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Abstract 
There are two kinds of uncertainty associated with assigning 
a geographic entity to a class in the classification process. 
The first is related to the fuzzy belonging of the entity to the 
prescribed set of classes and the second is  associated with 
the deviation of the entity from the prototype of the class to 
which the entity i s  assigned. This paper argues that these 
two kinds of uncertainty can be estimated if a similarity 
model is employed in  spatial data representation. Under this 
similarity model, the uncertainty of fuzzy belonging can be 
approximated b y  an entropy measure of membership distri- 
bution or b y  a measure of membership residual. The uncer- 
tainty associated with the deviation from the prototype 
definitions can be estimated using a membership exaggera- 
tion measure. A case study using a soil map shows that high 
entropy values occur in areas where soils seem to be transi- 
tional and that areas which are mis-classified have higher 
entropy values. The membership exaggeration is  high for ar- 
eas where soil experts have low confidence in identifi-ing soil 
types and predicting their spatial distribution. These meas- 
ures helped in identifying that the high elevation areas were 
mapped with high accuracy and that error reduction efforts 
are needed in mapping the soil resource in  the low elevation 
areas. 

Introduction 
With the increasing popularity of geographic information 
systems (GIS), geographic data in GIS are often being used to 
support policy decisions under the assumption that they are 
free of errors. However, this error-free assumption about geo- 
graphic data is often not warranted due to a variety of rea- 
sons (Goodchild and Gopal, 1989, pp. xii-xiii; Burrough, 
1986, pp. 103-135). Errors in geographic data would have a 
profound impact on the reliability of the resulting policy de- 
cision based on GIS analyses because the quality of data af- 
fects the quality of decisions and the evaluation of decision 
alternatives (Barraba, 1989; Anderson and Stewart, 1994). 

One must assess the fitness of geographic data being 
used when deriving policy decisions based on GIs (Agumya 
and Hunter, 1996; Stanek and Frank, 1993). The first step to- 
wards assessing the fitness of geographic data for a specific 
application is the derivation of data quality information 
(Hunter and Goodchild, 1993). There are many potential 
sources of error in spatial data (Hunter and Beard, 1992), and 
the quality of spatial data can be described by various accu- 
racy elements (Guptill and Morrison, 1995). Goodchild 
(1995), in his discussion of attribute accuracy, raises the im- 
portant issue of the spatial structure of error associated with 
categorical data although his emphasis was on spatial de- 
pendence rather than spatial variation in accuracy. Knowl- 
edge of spatial variation of data quality can be very useful to 
users in revealing the areas where the quality meet the needs 
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of the application and in identifying areas where special er- 
ror reduction efforts must be carried out. 

Categorical data sets derived from either remote sensing 
classification or field surveys are the most widely used GIS 
data in reaching management decisions and in other GIs- 
based analyses. Information on the spatial variation of data 
quality is rarely available for these data sets although global 
accuracy statistics such as PCC (percent correctly classified), 
Kappa (see Campbell (1996), pp. 389-392), and RMSE are of- 
ten provided with the data sets but these global indices give 
no information on the spatial nature of the classification ac- 
curacy (Goodchild, 1995). 

This paper examines the types of uncertainty in categori- 
cal maps and provides means to measure the spatial distribu- 
tion of these types of uncertainty. In the next section, two 
types of errors (omission and commission errors) associated 
with class assignment in classification are discussed. It is 
then followed by the discussion of a similarity model based 
on which uncertainty measures are devised. Three uncer- 
tainty measures for estimating the commission and omission 
errors are discussed. A case study conducted in the Lu- 
bretcht Experimental Forest, Montana will be presented to 
show the usefulness of these measures for depicting the spa- 
tial variation of uncertainty in a soil series map of the area. 
The paper ends with conclusions and summaries. 

Class Assignment and Uncertainty 
Humans are particularly skilled at distilling structure or pat- 
terns from complex reality (Burrough and Frank, 1995). One 
way of extracting structure from complex data sets is classifi- 
cation through which categorical maps depicting the distri- 
bution of spatial phenomena are produced. There are two 
phases in conventional classification: class definition and 
class assignment. During class definition, the parameter 
space of a spatial phenomenon is discretized into regions 
(classes) with each region assigned a class name and repre- 
sented by the centroid of that region (Figure 1). The centroid 
is the central concept of that class. This central concept is 
often the typical case for this class. It must be noted here 
that during class definition the multi-dimensional parameter 
space is being divided into distinct and discrete regions (Fig- 
ure la)  and each of these regions is then condensed into a 
point. This reduction of the parameter space provides the ba- 
sis for errors to occur in the class assignment phase. 

During class assignment, which is often performed under 
crisp logic, an entity is assigned to one and only one class 
based on a comparison between the observed attributes of 
the entity and the typical attributes of prescribed classes. 
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The comparison may be performed in terms of distance in 
parameter space, as is done in minimum-distance-to-means 
and parallelepiped classifiers, or may be carried out statisti- 
cally, as in Gaussian maximum-likelihood classification. 
Once an entity is assigned to a class, it is said to carry the 
properties of that class, which (the properties) are often rep- 
resented by the central concept (the centroid) of the class, 
and the "individuality" of this entity is then lost in this class 
assignment process. The loss of this individuality is the error 
introduced into the final product. 

The errors introduced in class assignment can be per- 
ceived from two perspectives. Let's assume that there are 
two entities represented as El and E,, and their positions in 
relation to the classes in the parameter space are shown in 
Figure 2. During class assignment, both of these two entities 
would be assigned to Class A according to Figure 2 (assum- 
ing that distances to the class centroids are the basis for clas- 
sification), and both E, and E, will carry the properties of 
Class A in this case. It is apparent that neither El nor E, are 
located in the center of Class A. By assigning these entities 
to Class A and having them bear the properties of Class A, 
we ignore the differences between the properties of these en- 
tities and the typical conditions of Class A. In this case, we 
committed a commission error, that is, we assigned a label to 
an entity which does not fully "qualify" for it. During class 
assignment, we also ignore the fact that El also bears resem- 
blance to Classes B and C, and so does E, but at a different 
degree. By ignoring the similarities between an entity and 
other classes, we committed an omission error. 

It must be pointed out that the concepts of commission 
error and omission error outlined here pertain to a single 
classified entity. It is argued here that any classified entity 
contains some degrees of commission error and omission er- 

Property 1 
ror even if the entity is correctly classified unless when the 
entity is a typical case of a class. Under this notation, enti- 
ties El and E, in our example would both contain commis- 
sion and omission errors but at different degrees. 

The occurrence of these two kinds of error in class as- 
signment is very common in the creation of categorical re- 
source maps because geographic entities rarely conform to 
the definitions of some discreet and distinctive classes. The 
properties of geographic entities often vary in some continu- 
ous fashion in parameter space. Therefore, it would be diffi- 
cult or impossible not to commit commission error and 
omission error in assigning a geographic entity to a class un- 
der crisp logic. Furthermore, the degrees of these errors also 
vary over space because properties of geographic entities of- 
ten vary continuously over geographic space (Mark and Csil- 
lag, 1990). This variation of errors over geographic space 
makes global accuracy statistics (such as PCC and kappa) in- 
adequate for users to assess the fitness of the data and to al- 
locate error reduction efforts. 

As discussed above, the creation of the two types of er- 
ror in conventional class assignment is due to the direct em- 
ployment of crisp logic which exaggerates the similarity 
(membership) between an object and the class to which the 
object is assigned, and ignores the similarities between the 
object and the other classes. It would be desirable to provide 
measures on this membership exaggeration and ignorance so 
that the magnitude of exaggeration and ignorance can be re- 
ported to users. In order to estimate the degree of exaggera- 
tion and ignorance, we must know the location of an object 
in parameter space in relation to the class centers before the 
object is assigned to any class. This means that we need to 
obtain the membership value for the object in each of the 
prescribed classes. Once this set of membership values is ob- 
tained, the degrees of exaggeration and ignorance associated 
with the assignment of the object to a class can then be esti- 
mated. In other words, categorical resource map should now 
be created in two steps: (1) class membership derivation and 
(2) class labeling and uncertainty estimation. 

People may question the necessity of this two-step gen- 
eration of categorical maps. One may argue that if the mem- 
berships in classes are known, then the memberships should 
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Figure 2. Assigning entities E, and E, into Class A intro- 
duces two kinds of errors: commission error (exaggerat- 
ing these entities to be the prototype of Class A) and 
omission error (ignoring the similarity between these enti- 
ties and other classes, such as Class B and C). 
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(b) 
Figure 1. Discretization of parameter space into classes. 
(a) Division of parameter space. (b) Labeling each region 
as a class by giving it a class label and class centroid. 
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be used instead of class labels, which would prevent loss of 
information. This is certainly true, but users are not yet used 
to reading membership maps, particularly when using many 
of these maps to identify the spatial distribution of certain 
natural resources. The conventional categorical resource map 
would be more effective for portraying spatial distributions 
of natural resources. To this end, one may also argue that if 
classification is necessary, then the users should just accept 
loss of information. This has been the case for a long time, 
particularly when the categorical maps are produced manu- 
ally, but it would be useful to know how much and where 
the information loss has occurred. With the use of GIS, one 
should be able to estimate this loss of information and report 
it along with the categorical map. Spatial variation of infor- 
mation loss is certainly useful to the end users for assessing 
the fitness of the categorical map for their applications, par- 
ticularly when the end users are not involved in the produc- 
tion of the categorical map. For these reasons, it is argued 
that the two-step process should be employed in generating 
categorical maps. 

The class membership derivation step calls for a spatial 
model which allows the representation of partial memberships 
to a set of prescribed classes for every location over the area 
to be mapped. Once this a model is populated, the variation 
of exaggeration and ignorance over space can then be derived. 
The next section presents and discusses such a model. 

Similarity Representation of Spatial Phenomena 
Many researchers (for example, Burrough (1989), Leung et al. 
(1992), Lowell (1994), McBratney and De Gruijter (1992), 
Odeh et al. (1992), Robinson (1988), and Wang (1990)) have 
examined the effects and usefulness of fuzzy classification 
(continuous classification) and found that allowing varying 
degrees of membership in multiple classes prevents informa- 
tion loss in the classification process. While applying fuzzy 
logic to soil inference using environmental data, Zhu (1997a) 
developed a model, called a soil similarity model, to allow 
the representation of spatial gradation of soils. The model 
consists of two parts: the similarity representation of soils in 
parameter space and the raster representation of soils in geo- 
graphic space. 

The similarity representation of soils is based on fuzzy 
logic under which a soil can be assigned to more than one 
class with varying degrees of assignment. Under this similar- 
ity representation, a soil at point (i,j) can be represented as 
an n-element vector, called a soil similarity vector, S,, (S;, 
S,;, . . ., S,:, . . ., S;), where S,: is a measure of the similarity 
between the local soil at (i,j) and soil category k, and n is the 
total number of prescribed soil categories. This notation is 
very similar to the notation of the probability vector de- 
scribed by Goodchild et al. (1992). The difference is that S,: 
is a value measuring the similarity between the local soil 
and the prescribed soil category k, and it is not a probability 
measuring the chance for the prescribed soil category k to 
occur at location (i,j). 

The elements in a similarity vector do not have to sum 
up to unity because they are similarity measures (Zhu, 
1997a). It is possible that an object has high similarity values 
to many similar classes and the sum of these similarities can 
exceed unity while another object may be very unique and it 
may not bear much similarity to any of the prescribed clas- 
ses, and the sum of its similarity values can then be less 
than a unity. It must be emphasized that it is the whole simi- 
larity vector which is important, not just the highest mem- 
bership value in the vector. 

Under a raster representation scheme, soils over an area 
can be represented as an array of soil similarity vectors with 
each vector corresponding to a pixel in the raster database. 
Because the whole vector is important in representing a soil 

in the parameter space, subtle differences in soil between 
two neighboring pixels can be accommodated by the differ- 
ences in their respective similarity vectors. By combining 
this representation power of the similarity vector in the 
parameter space and the ability of representing high spatial 
details of a raster database, spatial gradation of soil informa- 
tion can be preserved under this similarity model. 

Apparently, this model can be easily used for represent- 
ing spatial variation of other natural resources. The key to 
apply this model is the derivation of membership values in 
these vectors. There are many techniques which can be used 
to populate this model. A detailed discussion of these tech- 
niques is beyond the scope of this paper. Some of examples 
are cited as follows. Zhu et al. (1996) developed an approach 
to populate the similarity model using expert system devel- 
opment techniques and fuzzy mathematics. Neural network 
classification (for example, Civco (1993), Foody (1996), and 
Gong et al. (1996)) and fuzzy classification (for example, Bez- 
dek et al. (1984), Gopal and Woodcock (1994), McBratney 
and De Gruijter (1992), Odeh et al. (1992), and Wang (1990)) 
can also be used to compute the similarity vectors. Many 
classification techniques used in remote sensing applications 
often compute "membership" of an object in classes. These 
techniques can be used to populate the similarity model with 
little modifications. 

Estimating Uncertainty under the Similarity Model 
Once the similarity model for a given resource is populated, 
a categorical map of the resource can be derived and spatial 
variation of class assignment errors in that categorical re- 
source map can be estimated. The generation of a categorical 
map is done by converting the similarity vector for each 
pixel into a class label. The meaningful way is to use the 
class which has the highest membership value in the vector 
to represent the local object. This process is referred to as 
the hardening process, which is similar to the crisp class as- 
signment discussed earlier. The result from this hardening 
process is a raster map with each pixel being labeled as the 
class to which the object is assigned. 

As discussed earlier, there are two types of errors in- 
volved in the hardening process for each pixel: commission 
error and omission error. The manifestation of these two types 
of error and their associated uncertainty can be understood 
through the following example. Let us say there are two ob- 
jects at locations P, and P,. The vectors describing the objects 
in relation to some classes at these two points are V,(0.2, 0.25, 
0.3, 0.25) for P, and V,(0.1, 0.0, 0.85, 0.05) for P,. The ele- 
ments in the vectors are the membership values to class A, B, 
C, and D, respectively. If both these vectors are hardened, the 
objects at these two points will be labeled as Class C. The 
omission error can be perceived as the degree of ignoring 
membership values in the vector other than these correspond- 
ing to Class C and the commission error would be the exag- 
geration of the objects to have full membership in Class C. 

The term "error" often implies the difference between 
an obtained value and the corresponding truth. Because the 
membership values in the vector may very well be an ap- 
proximation to the real similarity values between an object 
and the prescribed classes and we may never know the real 
similarity values, the term "uncertainty" is used here instead 
of "error." By the definition of the two types of error, the un- 
certainty associated with omission error is referred to as ig- 
norance uncertainty and the uncertainty due to commission 
error is referred to as exaggeration uncertainty. 

Ignorance Uncertainty 
Ignorance uncertainty is related to the fuzziness of an object 
compared with the definitions of classes. In other words, it is 
related to membership diffusion. The fuzzier the object in 
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Figure 3. Location of the Lubrecht Experiment Forest, Montana. 

relation to the classes, the more evenly distributed the mem- 
bership in the vector, and the greater is the ignorance uncer- 
tainty. Because the membership values are more evenly dis- 
tributed in V, than in V,, the ignorance error associated with 
the hardening of V, is greater. Ignorance uncertainty can be 
estimated using an entropy measure (Goodchild et al., 1994; 
Zhu, 1996), which expresses the degree to which member- 
ship is concentrated in a particular class, rather than spread 
over a number of classes. The entropy measure can be calcu- 
lated as follow: 

1 " 
H,I = - C [(q) log, (Sy 

logen k-1 

where Si; is the normalized similarity value (the sum of the 
normalized values in a vector is 1.0). H, is the entropy asso- 
ciated with the similarity vector for point (i,j) and has a 
range of 0 to 1. An entropy value of 0 means that the object 
at a given pixel has full membership in one of the prescribed 
classes and 0 membership in all other classes. In other 
words, the local object is the prototype of a class. Because 
the membership values in all other classes are 0 (H, = o), 
there is no membership ignorance involved in the hardening 
process and the ignorance uncertainty for this pixel is then 
0. When the entropy value of a similarity vector reaches 1, it 
means the object is similar to all classes at the same degree 
and none of the classes would be a good representative for 
this object. Assigning the object to anyone of these classes 
would induce the highest degree of membership ignorance 
and the ignorance uncertainty for this pixel would then be 1. 

It should be realized that the entropy measure is insensi- 
tive to the class assignment. The entropy about a similarity 
vector remains the same whether or not the object is as- 
signed to the class with the highest similarity value in the 
vector. Because the hardening process always assigns an ob- 
ject to the class with the highest membership value in the 
vector, the entropy statistics can be used to measure the dis- 
persion of membership from this class and it therefore can 
be considered as a good index for measuring ignorance un- 
certainty in the hardening process. The magnitude of an en- 
tropy value also depends on number of classes, whether or 
not these classes are relevant to the object. The more the 
classes, the smaller the value is. It is recommended that the 
relative magnitude of an entropy value is more informative 
than the absolute one in interpreting entropy as the igno- 
rance uncertainty. 

Another index for estimating membership ignorance is 
the membership residual after the highest. This measure can 
be expressed as 

where AMij is the membership residual and Sf$ is the nor- 
malized similarity value for class g to which the object is as- 
signed. The difference between AM, and H,  is that AMij is 
sensitive to class assignment but insensitive to the distribu- 
tion of membership residual and number of classes in the 
vector. 

Exaggeration Uncertainty 
Exaggeration uncertainty is inversely related to the member- 
ship saturation in the class to which an object is assigned. 
Obviously, the higher the membership in the assigned class, 
the less the exaggeration. For example, membership exagger- 
ation in assigning the object at P, to Class C is much less 
that for the object at PI. A simple measure of exaggeration 
uncertainty is 

where Eij is the exaggeration uncertainty measure and SIlg is 
the similarity measure between the object at (i,j) and class g 
to which the object is assigned. Equation 3 is different from 
Equation 2 although they look alike. Sif is a similarity mea- 
sure expressing the object's membership saturation in Class g 
and is not related to other similarity values in the vector 
while S'$ is a normalized value expressing the relative im- 
portance to other values in the vector. Equation 3 should be 
applied to a vector which is not normalized. Otherwise, in- 
formation about exaggeration is lost through the normaliza- 
tion process. 

Case Study Results and Discussions 
Study Area 
The study area is the Lubrecht Experiment Forest located 
about 50 km northeast of Missoula, Montana (Figure 3). The 
Forest was established in 1937 to foster research on natural 
resources. The elevation in the area ranges from about 1,200 
m to about 2,000 m, with high elevation in the northeast and 
southwest and low elevation in the northwest (Figure 4). The 
area is considered as a semi-humid to semi-arid region with 
strong moisture contrasts between low elevation regions and 
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Figure 4. Digital elevation mooo~ U I  L I I ~  study area (light 
tones mean high elevations). 

high elevation areas, and between south-facing slopes and 
north-facing slopes (Nimlos, 1986). 

Derivation of Membership Vectors and Generation of Soil Series Map 
Zhu et al. (1996) developed a knowledge-based inference ap- 
proach for populating the soil similarity model. The ap- 
proach was based on the Jenny's classic concept that soil is a 
result of the interaction among soil forming factors (Jenny, 
1980). The details of this approach are beyond the scope of 
this paper. In general, they employed a set of knowledge 
elicitation techniques to extract soil scientists' knowledge on 
soil-environment relationships and used a set of G I ~  tech- 
niques to characterize the soil formative environment. The 
extracted knowledge was then combined with the spatial in- 
formation on a soil formative environment under a set of 
fuzzy inference techniques to derive soil similarity vectors 
over the study area. Zhu et al. (1997) explored the use of the 
similarity vectors for deriving continuous soil property maps 
and found that the resultant soil information had a higher 
quality at both the spatial and attribute levels than that in 
the conventional soil map. 

The hardening process outlined earlier was used to con- 
vert the similarity vectors over the Lubrecht area to a soil se- 
ries map (Figure 5). For each pixel, the proposed uncertainty 
indices were computed from the membership vector of that 

Figure 5. Soil series map from hardening the similarity 
vectors (the black areas along Elk Creek were not in- 
cluded in this study). 

I 
I 

Figure 6. Entropy map for the Lubrecht area with light 
tones indicating high entropy values (the black areas 
along Elk Creek were not included in this study). 

pixel. Three images of uncertainty were produced, with one 
for each of the three indices. 

Ignorance Uncertainty 
Figures 6 and 7 show the spatial variation of ignorance un- 
certainty estimated by the entropy measure and the member- 
ship residual measure. One can conclude that these two 
images are essentially the same. The only difference is that 
the uncertainty values at the boundaries of soil bodies on the 
membership residual image are higher than corresponding 
values on the entropy image. This is due to the fact that only 
the total residual is used in calculating the membership re- 
sidual index, and the distribution of this residual member- 
ship in the vector was not considered. Because the two 
images are essentially the same, discussion of ignorance un- 
certainty is focused on the entropy measure. The validity of 
the entropy measure on ignorance uncertainty is evaluated in 
two aspects: the point accuracy and the spatial patterns of ig- 
norance uncertainty revealed by this measure. 

Point Accuracy of the Entropy Measure 
The point accuracy of the entropy measure can be assessed 
using hypothesis testing. If the entropy calculated from a 
similarity vector is a useful measure of ignorance uncertainty 

Figure 7. Distribution of membership residuals. This im- 
age depicts the spatial pattern of uncertainty similar to 
that in Figure 6. 
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TABLE 1. STATISTICS OF ENTROPY FOR THE MATCHED AND MISMATCHED SITES 

Statistics Matched Sites Mismatched Sites 

Mean 
Variance 
No. of Sites 

in the hardening process, it can then be assumed that a local 
soil with a similarity vector whose entropy is high would 
have a high probability to be mis-classified. This is because a 
local soil highly similar to two or more soil series would 
have a high probability of not being classified, in the field, as 
the soil series for which the computed similarity value is the 
highest. If the above assumption is true, then we should be 
able to observe that the mean entropy value for all of the 
mis-classified pixels is higher than the mean entropy value 
for the correctly classified pixels. 

To test the above hypothesis, the soil series at 64 field 
sites was determined over the summers of 1991, 1992, and 
1993. The sites were distributed over the entire study area. 
The coordinates of these sites were determined using a 
Global Positioning System (GPS) receiver and U S G ~  1:24,000- 
scale topographic maps of the area. The inferred soil series 
for these sites was determined from the hardened soil series 
map. These inferred soil series were then compared to the 
field observed soil series. The 64 sites were divided into two 
groups. The first group (the matched group) contains all of 
the sites whose inferred soil series match the observed soil 
series and the second group (the mismatched group) contains 
the rest. The entropy values for all 64 sites were obtained 
from the entropy map. The mean and standard deviation of 
entropy for each of the two groups were calculated and are 
reported in Table 1. 

The null hypothesis (H,) is that the mean entropy value 
for the mismatched sites is equal to or smaller than the mean 
value for the matched sites and the alternate hypothesis (HA) 
is that the mean value for the mismatched sites is larger than 
that for the matched sites. A student-t test with the assump- 
tion that the population variances of the two groups of sites 
are unequal was used to test the hypothesis (Burt and Bar- 
ber, 1996, p. 314). The calculated t value is 1.727 with a de- 
gree of freedom of 53. The critical t value greater than that 
for which the null hypothesis can be rejected with 95 per- 
cent of confidence at the degree of freedom of 40 is 1.684. 
Because the calculated t with a degree of freedom of 53 is 
greater than the critical t value, the above H, can then be re- 
jected at 95 percent of confidence. This indicates that, statis- 
tically speaking, the mean entropy value for the mismatch 
sites is greater than that for the matched sites. It can then be 
concluded that the entropy is a useful measure of ignorance 
uncertainty in this case. 

Spatial Patterns of Ignorance Uncertainty 
Comparing Figures 5 and 6, one can observe that entropy 
values are high in the mid-elevation areas (Area B in Figure 
6) where soils are transitional to the soil series prescribed for 
the low elevations (Area A) and those for the high elevations 
(Area C). Assigning these transitional soils to any prescribed 
soil series would imply that these soils can be treated as the 
same as the prototypes of the prescribed soil series. This im- 
plication could result in misuses of these soil resources be- 
cause managerial practices on these transitional soils may 
have to be substantially different from those on the pre- 
scribed soil series. The high entropy values in these areas 
indicate that the above implication is incorrect and other 
managerial measures may have to be applied in using the 
soil resource over these transitional areas. 

Another observation which can be made from Figures 5 

and 6 is the high entropy values at the fringe of a soil body. 
This is not difficult to understand because the soils at the 
boundary areas often bear high similarities to many different 
soil types. Assigning these transitional soils to any single soil 
category would introduce high degrees of uncertainty, too. 

The third observation that can be made about Figure 6 is 
that at low elevations (Areas around A) the entropy values 
seem to be higher on the south-facing slopes than those on 
the north-facing slopes. This can be explained by two factors. 
First, because the study area is in a semi-arid to semi-humid 
region, moisture condition is the dominant factor during the 
soil forming process. At low elevation, the moisture condi- 
tion on the north-facing slopes is more spatially homogene- 
ous than that on the south-facing slopes where subtle 
changes in slope aspect would result in a significant differ- 
ence in moisture conditions. Therefore, the soils on the 
north-facing slopes are spatially more contiguous than those 
on the south-facing slopes where different soils are often in- 
termittently distributed (D in Figure 6). Second, because the 
soils on the north-facing slopes are more spatially contigu- 
ous, it is much easier for soil experts to relate these soils to 
environmental conditions during the knowledge acquisition 
process (Zhu, 1997b). On the other hand, soil experts would 
have a low confidence in relating the soils on the south-fac- 
ing slopes to environmental conditions because the different 
soil types are so intermittently distributed on these slopes. 
Therefore, it is not surprising to find that the soils on the 
north-facing slopes are mapped with a higher conftdence 
than those on the south-facing slopes. 

Exaggeration Uncertainty 
The image of membership exaggeration (Figure 8) shows a 
spatial pattern very different from that of ignorance uncer- 
tainty. Membership exaggeration is very high for areas at low 
elevations, particularly for areas with south-facing slopes. 
This observation means that the local soils at low elevation 
bear low similarities to the assigned soil series, although that 
similarity values are the largest in their respective vectors. 
This situation can be created under two scenarios. First, the 
local soil is really different from any of the prescribed soil 
series; therefore, it bears low similarity values to all of the 
prescribed soil series. The second scenario is that the soil 
similarity vector is not an accurate representation of the lo- 
cal soil, and the low similarity values are the result of low 
confidence of soil experts in mapping the soils in these 
areas. In this study, the latter would be a more proper expla- 
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nation. In this semi-arid to semi-humid region, the low ele- 
vation areas, particularly these with south-facing slopes, are 
more susceptible to moisture stress than the high elevation 
areas due to higher temperatures and less precipitation at 
low elevations. The soils on these slopes are not as well de- 
veloped as those at higher elevations and they are highly 
variable spatially. While using environmental indices to de- 
rive soil similarity vectors (Zhu et al., 1996), soil experts 
would be very conservative in giving high similarity values 
to the soils in these areas. On the other hand, the soils at 
high elevations are better developed and more spatially con- 
tiguous, and soil experts understand the relationships be- 
tween these soils and their environment better (Zhu, 1997b). 
Therefore, the experts would be more confident in mapping 
the soils in these high elevation regions. 

Quality of the Resultant Soil Series Map 
Through the examination of and discussion on the spatial 
distribution of the uncertainty associated with the soil series 
map, the spatial patterns of quality of this soil series map 
can be understood. A user can now clearly see that the soils 
at high elevations are mapped with higher accuracy because 
both ignorance and exaggeration uncertainty are low over 
these areas. The middle elevation areas are the ecotone be- 
tween the soil series prescribed for high elevations and those 
for low elevations. Managerial practice for the soils over 
these areas may have to be different from that for any of the 
prescribed soil series. The problem areas are the low eleva- 
tions, particularly those with south-facing slopes where both 
uncertainties are very high. Error reduction efforts are recom- 
mended in mapping the soil resources in these areas. 

Summary 
This paper outlined and discussed the uncertainty due to 
membership diffusion and membership exaggeration during 
class assignment in generating categorical resource maps. It 
is recommended that categorical resource maps should be 
created in two steps: (1) generating a similarity representa- 
tion of the natural resource to be mapped and (2) hardening 
this similarity representation to create the categorical re- 
source map and deriving images depicting the spatial varia- 
tion of uncertainty in the so-derived categorical map. Three 
uncertainty measures computed from the similarity represen- 
tation are devised: entropy, membership residual, and mem- 
bership exaggeration. Entropy and membership residual 
measures are for estimating uncertainty due to membership 
ignorance (omission error), and the spatial variation por- 
trayed by these two indices are often very similar for categor- 
ical maps derived through the hardening process. Member- 
ship exaggeration measures the degree of exaggerating partial 
membership of an object to fill1 membership in the assigned 
class (commission error). 

In a case study of mapping soil resource using a similar- 
ity model, uncertainty images derived using these measures 
helped to identify areas of high accuracy and areas of poten- 
tial problems on the resultant soil map. It was also found 
that, in this case study, the mean entropy value for the mis- 
classified soil sites was larger than that for the correctly clas- 
sified sites. It is concluded here that the two-step resource 
map generation based on the similarity representation is ad- 
vantageous because it allows information regarding spatial 
patterns of uncertainty associated with the categorical map to 
be derived. It is also concluded that the measures for esti- 
mating the uncertainty related to membership ignorance and 
exaggeration are meaningful. 

Although these uncertainty measures were meaningful in 
depicting the spatial variation of uncertainty in this case 
study, the usefulness of these measures depends on the qual- 
ity of the membership values in the similarity vectors. If the 

membership values are not good approximations to reality, 
then these measures would not be providing users any useful 
information. Clearly, any potential advantage of using the 
similarity model depends on the quality of the membership 
values populating it. The quality of the membership values 
in turn depends on the methodologies and the information 
used to generate these membership values. 
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