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Abstract 
We used near-infrared digital orthophotography and three 
collateral data sets to model ecological communities on 
Block Island, Rhode Island. Aerial photography of the island 
was taken on 19 May 1992 at a scale of 1:40,000. The pho- 
tography was scanned and processed to remove distortions 
from terrain, aircroft tilt, and optical aberration. The result- 
ing digital orthophotograph was comprised of three spectral 
bands representing the red, green, and blue colors of the 
scanned photography and had a pixel dimension of 1.27 m. 
Three textural variables were developed by calculating the 
standard deviation within a 10-m radius of every pixel for 
each of the three spectra1 bands in the image. The terrain 
model that was used to create the orthophoto was also used 
to derive slope and aspect for each pixel. Soil survey data 
were used to map the distribution of soil drainage classes to 
distinguish wetland from upland vegetation. We used linear 
discriminant analysis to develop a model to distinguish 11 
vegetation and cover classes on the island. The full model 
consisted of nine independent variables derived from the or- 
thophoto, the textural indices, terrain metrics, and soils. 
Classification accuracies ranged from 60 to 80 percent for an 
independent validation data set. The variable DRAINAGE 
CLASS dominated the model and explained the most varia- 
tion in vegetation and cover class. 

1 Introduction 
I Digital orthophotographs are photographic images from 

which distortion due to terrain, aircraft tilt, and optical aber- 
ration has been removed (Muehrcke and Muehrcke, 1992; 
Steiner, 1992). Typically, digital orthophotos are derived 
from aerial photographs that have been electronically 
scanned at a very high resolution, usually on the order of 25 
micrometres (DeAngelis, 1993). Planimetric distortions are 
differentially rectified using a digital terrain model (DTM) and 
accurate ground control for the region. The resolution of an 
orthophotograph is determined by the scale of the photogra- 
phy and the scanning density. Large-scale orthophotos can 

I easily have sub-metre pixel dimensions (Logan, 1993; Jad- 
kowski et al., 1994). 

Using geographic information systems (GIS), digital or- 
thophotography can be integrated with other cartographic 
data (Nellis et al., 1990). Orthophotos can serve as an excel- 
lent reference backdrop when viewing other data, or they 
can provide new information that can be "heads-up" digi- 
tized into a GIS database (August, 1993). Because of their ac- 
curacy and overall utility in a GIS environment, digital ortho- 
photos are emerging as a standard planimetric base for state 
or region-wide GIS systems (Parent, 1991; Jadkowski et a]., 
1994; Nale, 1995). For example, many New England states 
(Vermont, Massachusetts, Connecticut) are developing large- 
scale, black-and-white digital orthophoto databases in con- 
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junction with statewide GIS mapping efforts. The state of 
Maryland has developed statewide color infrared digital or- 
thophotography to support wetland inventory and mapping 
(Logan, 1993). The U.S. Geological Survey Digital Ortho- 
photo Quad (DOQ) project is an ambitious endeavor to pro- 
duce 1:12,000-scale digital orthophotos for the entire nation 
(Ramey, 1992; DeAngelis, 1993; Light, 1993). 

Digital orthophotography and satellite imagery are simi- 
lar in that both are cell-based data with numeric values asso- 
ciated with each cell that represent the amount of light in a 
certain range of the electromagnetic spectrum that is re- 
flected from that area on the ground (Wickland, 1991). Satel- 
lite data have been an excellent source of information for 
identifying land-cover and vegetation communities (Jensen, 
1986; Roughgarden et al., 1991; Lee and Marsh, 1995). A 
number of space-borne sensors provide data on the Earth's 
surface that have been used extensively in mapping applica- 
tions. A thorough list of sensors, their spatial resolution, and 
spectral sensitivities are provided in Wickland (1991) and 
Jensen (1986). The NOAA AVHRR satellite (1-km pixel size), 
Landsat Thematic Mapper (30-m pixel size), and SPOT satel- 
lite (10-m pixel size) are frequently used for land-cover as- 
sessments (Wickland, 1991). Publicly available satellite data 
are well-suited for analysis of land cover and land-cover 
change over large areas (Zeff and Merry, 1993; Green et al., 
1994; Lee and Marsh, 1995). The spatial resolution of these 
data is, however, too coarse for most local or site-specific ap- 
plications (Brannon et al., 1994). In contrast, digital ortho- 
photography can be produced at a very fine-grained resolu- 
tion and should, in concept, be an excellent source data for 
large-scale land-cover information. The purposes of our re- 
search were, therefore, two-fold: (1) to evaluate the utility of 
using digital image processing on a color-infrared orthophoto 
for identification of ecological communities, and (2) to assess 
the importance of using collateral digital data (Hutchinson, 
1982; Harris and Ventura, 1995) to enhance classification 
accuracy. We use fundamental methods developed by the re- 
mote sensing community (Jensen, 1986; Lillesand, 1994) to 
determine accuracy levels of a supervised classification of 
vegetation and cover types on Block Island. The focus of our 
study is to determine the utility of digital orthophotography 
to provide vegetation and cover information, especially in a 
GIS context. 

Methods 
Study Area 
Block Island is on a terminal moraine 15.1 km south of 
mainland Rhode Island and 22.5 km northwest of Montauk 
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Point, New York. The latitude and longitude coordinates of I 
the center of the island (the State ~ i r ~ i r t )  are 41" 10' 00" N 
and 71' 35' 00" W (Figure 1). The island is 25.7 kmz and 
consists of gently rolling hills, dunes, and bluffs. The highest 
elevation is 62.8 m above sea level. The dominant land 
covers are shrublands of various types, fields and pasture 
land, freshwater and saltwater wetlands, residential develop- 
ment, and a small commercial district in the town of New 
Shoreham. 

The parent geological material for Block Island is uncon- 
solidated glacial outwash and till of Pleistocene and Creta- 
ceous age (Hansen and Schiner, 1964). The dominant soil map 
units are Gloucester-Bridgehampton complex and Gloucester- 
Hinckley very stony sandy loam (Rector, 1981). 

The vegetation of Block Island consists of dense shrub- 
lands of shadbush (Amelanchier canadensis), bayberry (Myr- 
ica pennsylvanica), and arrowwood (Viburnum spp.) (Dunwid- 
die, 1990). Japanese black pine (Pinus thunbergii] and red 
pine (Pinus resinosa) are the common tree species found on 
Block Island, but they are not native. Few forests have devel- 
oped because the strong prevailing winds and salt spray se- 
verely hinder tree growth (Rector, 1981). Mowing or grazing 
maintains the island's pastures. Because of its unique landscape 
and biota, The Nature Conservancy has included Block Island 
in its world list of the "Last Great Places" (Ericson, 1992). 

Digital Imagery 
Color infrared aerial photography was taken of Block Island 
on 19 May 1992 at 11:35 AM. The photography was recorded 
on Kodak 2443 Aerochrome film at a scale of 1:40,000 from 
an altitude of approximately 6.1 krn. A wratten filter was 
used on the camera to filter out blue light. Two overlapping 
stereo photos were scanned at a density of 315 lineslcenti- 
metre and the digital representation was processed to create 
a seamless image of the island (see cover). A digital terrain 
model (DTM) was developed from data obtained by a team of 
surveyors sent to the island to densify the ground control for 
the project. Twenty-five control points were used to rectify 
the orthophotography and the DTM (Novak, 1992). The DTM 
consists of elevation values spaced 90 m apart throughout 
the image and was produced to meet USGS Level 1 DEM stan- 
dards (U.S. Geological Survey, 1987); the resulting RMSE was 
2.42 m. The data were referenced to the vertical datum of 
NGVD 29 and a horizontal datum of NAD 1983. The orthophoto 
was created from the scanned imagery and DTM using a SUN 
Sparc Station 2, with algorithms developed by International 
Imaging Systems (Milpitas, California). Photography, scan- 
ning, and orthorectification were performed by Photo Science 
Inc., of Gaithersburg, Maryland. Surveying and ground con- 
trol were established by Cherenzia & Associates Ltd. of Wes- 
terly, Rhode Island. The complete image is 4,591 b y  7,754 
pixels (106.8 Mb) in size where each pixel has a resolution 
of 1.27 m. 

We field-checked the positional accuracy of four well-de- 
fined points on the imagery with a Trimble Pathfinder Basic 
GPS unit using averaging and differential correction (Welch et 
al., 1992; August et al., 1994). All of the points we tested fell 
within a single pixel of their true position. 

The digital infrared image is stored with three bands of 
data. BAND1 represents the infrared portion of the reflected 
light (spectral sensitivity peak at 740 nm). The visible red 
portion of the electromagnetic spectrum is represented in 
BAND2 (spectral peak at 650 nm). BAND3 represents the area 
of the electromagnetic spectrum that the eye perceives as 
green (spectral peak at 550 nm) (Holz, 1985). The use of the 
wratten filter limited the exposure of the film to the green, 
red, and infrared portion of the electromagnetic spectrum; 
any light with a wavelength less than 530 nm was filtered 
out and appeared black on the photograph. 

Block Island, R.I. 

,Ern i 
Figure 1. Location of Block Island off the southern coast 
of Rhode Island. 

Vegetation Communities 
We identified 11 vegetation and cover types of six major 
classes on the island for use in the classification. The vegeta- 
tion classes were chosen because they represent the domi- 
nant naturallsemi-natural ecological communities on the 
island, or have been found to be significant habitat for rare 
species of plants and animals. Because the objective of this 
research was to assess the utility of color infrared orthopho- 
tography to discern specific vegetation types, rather than all 
possible cover types, we merged into a single OTHER class 
those unvegetated land covers (e.g., rocky shores) or those 
resulting from human disturbance (roads, buildings, pave- 
ment). The vegetation and cover types we identified in our 
analyses are as follows: 

SAND consists of gravel pits or beaches with little or no vege- 
tation. 
DUNES are hills of wind-blown sand. This community is 
much like the sand category except that it is dominated by 
graminoids [Ammophila sp.). 
PASTURES and grass fields are farmed lands consisting of low 
herbaceous vegetation that is mowed or grazed. 
UPLAND PINE SHRUBLANDS occur as small patches of coniferous 
shrubs. Individual plants are less than 6 m tall. Japanese 
Black Pine (Pinus thunbergii) is the dominant species in this 
habitat. 
UPLAND DECIDUOUS SHRUBLANDS are the most common cover 
type on the island and consist of dense stands of shadbush 
(Amelanchier spp.), bayberry (Myrica sp.], and arrowwood 
(Viburnum spp.). 
FRESHWATER SHRUB WETLANDS are comprised of arrowwood 
(Viburnum spp.] and rosaceous shrubs in very poorly drained 
soils. 
FRESHWATER MARSHES are areas that are dominated by hydro- 
phytic perennials, graminoids, and tussock sedges. Cattail 
(Typha spp.) is a dominant species in  these communities. 
Water willow [Decodon verticillata) may also occupy a large 
percentage of these areas. 
SALT MARSH is characterized by perennial, salt tolerant grami- 
noids, dominated by Spartina alterniflora, Spartina patens, 
and Distichlis spicata. These perennial species are present for 
most of the growing season. 
OCEAN covers a large area of the imagery and consists of 
standing water with no rooted vegetation. 
FRESHWATER includes palustrine and lacustrine open water. 
OTHER is a miscellaneous category comprised of roads, roofs 
of buildings, paved areas, or rocky shores. 

Initially, we included a number of other vegetation clas- 
ses of local ecological importance (e.g., morainal grassland) 
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in the analyses (Duhaime, 1994). However, the areas encom- 
passed by these additional vegetation classes were very small 
and it was difficult to obtain a complete sample of pixels 
from which we could model their distribution. Therefore, we 
limited the present analysis to the major vegetation classes 
listed above. 

Classification Protocol 
Because we had an a priori interest in specific vegetation 
classes, we used a supervised classification protocol for the 
study (Jensen, 1986; Lillesand and Kiefer, 1994). Training 
sites were discerned by making field visits to the island and 
locating representative areas of each of the vegetation types. 
The limits of each training area were entered into a vector 
GIS file using "heads-up'' digitizing (i.e., by digitizing from 
the computer monitor) from the digital orthophotograph. The 
vector polygons were converted to raster format (1.27-m 
pixel size) and 1,000 pixels of each vegetation or cover type 
were randomly selected from the raster data set and used in 
developing the classification model. A second data file of 
"validation" points (Oreskes et al., 1994) was created in the 
same manner as described above for the training data. Areas 
on the island with representative patches of the vegetation 
types were found. The boundaries for these sites were digi- 
tized into the GIs in vector format and converted into raster 
structure. A sample of 50 pixels of each vegetation or cover 
type was randomly selected for validation analysis. Habitat 
patches used in the validation analyses did not overlap with 
patches used to obtain classification data. All GIS data pro- 
cessing conducted in this study was done using vector and 
GRID modules of ARCJINFO software (Environmental Systems 
Research Institute, Redlands, California). 

Discriminant analysis was used to develop a linear 
model that best distinguished each vegetation type (Jobson, 
1992; Sokal and Rohlf, 1981; Williams, 1983). The assump- 
tions of discriminant analysis are equality of dispersions 
(homoscedasticity), identifiability of prior probabilities, and 
precise and accurate estimation of means and dispersions 
(Williams, 1983). The distributions for each independant var- 
iable in the classification data set are not hornoscedastic (Ta- 
ble I), but meet the other assumptions of the method. More- 
over, linear discriminant analysis is a robust statistic and 
performs reliably even when data do not meet the requisite 
assumptions (Lachenbruch, 1975). 

The dependent variable for the model was vegetation1 
cover type and we used nine independent variables that 
were based upon ecological measurements or spectral prop- 
erties of the image. The three image variables (BANDI ,  BANDZ, 

 BAND^) represent reflected light in the aforementioned wave- 
length classes. The amount of reflected light in each band is 
indicated in the data set by values ranging from 0 to 255. To 
estimate the microspatial variation in reflectance, we created 
a textural index (Briggs and Nellis, 1991; Musick and Grover, 
1991; Benallegue et al., 1995) for each of the three bands by 
calculating the standard deviation of reflectance in a 10-m 
(approximately 8 pixels radius) floating window around each 
pixel. Low textural values represent very little spatial varia- 
tion in reflectance; for example, the center of a hay field 
would be quite homogeneous in reflectance of neighboring 
pixels. Large textural values are indicative of edge habitats or 
vegetation communities that exhibit considerable micro-vari- 
ation in cover; for example, an upland shrubland is a mosaic 
of grass and shrubs. Such a cover type would appear mottled 
in the image and would yield high variation in reflectance. 
The textural variables for BAND1, BANDZ, and BAND3 are 
called TEXTI,  TEXTZ, and  TEXT^, respectively. 

The abiotic variables we used were slope, aspect, and 
depth to the seasonally high water table. Slope and aspect 
were derived directly from the DTM of the island. The digital 
elevation model was created by interpolating the 90-m DTM 
to a resolution of 1.27 m using an inverse distance weighted 
algorithm (ESRI, Redlands, California). Slope (degrees) was 
calculated for each pixel using the SLOPE utility of the G m  
module of ARCIINFO. Vegetation communities tend to be 
more sensitive to northlsouth variation in aspect than east/ 
west changes (Barbour et al., 1987); therefore, we identified 
pixels that faced north or south. Flat areas were pooled with 
the north-facing (aspect > 270" and < 90") pixels and as- 
signed a value of 1. South facing pixels (> 90" and I 270") 
were assigned a value of 0. 

Depth to the seasonally high water table was extracted 
from the digital version of the Rhode Island Soil Survey 
base scale 1:15,840; Rector, 1981). Because of the inherent 
error in defining "fuzzy" transitional features such as soil 
boundaries, only training pixels that fell further than 10 m 
from the edge of a soil polygon were used in the analysis. 
We categorized the soils data into five classes of soil mois- 
ture, from very dry (water greater than 91.4 cm from surface) 
to very wet. The wettest category was permanent standing 
water (Table 2). Soil moisture was included in the model to 
help discern upland from wetland habitats. 

To develop the discriminant function that best distin- 
guished vegetation types, we created an ASCII file that con- 
tained, for each pixel within all training sites, the vegetation 
type and the values for each of the nine independent varia- 
bles. Each record in the file represented a single pixel in the 

TABLE 1. DESCRIPTIVE STATISTICS (MEAN + 1 SD) FOR CONTINUOUS VARIABLES AMONG VEGETATION AND COVER TYPES. ONE WAY ANALYSIS OF VARIANCE (ANOVA) 
WAS USED TO TEST THE NULL HYPOTHESIS THAT CLASSIFICATION VARIABLES WERE THE SAME AMONG VEGETATION TYPES. N = 1,000 FOR ALL VEGETATION CLASSES. 

Classification Variables 

SLOPE 
Vegetation type BAND 1 BAND 2 BAND 3 (Degrees) TEXT1 TEXT2 TEXT3 

SAND 
DUNE 
PASTURE 
UPLAND PINE SHRUB 
UPLAND DECIDUOUS SHRUB 
FRESHWATER SHRUB WET 
OCEAN 
FRESHWATER 
SALT MARSH 
FRESHWATER MARSH 
OTHER 

ANOVA F statistic 
P 
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TneLe 2. DlsrRlBUTloN op TRntrutruc CeLls nvoruc Veeernron nruo CovEn TypES FoR AspFcrAND DRAINA}E CtAss. WE UsEo n Loc-Lrxellnooo TEsr
(G Tesr) to Evnlunre rxE Nurr HYPoTHESIs rHAT THE DtsrRtBUTtoNS ArvoNG VEGETATTon nNo Covrn Tvpes WEne rne Snvr ron Encu Vnnrnele. Vnrurs pnrsetreo

Ane rne PeRcerur on rue Tnnrnnrc Prxrrs (n : 1,000) Useo ron Encn Vecrrnrron Tvpr.

DRAINAGE CLASS

Vegetation
Typ"

% of South
Facing Slope

@SPECN
0

Variable

4
Very Poorly

Drained
R

Open Water

1.
Well Drained to 2
Excessively WeIl Moderately 3

Drained Well Drained Poorly Drained

SAND
DUNE
PASTURE
UPLAND PINE SHRUBLAND
UPLAND DECIDUOUS SHRUBLAND
FRESHWATER SHRUB WETLAND
OCEAN
FRESHWATER
SALT MARSH
FRESHWATER MARSH
OTHER

p

0
0

0
o
0
0
0
0
4

0

6
0

96
100

99
b

0

2
4
I

94
100

n

0
1
0
0
0

1 3
0

91

40
66
29
48
+ c

0
I

53
90
) a

0
0
o
0
0
0

100
g 7
0
0
0

0
0
0
0
0

O D

0
0

O J

80
0

0
0
0
0
o

, o

0
0
0

1't.
0

3 ,758
< 0.0001

27,316
< 0.0001

training data set. These data were analyzed with pRoC STEr-
DISC, CANDISC, DISCRIM, and caNcoRR routines in the software
package PC-SAS (Cary, North Carolina) to calculate discrimi-
nant scores and classification matrices.

We used the "validation" data set to assess the qualitv
of the model. The known vegetation type from the vilidation
data set was compared to the predicted type derived from
the discriminant model. The rHar statistic (Congalton, 1991)
was used to test the null hypothesis that the distribution of
observations within a classification was random. KAppA anal-
yses were used to test the null hypothesis that anv two clas-
sification matrices had equal disiributions of obseivations
(Congalton. 1991; Fitzgerild and Lees, 1994).

cIS computations were done using a Data General 5220
workstation. Statistical analyses were done using a 486-66
MHz microcomputer.

Results
There are s_ignificant differences (aNova, p < 0.0001) among
the 11 land-cover types for all the classifilation variables
(Table r). Inspection of the sRNo, DUNE, and FRESHWATER
categories show high mean reflectance for each of the three
spectral variables. The mean texture values for SALT MARSH
were very high for all textural variables. The variable TEXTr
was very large for UeLAND IINE SHRUBLANo. Overall, OTHER

had the l.a1S-est mean textural values and was consistently the
most variable of all the measures.

There were significant differences among cover classes
for each of the categorical variables; howevei, some inconsis-
tencies were found (Table 2). Areas presumed to be flat had
relatively high frequencies of south facing aspect. For exam-
ple. I percent of OCEAN c,ategory contained south facing pix-
e,ls. However, the mean slope for OCEAN was zero (Table^f);
thus. the oceanic pixels facing south are nearly flat or very
shallow in slope. The course iesolution of the-orieinal teriain
model probably accounts for some of the non-zerJ slope pix-
els in the OCEAN category as well.

Greater than 90 percent of the training cells from upland
vegetation were in the excessively drained to well drained
categories. Most of the wetland classes were classified in the
very poorly drained and poorly drained soils (Table 2). The
three spectral bands were higtrly correlated among them-
selves but were, for the mosf part, uncorrelated w'ith the
other independent variables (Table 3). Likewise, the three
textural variables were correlated among themselves, but
much less so with the spectral, terrain, ind soils data.

The Basic Model
The canonical structure of the futl model shows the variables
that have the strongest discriminatory power. The first ca-

Tnere 3. SPEARIVAN Rnrux Corrrtctents or ConnELerroN AMoNG lruoeperuoetr Vnnrasrrs. (N : 11,OOO) N.s. : p > 0.05, *
* * * : p < 0 . 0 0 1

: P < O . O 5 , x * : p < O . O O 1 ,

BAND2 BAND3 TEXTl TEXT2 TEXT3 SLOPE ASPECT DRAINAGE CLASS
BANDl

BAND2

BAND3

TEXTl

TEXT2

TEXT3

SLOPE

ASPECT

0.90 -o.24

-  0 .16

-o.22

0.09

o.23

o . 2 1

o.72

0 .09

-0 .15

-0 .06

-o.24

-o.20

-0 .09

-0 .01

0 .88

0 .98

o.o2
n.s ,
o.1.2

0 .10

o.73

-0 .33

-o.28

-o.27

-0 .16

-o.25

-o . '17

0.05

- 0 . 1 8  - 0 . 1 9
* * *  * * *
0.13  -0 .01

* * *  * * *  [ . s .  * * *
o ,s7  -0 .10  -0 .10  _o .29
* * *  * * *  * * *  x * *

November 1997 PE&RS



BAND1 
BAND2 
BAND3 
TEXT1 
TEXT2 
TEXT3 
SLOPE 
ASPECT 
DRAINAGE CLASS 

Eigenvalue 
- 

Proportion of 
Variance Explained .53 .26 .ll .08 

nonical variate ( c v ~ )  is dominated by the variable DRAINAGE 
CLASS (Table 4) and explains 53 percent of the total variance 
among vegetation types. CVZ is dominated by strong coeffi- 
cients for BAND1 and BAND2. The textural variables TEXT2 
and TEXT3 also contributed to CV2. CVl  and Cv2 together ac- 
count for 79 percent of the variance among vegetation types. 
CV3 is dominated by BANDI, BAND2, and BAND3, and the vari- 
ables BAND2, BAND3, TEXTZ, and TEXT3 contributed most to 
CV4. The first four canonical variates account for 98 percent 
of the total variation among vegetation classes. ASPECT and 
SLOPE contributed very little to the discriminatory power of 
the model. 

Accuracy Assessment 
We used a validation data set that was gathered indepen- 
dently of the training areas to confirm the accuracy of the 
classification model. The overall accuracy was 60 percent 
(Table 5). Most misclassifications occurred among spectrally 
similar cover classes or physiognomically similar vegetation 
types. For example, FRESHWATER was classified as SAND al- 
most half of the time; both are highly reflective surfaces. 
FRESHWATER MARSH was frequently misclassified into SALT 
MARSH. Upland shrub habitats were regularly misclassified 
between UPLAND PINE SHRUBLAND and UPLAND DECIDUOUS 
SHRUBLAND. 

Generalizing the Model 
Misclassification of the validation data commonly occurred 
among similar habitat types. To see if we could improve the 

classification accuracy of the model, we merged similar vege- 
tation and cover types into six major classes: SAND (DUNE, 
SAND); PASTURE; SHRUB (UPLAND PINE, UPLAND SHRUB, 
FRESHWATER SHRUB); WATER (OCEAN, FRESHWATER); MARSH 
(SALT MARSH, FRESHWATER MARSH); and OTHER. The discrimi- 
nant model based on the six generalized vegetation classes 
yielded a total correct classification rate of 80 percent (Table 
6). By merging classes, we markedly improved the classifica- 
tion accuracy of the model but lost thematic detail. 

We performed a sensitivity analysis on the six general- 
ized vegetation classes to determine the performance of the 
model when selected suites of variables were eliminated 
from the training data set (Table 6). When the DRAINAGE 
CLASS variable was dropped from the model, there was a 9 
percent decrease in pixels being correctly classified in the 
validation data set. When just the three imagery variables 
(BANDI, BANDS,  BAND^) were used to create the model, there 
was only a 61 percent correct classification of validation 
data. To determine what would happen if we had only one 
band of data (e.g., what would be available from black-and- 
white orthophotography) as opposed to the three bands avail- 
able for color infrared imagery, pairs of bands were dropped 
from the model along with their respective textural variables. 
Regardless of the single band chosen, approximately 70 per- 
cent of the validation pixels were correctly classified as com- 
pared to 80 percent correct classification for the full model. 
The classification accuracy obtained using terrain and soils 
data without spectral information was comparable to the 
classification accuracy obtained using spectra1 data without 
soil or terrain information as collateral data (approximately 
60 percent). 

Discussion 
The overall classification accuracy of the six vegetationlcover 
classes using validation data was 80 percent. Only 60 per- 
cent of the validation data were correctly classified when 11 
classes of vegetation or land cover were considered. Our 
classificationaccuracies are, at best, of modest proportion. 
They are, however, within the accuracy range (50 to 80 per- 
cent overall correct classification) reported in other studies of 
cover classification using satellite or multispectral imagery 
(Todd et al., 1980; Stenback and Congalton, 1990; Herr and 
Queen, 1993; Kremer and Running, 1993; Lauver and Whist- 
ler, 1993; Rutchey and Les Vilcheck, 1994). 

The percent of south-facing pixels was higher than we 
expected in areas we knew to be predominantly flat; e.g., 
FRESHWATER (53 percent), FRESHWATER MARSH (23 percent), 
and SALT MARSH (14 percent). Many of the pal-& a ~ d  

TABLE 5. CLASSIFICATION MATRIX OF THE VALIDATION DATASET. DISCRIMINANT FUNCTIONS WERE DERIVED D OM THE TRAINING DATASET. VALUES PRESENTED ARE THE 
PERCENT OF THE VALIDATION SAMPLES (N = 50) FOR EACH VEGETATION TYPE. MEAN CLASSIFICATION ACCURACY: 60.2 PERCENT, OVERALL CLASSIFICATION ACCURACY: 

60.2 PERCENT. KHAT = 0.56 P < 0.001. 

Observed Vegetation Type 

FRESH UPLAND 
FRESH WATER PINE UPLAND 

FRESH WATER SHRUB SALT SHRUB- DECIDUOUS 
Predicted Vegetation Type DUNE WATER MARSH WETLAND OCEAN OTHER PASTURE MARSH SAND LAND SHRUBLAND 

DUNE 72 o o o o 14 o o 14 o a 
FRESHWATER 0 50 0 0 42 4 0 2 2 0 0 
FRESHWATER MARSH 0 0 40 28 8 2 0 2 0 8 12  
FRESHWATER SHRUB WETLAND 0 0 2 32 0 0 0 10 0 30 26 
OCEAN 0 8 0 0 92 0 0 0 0 0 0 
OTHER 4 2 2 4 0 64 0 8 12  4 0 
PASTURE 0 0 0 0 0 0 96 0 0 0 4 
SALT MARSH 8 1 2  22 2 0 4 0 50 0 2 0 
SAND 2 42 0 0 0 0 0 0 56 0 0 
WLAND PINE SHRUBLAND 0 0 0 0 0 0 2 0 0 54 44 
UPLAND DECIDUOUS SHRUB 2 0 0 2 0 10 8 0 0 22 56 
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TABLE 6. SENSITIVIN ANALYSIS OF THE CLASSIFICATION MODEL. WHEN SPECTRAL BANDS WERE DROPPED FROM THE FULL MODEL, THE CORRESPONDING TEXTURE 
VARIABLES WERE ALSO DROPPED. KAPPA ANALYSIS INDICATES THAT PAIRS OF MODELS THAT DIFFER MORE THAN 5 PERCENT I N  TOTAL PERCENT CORRECT 

CLASSIFICATION ARE SIGNIFICANTLY DIFFERENT (P < 0.05). 

Model 

Percent Correctly Classified 

Number Of Total % 
Independent Correctly 

Variables PASTURE SHRUB MARSH SAND WATER OTHER Classified 

1) Full Model 9 94.0 74.0 70.0 74.0 100.0 68.0 80.0 
2) No Drainage Variable 8 94.0 64.0 72.0 80.0 46.0 70.0 71.0 
3) Only BAND 1, 2, 3 3 96.0 56.0 66.0 78.0 28.0 40.0 60.7 
4) No BAND 2 and BAND 3 5 88.0 66.0 70.0 84.0 100.0 30.0 73.0 
5) No BAND 1 and BAND 3 5 58.0 54.0 70.0 76.0 100.0 56.0 69.0 
6) No BAND 1 and BAND 2 5 76.0 66.0 70.0 78.0 100.0 52.0 73.7 
7) Slope, Aspect, Drainage 3 68.0 40.0 70.0 42.0 100.0 24.0 57.3 

marshes on the island are kettle holes from the last glacia- 
tion (Wright and Sautter, 1988; Hansen and Shiner, 1964) 
and are bounded by gently sloping hills. The coarse resolu- 
tion of the DTM produced slopes extending into the edges of 
ponds and marshes. This artificially inflated the slope and 
aspect values for marsh and pond vegetation types. 

The classification matrices indicated that misclassified 
pixels were being assigned into logical but erroneous catego- 
ries. The model did not always distinguish between subtly 
different types of vegetation or among cover classes that had 
similar spectral signatures. Pettinger (1982) found most omis- 
sion and commission errors occurred in sagebrushlperennial- 
grass classes. We had similar results within the WETLAND 
and SHRUB classes. 

DRAINAGE CLASS was an extremely important variable in 
our analyses and distinguished the water and wetland habi- 
tats from the upland habitats. Likewise, Levine et al. (1994) 
found that drainage class is the critical soil property control- 
ling vegetation composition and productivity in northern de- 
ciduous forests. Other collateral data only slightly improved 
the model, as has been observed in other studies (Hutchin- 
son, 1982; Janssen et al., 1990). Slope and aspect explained 
only a small proportion of the variation among vegetation 
classes. Janssen et al. (1990) and Gemmell (1995) found that 
terrain data significantly improved land-cover identification; 
however, other studies have found that slope and aspect do 
not significantly improve overall classification accuracy 
(Lowell, 1990; Davis and Dozier, 1990). The terrain data used 
in this study had a source resolution of 90 m. To match the 
resolution of the other data sets, we interpolated the DTM to 
a raster grid with a resolution of 1.27 m. It is not clear why 
the terrain variables failed to contribute to the model. It is 
possible that the difference in resolution between the DTM 
and the imagery (SO-m pixel versus 1.27-m pixel) rendered 
too coarse a representation of slope and aspect to provide 
significant discriminatory power. For example, boundaries 
between open water and the adjacent landscape were not 
used as breakline features when creating the DTM; therefore, 
cells near the edge of ponds and marshes could have been 
assigned slope and aspect values when they should have 
been flat. Furthermore, the Block Island landscape consists of 
gently rolling hills. There may be insufficient variation in 
slope and aspect to be of ecological importance to the plant 
communities of the island. 

Eliminating variables from the model caused a decrease 
in correct classification of validation cells. By dropping two 
spectral bands from the model, we approximated the infor- 
mation content of a single band of 8-bit, black-and-white im- 
agery as might be obtained from scanning black-and-white 
photos. There was approximately a 10 percent loss in classi- 
fication accuracy in the single-band models. If this is accept- 

able, then less expensive black-and-white film could effec- 
tively be used for vegetation mapping instead of the more 
expensive color infrared imagery. Our single-band data sets 
do not, however, include reflected light from the blue por- 
tion of the spectrum which might contain ecologically im- 
portant information. 

Conclusions 
Digital infrared orthophotography can be used as an alterna- 
tive to satellite data for assessing vegetation and cover in a 
region. Orthophotography can have much finer spatial reso- 
lution as compared to satellite data, and (with appropriate 
collateral data) produces habitat classifications as accurate as 
those typically obtained with multispectral space-borne im- 
agery. Our classification accuracies are, however, not excep- 
tionally high. The vegetation and cover classes derived from 
a classified image would be a valuable guide for preparing 
detailed vegetation maps using "heads up" digitizing by per- 
sons familiar with the ecology of the study area (Roughgar- 
den et al., 1991). The classified images we derived are not, 
however, adequate to stand on their own for applications re- 
quiring high thematic accuracy. 

Considerable research on the utility of digital orthopho- 
tography remains to be done. The positional accuracy of dig- 
ital orthophotographs can be extremely high, and this makes 
it possible to use these data as a planimetric base for other 
data sets in a GIS system. The integration of multispectral sat- 
ellite data with digital orthophotography promises to be an 
interesting experiment (Munechika et al., 1993). We used ba- 
sic linear models in our analyses. More elaborate classifica- 
tion protocols, such as neural network analysis (Anand et al., 
1993; Li et al., 1994), should prove insightful. Integrating sta- 
tistical methods to detect cover classes with detailed data on 
spectral reflectance patterns of vegetation and cover types 
(Goward et al., 1994; Price, 1994) will be essential in fully 
assessing spectral and spatial elements of orthophoto im- 
agery. We expect significant variation in what constitutes the 
most suitable suite of collateral data. For example, slope and 
aspect might be very important variables in montane regions 
where exposure significantly affects plant distributions. Fur- 
thermore, soil properties other than (or in addition to) drain- 
age class (e.g., organic matter, pH, texture, nutrients) likely 
influence plant distributions in different ecosystems, and 
these relationships need to be investigated. The importance 
of different collateral data with respect to distinguishing 
cover classes can be hierarchical. Soil drainage properties, 
for example, are critically important in distinguishing be- 
tween wetland and upland habitats (Golet et al., 1993; Na- 
tional Technical Committee for Hydric Soils, 1991), but are 
sometimes less important in identifying different vegetation 
types within wet or dry regions. 
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