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Abstract 
A machine learning approach to automated building of 
knowledge bases for image analysis expert systems incorpo- 
rating GIS data is presented. The method uses an inductive 
learning algorithm to generate production rules from training 
data. With this method, building a knowledge base for a 
rule-based expert system is easier than using the conven- 
tional knowledge acquisition approach. The knowledge base 
built by this method was used by an expert system to pe$orm a 
wetland classification of Par Pond on the Savannah River Site, 
South Carolina using SPOT multispectral imagery and GIs data. 
To evaluate the peqformance of the resultant knowledge base, 
the classification result was compared to classifications with 
two conventional methods. The accuracy assessment and the 
analysis of the resultant production rules suggest that the 
knowledge base built by the machine learning method was of 
good quality for image analysis with GIS data. 

Introduction 
Incorporating supplemental GIS information and human 
expert knowledge into digital image processing have long 
been acknowledged as a necessity for improving remote 
sensing image analysis. Enslin et al. (1987) pointed out that 
geographers should examine how GIS can be used to improve 
image classification through application of the logic and 
techniques of artificial intelligence. In recent years, a number 
of studies have used expert systems (sometimes called 
knowledge-based systems) to perform image analysis, many 
of which incorporate GIS data (Mckeown, 1987; Civco, 1989; 
Skidmore, 1989; Newkirk and Wang, 1990; Argialas and Har- 
low, 1990; Bolstad and Lillesand, 1992; Janssen and Middel- 
koop, 1992; Westmoreland and Stow, 1992; Knotoes et al., 
1993). The heart of the expert system approach is its knowledge 
base (Luger and Stubblefield, 1993). The usual method of ac- 
quiring knowledge in a computer-usable format to build a 
knowledge base involves human domain experts and knowl- 
edge engineers (Figure la). The domain expert explicitly ex- 
presses his or her knowledge about a subject in a language that 
can be understood by the knowledge engineer. The knowledge 
engineer translates the domain knowledge into a computer-usa- 
ble format and stores it in the knowledge base. 

This process presents a well-known problem when creat- 
ing expert systems that is often referred to as the "knowledge 
acquisition bottleneck." The reasons are (Bratko, et al., 
1989): (1) the process requires the engagement of the domain 
expert and the knowledge engineer over a long period of 
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time, and (2), although experts are capable of using their 
knowledge in their decision making, they are often incapable 
of formulating their knowledge explicitly in a form suffi- 
ciently systematic, correct, and complete to form a computer 
application. Some remote sensing scientists have acknowl- 
edged the difficulties in building knowledge bases for image 
analysis (Argialas and Harlow, 1990; Kontoes et al., 1993). 

To solve this problem, much effort has been exerted in 
the artificial intelligence community to automate knowledge 
acquisition to obtain low-cost and high-quality knowledge 
bases (Maniezzo and Morpurgo, 1993). Studies on automated 
knowledge acquisition belong to the subfield of artificial in- 
telligence known as machine learning (Carbonell et al., 
1983). 

Machine learning has been used to automate knowledge- 
base building for expert systems in many areas. Although 
there are some applications of machine learning techniques in 
the area of spatial data processing and analysis, most of them 
are in spatial modeling (Walker and Moore, 1988; Moor et al., 
1991; Aspinall, 1992). Little effort has been made to apply the 
techniques to automate knowledge-base building for remote 
sensing image analysis with GIS data. This paper describes the 
logic and development of a machine-learning methodology to 
automatically build a knowledge base for an integrated image 
analysis expert system that incorporates remotely sensed and 
GIs data. This method eliminates or reduces the difficulty 
caused by the "knowledge acquisition bottleneck," and should 
allow expert system techniques to be adopted more easily by 
remote sensing and GIs scientists. 

Methodology 
Machine learning is the science of computer modeling of 
learning processes. It enables a computer to acquire knowl- 
edge from existing data or theories using certain inference 
strategies such as induction or deduction. Over the years, re- 
search in machine learning has been pursued with varying 
degrees of intensity using different approaches and placing 
emphases on different aspects and goals (Carbonell et al., 
1983). In this study, we focus on one type of learning tech- 
nology, inductive learning and its application in building 
knowledge bases for image analysis expert systems. 

Inductive Learning 
A human being has the ability to make accurate generaliza- 
tions from a few scattered facts provided by a teacher or the 
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Figure 1. (a) The traditional method of knowledge acquisition used to construct a knowledge base. 
(b) A machine-learning approach to automated knowledge-base building. 

environment using inductive inferences. This is called induc- 
tive learning (Michalski, 1983). In machine learning, the pro- 
cess of inductive learning can be viewed as a heuristic 
search through a space of symbolic descriptions for plausible 
general descriptions, or concepts, that explain the given in- 
put training data and are useful for predicting new data 
(Dietterich and Michalski, 1983). Inductive learning can be 
formulated using the following symbolic formulas (Michal- 
ski, 1983): 

'd i  E I 
Vi,j € I 

(E, * Di) 
(E! a - Dj), if j + i 

where D, is a symbolic description of class i, E, is a predicate 
that is true only for the training events of class i, I is a set of 
class names, - stands for "negation," and stands for "im- 
plication." Expression (1) is called the completeness condi- 
tion and states that every training event of some class must 
satisfy the induced description D, of the same class. How- 
ever, the opposite does not have to hold, because D, is equiv- 
alent to or more general than E,. This means that Di may 
include some features that do not exist in some samples in 
E,. Expression (2) is called the consistency condition and 
states that, if an event satisfies a description of some class, it 
cannot be a member of a training set of any other class. The 
task of inductive learning is to find through the space of de- 
scriptions the general description set D = {Dl, D,, em., D,) for 
the class set K = {K,, K,, .a+, K,) that satisfies the completeness 
condition and also, in some cases, the consistency condition. 

The general description set, or concept, D resulting from 
inductive learning can be represented by a variety of formal- 
isms, including production rules (Quinlan, 1986; Quinlan, 
1993). This means that inductive learning can be used to 
build knowledge bases for expert systems because production 
rules are the most popular form of knowledge representation 
in expert systems (Bratko, 1990; Giarratano and Riley, 1994). 
A motivation for the use of this approach to build a knowl- 
edge base is that it requires only a few good examples to func- 
tion as training data. This is often much easier than explicitly 
extracting complete general theories from the domain expert 

(Bratko, 1990). An inductive learning approach to automated 
knowledge-base construction is illustrated in Figure lb. 

There are a number of inductive learning algorithms, 
such as Mitchell's (1982) vision spaces, Quinlan's (1986; 
1993) ID3 and ~ 4 . 5 ,  and Michalski et al.'s (1986) AQ15. The 
~ 4 . 5  algorithm was selected for this research. It has the fol- 
lowing advantages: 

The knowledge learned using ~ 4 . 5  can be stored in a production 
rule format that can be used to create a knowledge base for a 
rule-based expert system. 
~ 4 . 5  is flexible. Unlike many statistical approaches, it does 
not depend on assumptions about the distribution of attribute 
values or the independence of the attributes themselves 
(Quinlan, 1993). This is very important when incorporating 
ancillary GIS data with remotely sensed data because they 
usually have different attribute value distributions and some 
of the attributes may be correlated. 
~ 4 . 5  is based on a decision-tree learning algorithm that is one 
of the most efficient forms of inductive learning (Bratko, 
1990; Jackson, 1990). The time taken to build a decision tree 
increases only linearly with the size of the problem (Jackson, 
1990; Quinlan, 1993). 

Knowledge-Base Building Procedure 
The procedure of applying the inductive learning technique 
to automatically build a knowledge base for a remote sensing 
image analysis expert system that incorporates GIS data in- 
volves training, decision tree generation, and the creation of 
production rules. The resultant production rules compose 
the knowledge base and can be used by an expert system to 
perform the final image classification. Figure 2 illustrates the 
procedure. 

Training 
The objective of training is to provide examples of the con- 
cepts to be learned. When building a knowledge base for im- 
age classification, the examples should be a set of training 
objects, each of which is represented by an attribute value- 
class vector such as 

[attribute 1, ..., attribute n, class - i I 
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Figure 2. The procedure of using the inductive-learning 
technique to build a knowledge base. 

The learning algorithm attempts to induce from this training 
data set some generalized concepts, i.e., rules that can be 
used to classify the remaining data. This is the process 
whereby a domain expert's expertise is involved. First, a 
subset of data is selected as training data. It should be repre- 
sentative of all the possible classes in the remaining unseen 
data. Simple random sampling may be inappropriate for this 
purpose because it may undersample, or even miss, small 
classes. Stratified random sampling is more appropriate be- 
cause it guarantees that a minimum number of samples are 
selected from each strata (Congalton, 1988). A classification 
scheme must be developed at this stage. The attributes to be 
used in learning and classification must also be determined. 
The training data are then pre-classified according to the 
classification scheme by human experts based on tlleir exper- 
tise and ground reference information (Figure 2a). 

Decision Tree Generation 
The ~ 4 . 5  learning algorithm first generates decision trees 
from the training data. These decision trees are then trans- 
formed into production rules (Eigure 2b). A decision tree can 
be viewed as a classifier composed of leaves that correspond 
to classes, decision nodes that correspond to attributes of the 
data being classified, and arcs that correspond to alternative 
values for these attributes. A hypothetical example of a deci- 
sion tree is shown in Figures 3a and 3b. 

A recursive "divide and conquer" strategy is used by 
~ 4 . 5  to generate a decision tree from a set of training data 
(Hunt et al., 1966; Quinlan, 1993). The training data set S is 

.... divided into subsets S,, S, according to a,, .... a,, which 
are the possible values of a single attribute A. This generates 
a decision tree with A being the root and S,, .... S, corre- 

sponding to subtrees T,, .... T,, (Figure 3c). The same process 
is applied to the data subsets recursively to construct sub- 
trees for each subset, until all data in a subset belong to only 
one class. 

The stop condition for such a procedure will eventually 
be satisfied, resulting in a final decision tree. The goal is to 
build a decision tree the size of which is as small as possi- 
ble. This ensures that the decision-making by the tree is effi- 
cient and effective. The goal is realized best by selecting the 
most "informative" attribute at each node so that it has the 
power to divide the data set corresponding to the node into 
as "pure" subsets as possible. ~4.5's attribute selection crite- 
rion is based on the entropy measure from communication 
theory. Because entropy is in fact a measurement of impurity 
(Bratko, 1990), at each node, the attribute with the minimum 
entropy is selected to divide the data set. 

From Decision Trees to Production Rules 
Although the decision tree is an important form of knowl- 
edge representation, it is rarely used directly in knowledge 
bases in expert systems. Decision trees are often too complex 
to be understood, especially when they are large. A decision 
tree is also difficult to maintain and update. Therefore, it is 
often desirable to transform a decision tree to another form 

I I 

soil band 2 

wetland dead dead bare soil wetland water 
veg. 

Band 1 > 82 
I Soil =best: wetland 
I Soil = good: dead vegetation 
I Soil =fair: dead vegetation 
/ Soil =poor: bare soil 

Band 1 9 82 
I Band 2 > 40: wetland 
I Band 2 9 40: water 

Arc (a single value, 
a p u p  of values, 

- or a range of values 
of the attribute) 

Figure 3. (a) Hypothetical example of a decision tree. A 
dataset consisting of three attributes (band 1, band 2, 
and soils) is classified into one of four classes: water, 
wetland, dead vegetation, and bare soil. (b) Another 
method of presenting the decision tree shown in (a). (c) 
A decision tree generated by dividing data set S into sub- 
sets. 
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of knowledge representation adopted commonly in expert 
systems, such a; production rules. 

A production rule can be expressed in the following 
general form (Jackson, 1990): 

P,, ..., P,,, + Q1, ..., Q, 

October 1997 PE&RS 

expert system shell CLIPS (Giarratano and Riley, 1994). CLIPS 
provided the other core part of the expert system: a forward- 
chaining inference engine. When performing classification, 
the knowledge base built by the learning program was first 
loaded into the production memory of the expert subsystem. 

(3) Then, a fact converted from a pixel in the i m a g e / ~ I ~  layer 

with the meaning stack (Figure 4a) was placed into the working memory of the 
expert subsystem. The inference engine then reasoned with 

if premises (or conditions) PI and ... and P, are true, the fact and the rules, and placed the conclusion, i.e., the 

then perform actions Q, and ... and Q,. classification result, into the working memory as a new fact. 
The data flow in the expert system is shown in Figure 4b. 

In fact, each path from the root to a leaf in a decision The learning and expert subsystems were integrated 
tree can be translated to a production rule. For example, the within the ERDAS IMAGINE image processing/~I~ system using 
path from the root to the most left leaf in the decision tree in the C Programmers' Toolkit and the E ~ A S  Macro Language 
Figure 3a can be represented by a production rule: i.e., (EML). The integration provided a uniform and hiendly 

graphical user interface for the learning, expert, and image 
(band 1 > 82), (soil = poor) + (class = bare soil). processing/GI~ systems (Figure 5) ,  and for conversion be- 

~h~~~ are several problems that must be solved when tween their different data formats. It also took full advantage 
transforming a decision tree into production rules. First, in- of other useful functions ~rovided by the existing image pro- 
dividual rules transformed horn the decision tree may con- cessing/~IS system such as image and GIs data rectification, 
tain irrelevant conditions. C4.5 uses a pessimistic estimate of and training data 
the accuracy of the rule to assess a rule and decide whether 
a condition is irrelevant and should be deleted. Second, the System Evaluation 
rules may cease to be mutually exclusive and exhaustive. It was instructive to use empirical remote sensing and GIs 
Some rules may be duplicative or may conflict. This is a 
common problem for rule-base building using either a man- 
ual or automated approach. Usually, a rule-based system 
should have some conflict resolution mechanism to deal 
with this problem. The approach adopted by C4.5 is ordering 
the sets of rules for the classes according to minimized false 
positive errors (the number of training objects that were in- 
correctly classified as class C by a rule set) (Quinlan, 1993). 
If an object can be classified into more than one class by two 
or more rules, the first rule that is satisfied by an object is 
taken as the operative one because it has the smallest possi- 
bility to assign a wrong class to the object. 

Some objects in the data to be classified may satisfy no 
rules. This problem can be solved by defining a default rule 
that will fire if no other rule fires for an object. This rule in 
fact specifies a default class to be assigned. C4.5 uses a sim- 
ple but reasonable approach: selecting as the default the 
class that contains the most training objects not satisfying 
any rule (Quinlan, 1993). 

The quality of the resultant rules can be evaluated by 
predicting error rates derived by applying the rules on a test 
data set. Because the rules are easy to understand, they can 
also be examined by human experts. With caution, they may 
be edited directly. 

System Implementation and Evaluation 

System Implementation 
An integrated system was developed to implement the pro- 
posed method. The C programming language was used for 
the system development on a UNIX workstation. For the pur- 
pose of testing the quality of the knowledge base built by the 
proposed method, the system also included an expert subsys- 
tem that used the knowledge base built by the learning sub- 
system to perform image classification. The components of 
the system are described below. 

The machine learning subsystem was developed using a 
set of C functions provided by ~ 4 . 5 .  The input data of the 
learning system was a text file with each line representing a 
training object. For raster remote sensing and GIS data, the 
training objects were represented by a pixel vector in the 
layer stack shown in Figure 4a. The resultant production 
rules were written to a file. This file became the knowledge 
base and was one of the core parts of the expert subsystem. 

The ex~e r t  subsvstem was develo~ed with the aid of an 
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Figure 4. (a) An example of image/Gls data-layer stack. 
For the training data set, each pixel in the stack with its 
associated attribute/class information represent a train- 
ing object used by the learning system. When performing 
knowledge-based classification, each pixel is a fact in the 
working memory of the expert subsystem. (b) Data flow in 
the expert subsystem. 
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isodata in {34,45,37,44,39,42,49,35,31,38,32,25,33,40,29,46,30): Rule 1: dem <= 182 
I dem<= 195: isodata in {I, 13,3, 16,5, 18,2,12,4,41,47,48,43,50) 
I I isodata in {45,46,30): mixed -> water 
I I isodata in {34,37,44,39,42,49,35,31,38,32,25,33,40,29}: Rule 2: ycoordinate > 100 
I I I xcoordinate > 54 : spikerush isodata in {44,42,49,40,46) 
I I I xcoordinate <= 54 : dem > 195 
I I I / isodata in {44,49,32}: mixed -> hardwoodpine 
I I I I isodata in {39,42}: 6 (4.011.7) Rule 3: fetch > 20 1 
I I I / isodatain {34,37,35,31,38,25,33,40,29}:spikerush xcoordinate <= 125 
I dem> 195: isodata in {47,48, 50) 
I ( isodata in {34,37,35,3 1,38,32,25,33,29,30): hardwoodpine -> bare soil 
I I isodata in {45,39): Rule 4: fetch <= 177 
I 1 1 soil =4 :  dead vegetation xcoordinate <= 125 
I / I soil in {5,3,2}: mixed dem > 182 
I I I soil = 1: dead vegetation isodata in {47,48, 50) 
I I isodata in {44,42,49,40,46}: -> bare soil 
I 1 I ycoordinate <= 100 : mixed Rule 5: texture <= 102 
I / I ycoordinate > 100 : hardwoodpine xcoordinate > 125 
isodata in {1,13,3,16,5,18,2,12,4,41,47,48,43,50): -> bare soil 
I dem <= 182 : water Rule 6: isodata in {45,46,30) 
I dem> 182: dem <= 195 
I I isodata in (4 1,431 : dead vegetation -> mixed 
I I isodatain {1,13,3,16,5,18,2,12,4): 5 Rule 7: dem > 195 
I I isodata in {47,48,50): ycoordinate <= 100 
/ I I xcoordinate > 146 : dead vegetation -> mixed 
I I I xcoordinate <= 146 : Rule8: dem<= 191 
I I I ( fetch <= 125 : bare soil isodata in {34,37,44, 39,42,49, 35,31, 38,32,25,33,40,29) 
1 1 ] I fetch > 125 : -> spikerush 
( I I I I fetch <= 142 : dead vegetation Rule 9: dem > 192 
/ I I I I fetch> 142 : xcoordinate > 54 
I I 1 I I I fetch<=160:baresoil -> dead vegetation 
1 I I I I I fetch>l60:  
1 I I / I I I texture <= 118 : dead vegetation Default class: dead vegetation 
1 1 I / I I I texture>118:baresoil 

a. b. 

Figure 7. (a) Decision tree generated from the SPOT spectral and GIs data. (b) Production rules generated from the 
SPOT spectral and GIS data. 

data of a freshwater reservoir in South Carolina to test nomena. This suggests that objects with similar features often 
whether the knowledge-base building using the proposed ap- cluster spatially. Therefore, the spatial location of an object 
proach was of good quality. may be helpful to classify some geographic objects. In this 

research, two raster layers containing the x, y coordinates of 

The Par Pond Study Area each pixel, respectively, were used as spatial location data. 

Par Pond is a 1000-hectare reservoir on the Savannah River 
Site, South Carolina (Figure 6). Natural invasion of wetland Wetland L ~ ~ ~ - c ~ ~ ~ ~  classjfication of par pond 
has occurred since it was constructed in 1958, with much of A classification scheme ( ~ ~ b l ~  1) developed for a previous 
the shoreline having developed extensive beds of persistent 
and non-persistent aquatic macrophytes. Par Pond has been 
the object of numerous studies of wetland ecology using re- TABLE 1. CLASSIFICATION SCHEME ADOPTED FOR PAR POND 
mote sensing and GIS techniques (Jensen e t  al., 1992; Jensen 
et al., 1993; Jensen et a]., 1997). Class 

A SPOT multispectral (XS) image of Par Pond obtained on Name Description 

10 May 1993 was used in this study. Previous studies have Dead Dead cattails (Typha spp.), dead water lilies (Nymphaea 
shown that ancillary GIS data, in addition to spectral data, wetland odorata), and unknown dead vegetation on the exposed 
are essential to the identification of some wetland vegetation. vegetation shoreline. 
For instance, it has been confirmed that four biophysical var- Spikerush Eleocharis quadrangulata, a wet persistent emergent 
iables [water depth or elevation, slope, fetch (unobstructed marsh. 
distance that wind can blow over water in a specified direc- Mixed Bulrush (Scirpus cyperinus (L.) Kunth) and maidencane 
tion), and soils] affect aquatic macrophyte growth (Jensen et marsh (Panicum hemitomon Schult), dry persistent emergent 
al., 1992). In this study, these GIS attributes were used in marshes. 
conjunction with the SPOT spectral data as the initial attrib- Old field Grasses and forbs, usually succeed dead wetland 
utes during training. All the data were rectified to a Univer- vegetation after the submerged zone has been turned 
sal Transverse Mercator map projection and resampled to 5 into upland for a long period. 
by 5 m. The soils data were classified into five qualitative Pine/ Forest on the upland surrounding the lake. 
categories according to their suitability for aquatic macro- Hardwood 
phyte growth, i.e. worst, poor, moderate, good, and best. Bare soil Bare soil. 
Texture data generated from the SPOT XS data were also Water Open water of the lake. 
used. Spatial autocorrelation often exists in geographic phe- 
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project to monitor the successional changes in wetland land 
cover on the shoreline of Par Pond was adopted (Jensen et 
al., 1997). 

Two 1:20,000-scale color infrared aerial photographs ob- 
tained on 23 April 1993 were used in conjunction with in 
situ ground reference data. The aerial photos were scanned 
at a 300-dpi (85-~m) resolution, which corresponds to a 1.7- 
by 1.7-m ground resolution. The digitized aerial photographs 
were registered to the rectified SPOT image. A total of 550 
points were selected using stratified random sampling. These 
points were superimposed on the screen on top of the recti- 
fied aerial images. The land-cover class at each point was de- 
termined by ecologist experts who have been working on the 
wetland ecology of the Savannah River Site (SRS) for more 
than 20 years. A total of 1 2 1  points were discarded due to 
the uncertainty in the class interpretation. The final 429 
points were then split into two data sets; one consisting of 
220 points that were only used for training and the other 
with 209 points that were only used for accuracy assessment. 

The three-band SPOT xs data were first pre-classified into 
50 spectrally homogeneous classes using the ISODATA clus- 
tering algorithm before they were used for learning and clas- 
sification using the proposed approach. Although this was 
not required by the learning algorithm, it reduced the dimen- 
sion of the spectral data from three to one. The spectral class 
layer was then integrated with the other six GIS data layers to 
form the layer stack illustrated in Figure 4a. The procedures 

illustrated in Figure 2 and Figure 4b were applied to this 
layer stack to perform machine learning and classification. 

To evaluate the quality of the knowledge base built by 
the machine-learning approach, two conventional classifica- 
tions were also performed and compared with the classifica- 
tion performed by the expert system with the machine-learn- 
ing-derived knowledge base: 

Traditional supervised classification with spectral and GIS 
data. A maximum-likelihood algorithm was used. Three SPOT 
bands and six GIS data layers were analyzed. This is the "log- 
ical channel" classification approach described in Hutchin- 
son (1982). 
Traditional unsupervised classification with only spectral 
data. The standard statistical unsupervised approach was 
used (Jensen, 1996). Fifty spectrally homogeneous clusters 
were generated using the ISODATA clustering algorithm. These 
clusters were combined and labeled by the experts into the 
six land-cover classes. 

Results and Discussion 
The decision trees and production rules generated by the 
machine-learning-assisted expert-system approach are shown 
in Figures 7a and 7b, respectively. Tables 2 through 5 sum- 
marize the accuracy and KAPPA statistics associated with 
each type of classification and the z values from the compar- 
isons between the different classifications. 

With an overall accuracy of 74.16 percent and K,,, 

Ground Reference 

Classification Water Dead Vegetation Spikerush Mixed Hardwood Bare Soil User's Accuracy 

Water 2 7 1 0 0 0 0 96.42 
Dead Vegetation 0 31 2 4 1 6 70.45 
Spikerush 1 1 3 1 7 1 2 72.09 
Mixed 1 6 5 19 2 0 57.58 
Hardwood 0 1 3 1 24 0 82.76 
Bare Soil 0 9 0 0 0 23 71.88 
Producer's Accuracy 93.1 63.26 64.02 61.26 85.71 82.14 Overall 74.16 

-- 

TABLE 3. ACCURACY ASSESSMENT OF A CLASSIFICATION DERIVED FROM A MAXIMUM-LIKELIHOOD ANALYSIS USING BOTH SPECTRAL AND G I s  DATA 

Ground Reference 

Classification Water Dead Vegetation Spikerush Mixed Hardwood Bare Soil User's Accuracy 

Water 26 0 0 0 0 0 100.00 
Dead Vegetation 0 2 5 1 3 5 13 53.19 
Spikerush 2 0 27 7 0 0 75.00 
Mixed 1 12 10 20 3 1 43.47 
Hardwood 0 1 1 1 20 0 86.96 
Bare Soil 0 11 2 0 0 18 58.06 
Producer's Accuracy 89.66 51.02 65.86 64.52 71.42 58.06 Overall 65.07 

K,,, = 0.57757, V ( K )  = 0.001613 

TABLE 4. ACCURACY ASSESSMENT OF A CLASSIFICATION DERIVED FROM AN UNSUPERVISED ISODATA ALGORITHM USING ONLY SPECTRAL DATA 

Ground Reference 

Classification Water Dead Vegetation Suikerush Mixed Hardwood Bare Soil User's Accuracy 

Water 2 7 
Dead Vegetation 0 
Spikerush 1 
Mixed 1 
Hardwood 0 
Bare Soil 0 
Producer's Accuracv 93.1 

0 96.42 
1 81.82 
0 47.54 
1 45.71 
1 82.76 

28 56.00 
90.3 Overall 61.24 



TABLE 5. RESULTS OF Z TESTS FOR THE ERROR MATRICES OF THE THREE 
CLASSIFICATION APPROACHES 

Maximum- 
Likelihood Unsupervised 

Machine-learning-assisted expert system 
with spectral and GIS data 2.012 (S) 2.838 (SS) 
Maximum-likelihood with spectral and 
GIS data 0.776 (NS) 

NS - Difference is not significant at 0.95 confidence level (Z < z,,, 
= 1.960). 
S - Difference is significant at 0.95 confidence level (Z 2 z,,, 
= 1.960). 
SS - Difference is significant at 0.99 confidence level (Z 2 zoo, 
= 2.575). 

= 0.6876, the proposed machine-learning approach yielded 
the highest accuracy (Table 2). The Z tests reveal that this 
approach was significantly different from the two other ap- 
proaches at the 95 percent confidence level (Table 5). 

While the accuracy of the maximum-likelihood with 
spectral and GIS data approach (Table 3) was slightly higher 
than that from the unsupervised approach with only spectral 
data (Table 4), the Z tests revealed that these two approaches 
were not significantly different (Table 5). On the other hand, 
the proposed approach was significantly different from the 
maximum-likelihood with spectral and GIs data approach. 

The reason why the performance of the maximum-likeli- 
hood with spectral and GIS data approach was not good may 
be the distribution of the incorporated G I ~  data. An impor- 
tant assumption in the maximum-likelihood classification is 
that the data distribution for each class is Gaussian (normally 
distributed). However, this assumption is commonly not 
valid for ancillary GIS data (Hutchinson, 1982). GIs data often 
have a bi- or multimodal distribution. Therefore, the maxi- 
mum-likelihood classification is not appropriate for such 
data. On the other hand, the rule-based approach does not 
have such a data distribution requirement. This is demon- 
strated in Figure 8 where bare soil (B) and dead vegetation 
(D) training data are displayed in SPOT XS band 2-band 3 fea- 
ture space and fetch-ISODATA feature space. The maximum- 
likelihood classifier performs very well when processing the 
data that are normally distributed as suggested in  Figure 8a. 
However, when the data have a bi- or multimodal distribu- 
tion, as shown in Figure 8b, the maximum-likelihood classi- 
fier should perform poorly. Unfortunately, this is often the 
case when GIS data are incorporated. For example, consider 
production rules 3 and 4 (Figure 7b) generated from the ma- 
chine learning approach which indicate that, in a two-di- 
mensional feature space with fetch and ISODATA being the x, 
y axes, respectively, bare soil has a bimodal distribution. 
One cluster is located at the area with x (fetch) > 201, while 
the other cluster at the area with x 2 177. This is approxi- 
mately the situation in Figure 8b. The rule-based approach 
can handle this situation better by applying several produc- 
tion rules (like 3 and 4) to deal with the two bare soil clus- 
ters separately. 

The error matrices indicate that there was substantial 
confusion between dead vegetation and bare soil in the other 
two classifications used for comparison. In fact, the ISODATA 
clusters 47, 48, and 50 were found to be the mixed classes of 
dead vegetation and bare soil during the cluster labeling with 
the unsupervised classification approach. Therefore, spectral 
data alone were not capable of distinguishing these two clas- 
ses. 

The machine-learning approach obtained significant im- 
provements for these two classes (Table 6). From the deci- 
sion tree and production rules (Figure 7) generated from this 

approach, it is obvious that the G I ~  data played an important 
role in the improvements. For example, fetch, DEM, and the 
x-coordinate were used to distinguish these two problematic 
classes in the following rules: 

Rule 3: (isodata E {47,48,50)), (fetch > 201), (xcoordi- 
nate 1 125) + (class = bare soil) 

Rule 4: (isodata E (47,48,50)), (fetch 5 177), (xcoordinate 
1 125), (DEM>172) + (class = bare soil) 

If a pixel's spectral (isodata) cluster value was 47, 48, or 
50, but its GIS attributes did not satisfy the conditions in ei- 
ther rule above, this pixel was assigned to dead vegetation 
rather than bare soil as dead vegetation is the default class. 

The machine-learning approach also revealed its "intelli- 
gence" when classifying hardwoodlpine. Hardwoodlpine is 
often spectrally confused with wetland vegetation (spikerush 
or mixed wetland vegetation). As hardwoodlpine belongs to 
upland vegetation, elevation should be a useful attribute to 
distinguish it from wetland vegetation. The machine-learning 
approach discovered such a rule. Rule 2 in Figure 7b indi- 
cated that hardwoodlpine was mostly distributed at eleva- 
tions greater than 195 m. Therefore, DEM became an impor- 
tant attribute to distinguish hardwoodlpine from wetland 
vegetation. 

Band 3 

A 

b 
Band 2 

[SODATA 

A 

b 
Fetch 

b. 

Figure 8. (a) Data with a normal distribution in feature 
space. (b) Data with bare soil having a bimodal distribu- 
tion in feature space. 
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TABLE 6. COMPARISON OF THE CLASSIFICATION ACCURACY OF DEAD VEGETATION AND BARE SOIL USING THREE CLASSIFICATION ALTERNATIVES 

a. Machine-Learning-Assisted Expert System Using Spectral and GIS Data 

Dead Vegetation Bare Soil User's Accuracy 

Dead Vegetation 
Bare Soil 
Producer's Accuracy 

70.45 
71.88 

Overall 78.3 

b. Maximum-Likelihood with Spectral and GIS Data 

Dead Vegetation Bare Soil User's Accuracy 

Dead Vegetation 25 13 53.19 
Bare Soil 11 18 58.06 
Producer's Accuracy 51.02 58.06 Overall 64.2 

c. Unsupervised Classification 

Dead Vegetation Bare Soil User's Accuracy 

Dead Vegetation 18 1 81.82 
Bare Soil 22 2 8 56.00 
Producer's Accuracy 36.73 90.32 Overall 66.6 

Even though the proposed method resulted in the best 
classification accuracy among the three methods, the 74.16 
percent overall accuracy is still relatively low. There are sev- 
eral reasons for this result. First, the major classes of mixed 
marsh, dead wetland vegetation, and spikerush represent 
Level I11 classes in the USGS Land UseILand Cover Classifica- 
tion System (Anderson et al., 1976; USGS, 1992). Because the 
USGS classification Level I1 usually requires remote sensor 
data with resolution equal to SPOT panchromatic data (Jen- 
sen, 1996), the relatively low resolution (20 by 20 m) of the 
SPOT xs data used for classification may be a factor. Second, 
the aquatic macrophytes grow like a belt along the shoreline 
of Par Pond. In some places, the belt is very narrow, with 
the width being smaller than the resolution of the SPOT xs 
data. This produces pixels with mixed information classes 
and may cause classification errors. Studies on inland 
aquatic macrophytes in this area usually only obtain accura- 
cies from 65 to 70 percent due to the complex heterogeneity 
of materials within the IFOV of the sensor (Hodgson et al., 
1987; Jensen et al., 1993; Jensen et al., 1997). 

Conclusions 
A method of automated knowledge-base construction for im- 
age analysis expert systems with GIS data was developed 
based on an inductive machine-learning technique. With this 
method, building a knowledge base for a rule-based expert 
system for remote sensing image analysis with GIS data is 
easier than using the conventional knowledge acquisition ap- 
proach. It does not require that domain experts explicitly ex- 
press their knowledge and does not require knowledge 
engineers to code the knowledge. However, it is imperative 
that appropriate training data be selected. An operational im- 
age expert system was developed to test the utility of the 
knowledge base generated by the machine-learning approach. 

The accuracy assessment and the analysis of the resul- 
tant production rules suggest that the knowledge base built 
by the machine-learning method was of good quality for im- 
age analysis. With several types of GIS data, it produced re- 
sults superior to those of conventional approaches. This 
study demonstrated the utility of GIS data to improve remote 
sensing classification. It also demonstrated that selecting the 
appropriate approach when incorporating GIS data was very 

important. Because GIs data usually do not meet the Gaus- 
sian distribution assumption, maximum-likelihood classifica- 
tion may not be an appropriate method. On the other hand, 
the expert-system approach proved to be a robust and effec- 
tive way to incorporate GIS data because it does not have 
such a data distribution requirement. 

The research also demonstrated some other advantages 
of the machine-learning-assisted expert-system approach: it 
was easy to understand, and the resultant knowledge could 
be used in other applications. For example, from Rule 2 in 
Figure 7b, one can know that most of the hardwoodlpine 
class was distributed above 195 m in the Par Pond area. 
Such spatial knowledge is very useful in many geographic 
applications such as spatial analysis and modeling. However, 
such data cannot be obtained from the conventional statisti- 
cal classifications using the maximum-likelihood classifica- 
tion algorithm. 
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