general partition has been 
learned. This research emphasizes the visualization of the 
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classification space, and, therefore, particularly facilitated 
our ability to check for this phenomenon. In general, over- 
training was not a problem in the classification of either the 
simulated data or the real data discussed in the next section. 

After training, the neural network classified the entire 
data set of both pure and mixed pixels. It was assumed that 
node outputs should correspond directly to the proportion of 
each class used to create the mixed pixel. Error was mea- 
sured as the average of the absolute values of the difference 
between actual class proportions (p,,,,,) and scaled neural 
network outputs (p,,,,,,,,) for both classes, over the n trials. 

Foody (1996) found that the standard sigmoid activation 
function provided a rather poor estimation of fuzzy member- 
ship. In our experiments, we mapped the partition of the 
spectral space (see Figure 1) and found a pattern very similar 
to the sigmoid activation function used in training the neural 
net. The sigmoid pattern results in errors concentrated on the 
shoulders of the curve, where one class dominates another. 
Errors are minimal for pure classes, or those that are mixed 
in equal proportions. This suggested the use of a compound 
linear-sigmoid function (Figure 2), which can be used for 
both training and classification. 

To facilitate the application of these experiments to real 
data, we need to express the separation between the classes 
in terms of a general separability index (Swain and Davis, 
1978; Richards, 1993). One index that takes into account 
both the distance between the means, and the covariance 
matrices of the classes, is the Bhattacharyya Distance (B,.): 
i.e., 

1 
det(5 (xi + xi)) 

1 1 
Bjj = 8 (PI - RP ( Pi + 

- 11,) + -Ln 
2 2 {det(&) det (Zj))l'Z 

where 

i and j are the classes, 
p, and pi are the mean vectors of classes i and j, 
8, and Z, are the covariance matrices for classes i and j, 
( )-I is the inverse of the matrix, 
det means determinant of the matrix, and 

denotes the transpose of the matrix. 

Simulated data with two classes were produced with 
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Figure 2. Activation functions. The sigmoid activation 
function is plotted as a solid line, and the linear sec- 
tion of the compound linear-sigmoid activation function 
is plotted as a dotted line. 



separations between the means of 120, 90, 60, 30, and 15 
and standard deviations of each class of 1, 2, 3, and 4, for a 
total of 20 test cases. These 20 test cases have Bhattacharyya 
Distance values that vary from 1800 to 1.8, with the larger 
number indicating the greatest separability. Ten repetitions, 
with entirely new data, were run for each test case to evalu- 
ate the variability of results. 

A simple linear unmixing model was used to benchmark 
the accuracy of the neural network classification. The unmix- 
ing model estimates class proportion by assuming that all 
variation between the class means is a consequence of mix- 
ing of pure classes equivalent to the class means. Thus, the 
model determines the proportion of each cover type by cal- 
culating for each pixel the Euclidean distance to the class 
means, and comparing that to the total distance between the 
means. The model has the obvious constraints that the pro- 
portions have to sum to 1.0, and that no single contribution 
can be less than 0.0 or greater than 1.0. Because the simu- 
lated data were created by assuming linear mixing in propor- 
tion to the area of the cover type in the mixed pixel, this 
unmixing model provides an estimate of the best possible ac- 
curacy obtainable. 

Real Data 
The simulated data were particularly useful for illustrating 
how the class spectral separability constrains the accuracy of 
the derived fuzzy classification. We used real data, consisting 
of SPOT HRV imagery of Morgantown, West Virginia (Figure 
3), to investigate how the distribution of classes in the spec- 
tral space influences fuzzy accuracy. The image is from 
scene KIJ 6161270, acquired on 16 August 1987. Four major 
cover types dominate the scene: (1) Urban areas, including 
buildings, roads, and the airport; (2) Water, primarily con- 
sisting of the Monongahela River; (3) Forest; and (4) Grass, 
including pasture and residential lawns. To facilitate visual 
representation of the neural network behavior in partitioning 
the spectral space, we only used two of the SPOT HRV bands, 
namely, bands 2 (0.61 to 0.68 pm) and 3 (0.79 to 0.89 pm). 
We recognize that incorporating the third SPOT HRV band 
might have improved our results, but the aim was to investi- 
gate fuzzy classification, not to investigate the potential of 
SPOT data. The SPOT HRV data were classified using the same 
neural network algorithm as that used for the simulated data. 
However, for this classification, there were two input nodes 
for the two SPOT HRV bands, ten hidden nodes, and four out- 
put nodes for the four cover classes. The increased number 
of hidden nodes was required for the real data compared to 
the simulated data, because of the increased number of clas- 
ses. The actual number chosen represented a compromise 
between providing enough input-output connections to asso- 
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Figure 4. Spectral distribution of training sam- 
ples for classifying the SPOT HRV image. 

ciate input and output patterns without significantly compro- 
mising processing time. The learning rates, momentum 
terms, and iterative error reduction threshold were the same 
as used in the experiments with simulated data. The com- 
pound activation function was used, because the experi- 
ments with simulated data indicated the superiority of that 
approach over a sigmoid activation function. 

The neural network was trained using two methods. In 
the first method, the original pure training pixels chosen 
from the scene (Figure 4) were used, and it was assumed that 
the neural network would automatically produce fuzzy out- 
puts for mixed pixels. The pure training pixels were chosen 
based on detailed ground knowledge of the area. They were 
selected from large homogeneous regions of a single cover 
type, so as to minimize the chance of a mixed pixel. The 
second training method used synthetic mixed pixels of vari- 
ous proportions of each cover class, created by applying a 
linear mixing model to the means of the pure classes. Thus, 
the synthetic mixed pixel model ignores within cIass vari- 
ability, because only the means of the classes are used. 
These synthetic mixed pixels were used to train the neural 
network to produce the fuzzy coefficients representing the 
known proportion of each class, rather than the usual [ o , ~ ]  
output discussed earlier. This approach therefore forces the 
neural network to partition the spectral space much as the 
linear unmixing model does. 

However, it is apparent from Figure 4 that, in this two- 
dimensional spectral space, the fuzzy relationship between 
the Urban and Forest classes is indeterminable. This is be- 
cause mixtures of those two classes will fall in the same 
spectral region as pure pixels of the Grass class. It was there- 
fore decided to form two three-class fuzzy training sets de- 
scribing fuzzy relationships between Water-Urban-Grass and 
Water-Grass-Forest, as is shown in Figure 5. 

Results 

Fuzzy Classification of the Simulated Data 
A suitable fuzzy partition of the spectral space requires that 
the partition be in the correct location, and have the appro- 
priate linear shape, as was illustrated in Figure 1. If the 
shape is inappropriate, error will not be constant as the pro- 
portions of the two mixed classes change. Figure 6 shows 
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that, for the fuzzy classification using the sigmoid activation 
function, error peaks where one of the classes comprises 0.20 
to 0.25 of the total mixture, giving a distinctive "m" shape to 
the curves. A comparison of this pattern to Figure 1 suggests 
that the neural network is generally placing the fuzzy bound- 
ary in the appropriate place within the spectral space, but 
that slope shape is not sufficiently linear. 

Another interesting aspect of the curves is that there is a 
slight tendency for an asymmetric distribution of error be- 
tween the two classes, especially for the smallest Bhattacha- 
ryya Distance values. This is not entirely surprising, because 
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Figure 6. Average error predicting class proportions us- 
ing a sigmoid activation function to classify simulated 
mixed pixels. 
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Figure 7. Average error predicting class proportions us- 
ing a compound linear-s~gmoid activation function to 
classify simulated mixed pixels. 

-- 

the algorithm is not constrained to produce a symmetric pat- 
tern, nor does the output on the nodes have to sum to 1.0. In 
this case, when the two classes have a large variance relative 
to the separation of the means (i.e., a low Bhattacharyya Dis- 
tance), the neural net is responding with a boundary that is 
no longer placed midway between the two classes. 

The classification using the compound linear-sigmoid 
function (Figure 7) produced a much lower overall error, and 
much flatter curves compared to the sigmoid activation func- 
tion. This suggests that the compound activation function 
more correctly approximates the desired pattern. However, 
the error is still not uniform across the mixtures, suggesting 
that further modification of the activation function may be 
required, particularly on the shoulders of the original sig- 
moid curve. There is, however, a contradiction in the at- 
tempt to reduce error for all proportions. This is because 
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Figure 5. Spectral distribution of class means 
(solid triangles) and synthetic mixed pixels 
(open triangles) used in the fuzzy training 
method. Each location is associated with fuzzy 
memberships for combinations of Grass, Forest, 
and Water and combinations of Grass, Water, 
and Urban. For example, the intermediate gray 
triangle represents a mixed pixel of the propor- 
tion Grass 0.7, Urban 0.2, and Water 0.1. 
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Figure 9. Relationship between overall error and Bhat- 
tacharyya Distance between classes. 

pure classes will be classified as a result of a mixture of 
cover classes. By comparison, the sigmoid partition assigns a 
greater region of the classification space around the spectral 
means to the pure classes, and not to mixtures. 

The linear unmixing model (Figure 8) has minimum er- 
ror for pixels that comprise only one class, or are dominated 
by one class. This is because the model only allows mixed 
class assignment for those pixels that fall between the class 
means. Furthermore, the constraint that one class many not 
comprise a proportion greater than 1.0, or less than 0.0, lim- 
its the total error possible for pixels that fall close to class 
means. The linear unmixing model produces a lower error 
on average for all Bhattacharyya Distances compared to the 
neural network, but the difference is greatest when the clas- 
ses are well separated. For example, when the Bhattacharyya 
Distance is 1800, the linear unmixing model produces almost 
negligible error, whereas the neural network error varies 
fiom less than 1 percent to greater than 4 percent. 

Figure 9 shows a plot of the average total error against 
the Bhattacharyya Distance for the experimental data for both 
the neural network fuzzy classification and the linear unmix- 
ing model. Regression analysis suggested that the average er- 
ror is inversely proportional to the square root of the 
Bhattacharyya Distance: i.e., 

% errorsigmaid function = 32.8 B;0.5 + 2.7 

inevitably, as the partition between the class means becomes % errorcompound activation function = 25.1 B;0'5 + l.8 
more linear, a greater proportion of the inherent variation of % errorlinear model = 24.4 B;0.5 
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Figure 10. Spectral-space partitions produced by the neural network trained using pixels that represent pure 
classes. 
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The rZ for these relationships was 0.98. These regression 
equations suggest that the advantage of using the compound 
function is less than 1.5 percent when the Bhattacharyya Dis- 
tance is greater than 120. However, for situations in which 
the classes are moderately to poorly separated, the com- 
pound activation function gives a much lower error, almost 
approaching that of the linear unmixing model. For example, 
producing a fuzzy relationship with no more than 10 percent 
average error requires a Bhattacharyya Distance of at least 20 
using the sigmoidal activation function, but only 9 for the 
compound linear-sigmoid function, and 6 for the linear un- 
mixing model. 

Real Data 
The SPOT I-IRv image of Morgantown is dominated by four 
classes, and fuzzy relationships between four classes cannot 
be represented in two-dimensional data. Indeed, for n fuzzy 
classes, one requires at a minimum n-1 bands and an opti- 
mal arrangement of the mean vectors in the spectral space 
such that there are no colinear arrangements of three or more 
spectral classes (Bateson and Curtiss, 1996). However, this 
geometric argument is a slight simplification because, as the 
number of bands increases, classes with the same mean vec- 
tor become increasingly separable, so long as the classes 
have different covariance matrices (Lee and Landgrebe, 
1993). This raises the possibility of fuzzy representation, 
even in the presence of colinear classes. 

An examination of the spectral distribution of the train- 
ing data for Morgantown (Figure 4) shows other complexities 
that arise due to the covariance between bands. Compared to 
the other classes, the Urban class has a large variance in 
each band, and a high degree of covariance. Furthermore, the 
Water class lies on the axis of elongation of the Urban clus- 
ter, whereas the Grass class lies along the shortest axis of the 
Urban cluster. Consequently, despite the fact that the means 
of the Grass and Water classes are approximately equidistant 
from the Urban class mean (Figure 5) and that the Water 
class has a small variance (Figure 4), the spectral separability 
of Urban from Water is likely to be much lower compared to 
that of Urban from Grass. This is confirmed by the value of 
the Bhattacharyya Distances of 4 and 1 2  between these re- 
spective pairs of classes. Therefore, it is essential to consider 
second-order statistics in evaluating class separability and, 
thus, the potential of fuzzy representation of mixed pixels. 

Figure 10 shows the spectral-space partitions produced 
by the neural network trained using the original pure classes. 
The images in Figure 10 were created by mapping the output 
on each of the four nodes for all possible input combina- 
tions. Dark tones are low values on that node, and light 
tones correspond to high values. Thus, for example, the map 
of the node output for Forest (upper left plot) shows that un- 
known pixels of very low Band 2 values, and moderate to 
high Band 3 values (i.e., falling in the bright triangle in the 
upper left corner) will be classified as Forest. 

The mapped output of the nodes demonstrates the abil- 
ity of a neural network to produce partitions of the spectral 
space that separate the training data. However, it is also clear 
that these partitions tend to be simple and relatively linear. 
Another interesting characteristic of the map of neural net- 
work node output is that the spectral space is almost com- 
pletely partitioned between the various nodes. Sometimes 
the partitions overlap (for example, between Grass and Ur- 
ban, and also between Urban and Water), but only a small 
part of the spectral space between the classes is left unas- 
signed. This is presumably one of the reasons why neural 
networks are regarded as good generalizers - the boundaries 
are not narrowly drawn around each class. 

Although the partitions separating the four classes might 
be suitable for indicating a condition of uncertainty (as sug- 
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Figure 11. Cross-sections of spectral-space partitions cre- 
ated by the neural network along prof~le lines drawn be- 
tween class means, after tra~ning using pixels that 
represent pure classes. 

- 

gested by Bischof et al. (1992) and Civco and Wang (1994)), 
they are less than optimal for producing useful fuzzy mem- 
berships. The intermediate gray areas in Figure 10 are the 
fuzzy partitions of the spectral space, and it is clear that 
these fuzzy boundaries are limited in extent, and generally 
rather too steep. 

The comparative relationship of node output along mix- 
ing lines is explored in Figure 11, which shows the cross- 
sectional shapes of the partitions obtained by sampling 
neural network outputs along profile lines drawn between 
class means. In each case, the Bhattacharyya distance be- 
tween class means is also indicated on the cross section. The 
Grass-Forest and Water-Urban partitions approach the gen- 
eral "X-shaped" form considered desirable for characterizing 
a two-class fuzzy relationship. Notice, however, that the gra- 
dients are both very steep due to the low Bhattacharyya Dis- 
tance between the class means. From the relationships 
between Bhattacharyya Distance- and average error estab- 
lished using the simulated data described in the previous 
section, the error in the fuzzy representation of Grass-Forest 
is likely to be at least 10 percent, compared to 14 percent for 
estimates of the mixtures of Urban and Water classes. 

The valley in the profile of Urban-Forest in Figure 11 is 
expected because of the presence of the Grass cluster in be- 
tween these two classes. However, for the two profiles £rom 
Water (Water-Forest and Water-Grass), the observed valley 
feature9 are apparently an artifact of the neural network algo- 
rithm. Note that the Bhattacharyya Distance between Water 
and Grass is the largest of any pairs of class means (B, = 43), 
with an expected error of only 6 percent. Therefore, afthough 
small divergence values indicate low potential for fuzzy esti- 
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Figure 12. Spectral-space partitions produced by the neural network using the synthetic mixed pixels. 

mates of class composition, large divergence values do not 
necessarily mean that a fuzzy classification is possible, or 
that the neural net will create an optimal partition between 
the classes. The complex Water-Forest profile is partly a 
function of the fact the profile between the class means ap- 
proximately follows the boundary of the Forest class, as well 
as the erratic nature of the boundary itself. Again, it is in- 
structive to note that the Bhattacharyya Distance of 25 for 
this pair of classes is comparatively large. 

To overcome these limitations of the neural-network par- 
tition of the spectral space, the neural network was then 
trained with synthetic mixed pixels as described in the 
Methods section. The mapped output of the nodes, shown in 
Figure 12, is much smoother than that of Figure 10, and the 
boundaries are optimally located, as required by the syn- 
thetic training data. Notice, however, that the problem of 
zones of multiple high output on nodes is still present: for 
example, Urban overlaps with both Grass and Water, and 
Water also overlaps with Forest. Generally, the profiles of the 
output of two nodes (Figure 13) now produce a more gentle 
and symmetric pattern for all class combinations, except, of 
course, for the Urban-Forest relationship, which is con- 
strained by the presence of the intermediate Grass cluster. 

There is an inevitable problem, however, with the fuzzy 
partition because of the limitations of the data distribution, 
which has already been raised in the section discussing the 
synthetic data. In a linear mixing model based on class 
means, all variance that lies between the class means is as- 
sumed to arise due to mixing. In comparing the fuzzy parti- 

tions in Figure 13 to the original training data of Figures 4 
and 5, it can be seen that many of the pure pixels will now 
incorrectly be mapped as mixed pixels. Only the Water class, 
with a very tight grouping of pixels, does not suffer much 
from this problem. 

Conclusions 
Any attempt to conduct a fuzzy classification should begin 
by evaluating the sensor and scene constraints that limit the 
possible fuzzy representation. In this paper, we have illus- 
trated how the separability and arrangement of those classes 
in the spectral space determine those limits. 

Error is also not necessarily uniform for different propor- 
tions of the classes within the mixed pixel change. In the 
case of the neural net fuzzy classification, the error was gen- 
erally greatest when one of the classes comprises 0.20 to 0.25 
of the proportion of the composite pixel, although the pat- 
tern tended to vary with class separability. 

The plot of overall error against the Bhattacharyya Dis- 
tance suggests that, to achieve error rates less than 10 per- 
cent, a Bhattacharyya Distance value of at least 9 is required. 
Unfortunately, however, applying this to real data is rather 
difficult, because separability measures can only be calcu- 
lated for two classes at a time. Consequently, as the number 
of classes that are simultaneously unmixed grows, the diffi- 
culty of evaluating the separability of all class combinations 
increases. 

For the SPOT HRV data of Morgantown, the large variance 
in the Urban class, and the position of the Water class along 

November 1997 PE&RS 



B,, = 12 

.---- Node I (Urban) 

Node 3 (Grass) 
- Node 2 (Forest) 

Node 4 (Water) 

Figure 13. Cross-sections of spectral-space partitions cre- 
ated by the neural network along profile lines drawn be- 
tween class means after training using synthetic mixed 
pixels. 

the axis of the maximum variance of the Urban class, limits 
the potential of a fuzzy Water-Urban classification compared 
to the potential of a fuzzy Urban-Grass classification. Thus, 
in determining the potential for fuzzy classification, the vari- 
ance, covariance, and relative positions of class means need 
to be considered. Even classes with high variance and a rela- 
tively small distance between the means may have a high 
potential for fuzzy classification as long as the classes are ap- 
propriately positioned in the spectral space, and there is a 
high correlation between the bands. 

The number of classes, and the arrangement of the class 
clusters in the spectral space, is also very important in deter- 
mining what classes can be unmixed. Because there were 
two more classes than the number of bands, it was not possi- 
ble to unmix all the classes simultaneously in the SPOT HRV 
data, and one fuzzy relationship (Forest-Urban) could not be 
represented. Note that this occurs despite the perfect separa- 
tion possible between all the training pixels, and the rela- 
tively high Bhattacharyya Distance value of 14. Thus, al- 
though small separabilities mean that fuzzy representation 
error is likely to be large, large separabilities do not necessar- 
ily mean that highly accurate unmixing is possible. In our 
example, we were able to evaluate the spectral distribution 
of classes because we limited the data to only two bands. 
With higher dimensional data, such as the seven bands of 
Landsat Thematic Mapper imagery, or the 224 bands of Air- 
borne VisibleIInfrared Imaging Spectrometer (AVIRIS) data, 
such a visual approach will be of much less value! There- 
fore, for high-dimensional data, it will be necessary to de- 
velop mathematical or visual tools that can rapidly screen all 
classes to see whether any one class can be produced with a 

linear mixing of any combination of the other classes (Bate- 
son and Curtiss, 1996). 

This study also illuminates the potential of neural net- 
works to act as fuzzy classifiers. A neural network tends to 
produce relatively simple partitions of the spectral space, 
with steep sides. Even if the classes are very well separated, 
with high Bhattacharyya Distance values, the partitions are 
not necessarily midway between the class means, nor are 
they necessarily symmetric. Although the neural net is 
trained to produce high values for only one node at a time, 
there is no constraint that it do this for other combinations 
of input values not used in the training. Thus, for example, 
in the Morgantown SPOT HRV data, the spectral partitions for 
the Grass and Urban classes overlap. 

Two methods to improve neural networks for fuzzy clas- 
sification include modification of the activation function and 
development of synthetic mixed pixels to train the classifier. 
A compound linear-sigmoid activation function allows the 
same activation function to be used both in training the net 
and in classifying the unknown data. This compound func- 
tion reduced the overall error, and tended to make the error 
more uniform betyeen various proportions of mixed classes. 
The compound activation function was most useful for clas- 
ses that are moderately to poorly separated. The use of syn- 
thetic mixed pixels in training the net tended to produce 
partitions very similar to that of the linear unmixing model, 
with linear slopes between the classes and with symmetric 
shapes. General application of the use of the synthetic mixed 
pixels for classification will, however, require that the user 
first check that all classes can be unmixed simultaneously. If 
the positions of the class clusters in the spectral space do not 
allow all classes to be unmixed simultaneously, the user will 
need to specify which combinations should be represented 
in the synthetic data. 
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