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Abstract zed would be reduced substantially if the appropriate order 
~ ~ v i ~ ~  a digitizer along a smooth and continuous line could of a polynomial for simulating this line could be found. For 
be regarded as a discrete time stochastic process consisting of this Purpose, have been proposed for the 
trend motion and motion. A stochastic stationary ob- quantitative measure of the complexity of a line, which may 

senation series of digitizing error may be generated by adopt- lead to selecting the order of the backward difference opera- 

ing a backward difference process (filtering the trend motion tors properly. 
from the stochastic series). To separate the trend motion from To build an estimation model of digitizing error, Good- 

the stochastic series efficiently, several mathematical formulae and Dubuc and a pro- 
have been developed for measuring the complexity of line re- cedure which can produce a "random" map. Haining e f  al. 
luted to the determination of order of the backward difference (1983) have made use a autoregressive 
operators. The stochastic motion may be simulated by using Process to generate a random of and 
an autoregressive process in terms of time series analysis the- classify the results by comparing the in each pixel 
ory. ~h~ estimation model of digitizing error, ,.,f 

the prescribed probabilities. As far as the stream mode is 
these two processes, has been built. Numerical examples pre- concerned, the errors of digitizing a continuous line are sup- 
sented in this paper show how to use the model to estimate posed to be positively correlated between adjacent points 
the digitizing error after having a set of digitized data. along the digitized line. In this case, multivariate normal 

processes which are maximum entropy distributions for their 
Introduction mean vectors and covariance matrices can be used to build 
For establishing a geographic information system ( ~ 1 ~ 1 ,  a dig- the error estimation model.   he variance/covariance can 
itizing approach is one of the common processes used to ere- serve as the basis for a multivariate normal approximation to 

ate a spatial database of objects. As Goodchild and Gopal the distribution (Lavenda and Scherer, 1987). The autoregres- 
(1992) stated, positional accuracy will be affected by the oper- sive approach might possibly$ be used 
ator's precision in positioning the cursor and by the rules to generate a string of realization themselves, due to the con- 
used to select points to be digitized from line or polygon ob- venience of normal distribution generators. In mathematical 
jects. Keefer et al. (1988) pointed out that manual digitizing modeling, it is often advantageous (conceptionally andlor 
is performed either in stream mode or point mode. For the computationally) to pass from a discrete framework to a con- 
stream mode, the coordinates of digitizing points are re- tinuous one. 
corded at some specified, regular time, or distance interval as 
the cursor is moved continuously along the map line. The Description of Moving Trace of Digitizing a Smooth and 
digitizing process in this type of mode is serially correlated; Continuous Line 
i.e., the observations are not independent. They have used Assume that { z ,  = (x,, yJT,  t = 1, 2, ..., n )  is an observation 
autocorrelated process (stochastic time autoregressive process) sequence consisting of coordinates of digitized points along a 
to model digitizing error. Burrough (1986) has evaluated the smooth and continuous line denoted by f (x ,  y )  = 0. The {z,] 
errors of digitizing a set of discrete points (point mode) by represents the moving trace of a digitizer to be used, which 
means of comparison between their true and digitized coordi- may be written in the form 
nates. Unfortunately, any such model would have to be sensi- 
tive to the type of line being digitized (Goodchild and Gopal, {z,) = {Ztl + (w,) + (1) 
1992). where {Z, = (kt, is a function determined by the type of 

As Tobler (1992) described, the results of an analysis of line f(x,y)  = 0; {wt = (w?,, wyJT) denotes the stochastic flunc- 
geographical data should not depend on the spatial coordi- tion determined by digitizer's motion, and (Z,) and {w,} stand 
nates used - the results should be frame independent. From for trend and stochastic motions along line f(*,y) = 0, re- 
this point of view, this Paper proposed an estimation model spectively. { E ,  = (&, , E ) T ]  denotes a random error sequence. 
of digitizing error by which the result of digitizing error esti- 1, general, a topog,ap~ic line f (x ,  y)  = 0 can be expressed by 
mated may be invariant for different types of lines. The pro- a multiparametric function, i.e., 
cess of digitizing a line or a polygon could be considered as 
a stochastic trial (stochastic series) which contains trend and kt = g( t ) ;  y, = h ( t ) ,  (2) 
random motions in the stream mode. Removing the trend where t is a time parameter. If f(x,y)  = 0 is smooth and con- motion from the stochastic series could be an efficient way tinuous, it can be approximately simulated by a polynomial to generate the random field to which a common estimation 
procedure can be applied. In addition to that, the depend- function. In terms of cartographic theory, parametric equa- 

tions g ( t )  and h ( t )  can be written in an mth-order polyno- ence of the estimation model on the type of line being digiti- mial equation, i.e., 
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where a,, b, (k = 0,1,2, ..., m) are polynomial coefficients. 
Because manual digitizing is usually a low speed process, (w, 
1 could be regarded as a smoothly stochastic two-dimen- 
sional variables with zero mean vector. The "smooth" means 
that the direction of a line does not change drastically and 
also that the data are generated from this line using a digi- 
tizer with a normal or low speed. Then two-dimensional au- 
toregressive model may be established based on the time 
series analysis (Haining et al., 1983). 

The digitized data {z,) could be considered as a stochas- 
tic observation sequence with equal accuracy if the condition 
of digitizing remains unchanged. The mathematical expecta- 
tion of the observations may be different because the digi- 
tizer's positions along a line are continuously changing. 
From this point of view, we could consider {z,] as a nor- 
mally distributed random variables vector with mean vector 
p, and covariance matrix r (Caspary and Scheuring, 1993), 
i.e., {z,} - N(p,, r). In order to estimate the covariance ma- 
trLx I? consisting of diagonal elements = u:; u; and off-diago- 
nal elements = u,, it is required to filter the low frequency 
part (trend motion) from the observation series by using a 
highpass digital filter (Herzog, 1992). As a result, a random 
line or curve is generated (Goodchild and Dubuc, 1987). The 
filtering process may be realized by employing a backward 
difference operator in the observation sequence (Box and 
Jenkins, 1976). 

Definition and Characteristics of Operators 
Based on the theory of the time series and system analysis, 
an estimation model of digitizing error can be established by 
adopting a set of operators (Box and Jenkins, 1976, pp. 8- 
16). Therefore, it is necessary to define the different types of 
operators to be used in this paper. 

Definition of the backward difference operator: assume 
that V, = z, - z,-, in which V denotes the first-order back- 
ward difference operator and correspondingly the mth-order 
differetce operator V m  satisfies Vmz, = Vm- (Vz,), particu- 
larly V - 1. 

Definition of the backward shift operator: assume that 
Bz, = z,-I in which B stands for the first-order backward shift 
operator and correspondingly the mth-order backward shift 
operator satisfies Bmzt = Bm-~(Bz,), particularly Bo = 1. 

Definition of the unit matrix operator: assume that Iz, = z, 
in which I denotes the unit matrix operator or the unit ma- 
trix. 

Characteristic 1: V is a linear operator, which satisfies 
linear operational regulations such as an exchangeable opera- 
tion. 

Characteristic 2: If function f(x) is the mth-order poly- 
nomial, then vk  f(x) is the (m-k) th-order polynomial (0 5 k 
5 m) and v""'~ f(x) = 0 (k is any positive integer). 

Characteristic 3: The relationship between V, B, and I is 
V = I - B and the mth-order backward difference operator 
can be expressed as 

where C& = m!l[k!(m - k)!]. 

Estimation Model of Digitizing Error 

Theoretical Basis in the Estimation Model of Digitizing Error Building 
To filter the trend part from observations (z,], the (m + 1)th- 
order backward difference operator Vm" is applied to Equa- 
tion 1 and take into account Vm+'Z, = 0, then we have 

Reviewing Equations 1 and 5, {Vm+lz,] is a stationary sto- 
chastic two-dimensional sequence with zero mean vector. 
Then a two-dimensional autoregressive model (Box and Jen- 
kins, 1969, p. 9) may be written as 

where 4, (i = 1,2;-,p) is a 2 by 2 coefficient matrix; 4o = I, 
and 4p # 0. {p, = (pxtp,,t)T] is a two-dimensional white Gaus- 
sian sequence with zero mean vector; i.e., 

where E denotes the mathematical expectation operator; a,, is 
the Kronecker 6-function, 6, = 1 for t = s, and 6, = 0 for 
others; and Q is 2 by 2 positive definite covariance matrix. 
Equation 6 is called an autoregressive (AR) process of order 
p. Based on the theory of the time series analysis, the autore- 
gressive operator can be defined as 

where I, is the 2 by 2 unit matrix and 4(B) is the pth-order 
matrix polynomial. Then Equation 6 may be written econom- 
ically as 

If the characteristic matrix polynomial +(B) (corresponding 
to the AR operator) has all its zeroes outside the unit circle 
(Priestley, 1981), then Equation 9 may be regarded as the sta- 
tionary stochastic model. In other words, a stochastic process 
is said to be strictly stationary if its properties are unaffected 
by a change of time origin. Substituting Equation 8 for +(B) 
in Equation 9 and assuming pi = +(B)Vm' w,, after some ar- 
rangement, we have 

which may be written in details as follows 

4 0 ~ m + 1 e ,  - + , ~ ~ + l e , _ ,  - 42~m+1s,-, 
-. . . - 4pvVmetet_p = pt - EL;, 

Applying the variance operator Var to both sides of Equation 
10 and assuming M = Var[~"+~e, ] ,  Q' = V ~ r [ ~ ; l ,  then we 
have 

and then 

AM+: + 4lM4T +...+ 4p M4; = Q + Q',  

which may be expressed simply by 

P x +, M+T = Q + Q'. 
1=0 

Considering Equation 4, Vm+le, may be represented by 

Applying the variance operator Var to both sides of Equation 
12, we have 
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m + l  a, and based on a set of digitized data {z,). Substituting 4, 
Taking into account Equation 13 and assuming A = [ z 

k = ~  (i = 1,2, .-a, p ) ,  Q, and Q' for +,, Q, and Q' in Equation 15, 
(Ck+,)'], Equation 11 may be written in the form respectively, we have 

A(+,, r +: + 4, r 4: +-.+ 6 r 4;) = Q + Q*. 1 
vehf = , [C (& @ A)]-' ( ~ e h ~  + veh(il) (18) 

To compute the autocovariance matrix T, the matrix stack ,=o 

operator is adopted in the above equation; then we have 

1 
where ~ e h f  = (8: 6, &;)T. Equation 18 is an estimation 

vet r = [z (4, 8 4,~]  -I ( v e c ~  + . v e c ~ ! ) ,  (14) model of digitizing error for a set of digitized data. 
1=0 

where Vec denotes the operation which stacks one column Simplification of the Estimation Model of Digitiuing Error in the Case That 
of a matrix under the other, 8 is the Kronecker-Zehfuss Observations {x,} and Cy,} Are Supposed to Be Mutually Independent 
product (Graferend and Sanso, 1985), and Vec r = (0; U, u, Based on the knowledge of the digitizing process along a 
u;)~. Because r, Q, and Q' are symmetrical matrices, Equa- topographic line, stochastic observation sequences [x,] and 
tion 14 can be compressed as follows: {y,) could be regarded as two independent variables; then 

Equation 1 can be partitioned into two equations shown as 
1 

Vehr = 6 [z (4, @ +,I]-' (VehQ + VehQt), (15) 
,=o 

{x,) = (57,) + (wx,l + kx); 
where Veh r = (u: a,, u;)~, and Veh denotes the compressed (19) 
stack operator which is employed to simplify the computa- (ytl = (FA + (wyt1 + kytJ. 
tion of T. Equation 15 is a theoretical expression of the auto- 
covariance matrix r. For a stationary stochastic series, the 
covariance matrices defined previously are positively defi- Then coefficients 4, (i = 1,2, a*., p )  in polynomial &(B) 
nite. become diagonal matrices dia(GX kY,) due to 5, ex, = 0. In 

this case, Equation 18 is reduced to 

Estimation Model of Digitizing Error Established by Using a Set of Digitized Data 
Coefficients or autoregressive parameters +, and covariances 

1 
&; = - (1 + + @;z + a * . +  @: )-I  (e;x + %;,I; 

Q and Q' in Equation 15 are usually unknown. In practice, A P (20) 

the coefficients +,, +,, ..a, 4 have to be estimated from a set 
of digitized data. Based on the Yule-Walker equation (Box 
and Jenkins, 1976, pp. 54-57) and taking into account that 
the theoretical autocorrelations p, are replaced by the esti- Equation 20 is a simplified formula for the estimation of digi- 
mated autocorrelations I?,, a set of linear equations for +,, +,, tizing error given that {x,] and {yt) are mutually independent. 
ma-, 4 in terms of R,, R,, .-., Rp for two-dimensional data may Correspondingly, Equation 16 is reduced to 
be optained. That is, when both sides of Equation 6 are mul- 
tiplied by V""ZT-~, we have 

+ ; x = p x 0 - 8 4 " ; ; + ; = ?  -A",$; 
,=1 Yo ,=1 vrn+'z, vrn+'z:-, - +, v"+~z,-, vrn+lz:-, - 0 - - -  

P 
m + l  4pvm+1~t-pV ~ T - , = p ~ V ~ + l z : - ~ .  

P 

= 2; - z ?;; 3; = P;o - z 0. ?I 

+tx 0 1=1 ,=1 y~ Y,' 
where k = 0, .em, p. Applying the mathematical expectation 
operator to both sides of the above equations and taking into where 
account E [ v ~ + ' z , ~ , v ~ + ' z ~ -  ] = _R:i, for k # j; E[V"+~~,_,V"'+~ 
z:-,I = Rk for k = j; and E(pt V zf-,] = 0 for k = 0,1,2, ,.-, 1 
p, we have Pxk = n - m - 1 t = m + ~  2 v ~ + ~ ~ ~ V ~ + ~ ~ ~ + ~ ;  

f. = 
1 

Yk n - m - 1 t=m+z 

RT,-, RTp-Z R;-3 ". RO 1 
f.:, = = - - - 1 

where Rk-, and R, are 2 by 2 autocorrelation matrices. There- 
fore, the estimated value of the parameters +, can be ob- i.' = 1 
tained by solving the above equation if the autocorrelations Yk n - m - 1 t = m + ~  

R,, and R, are known. Covariance matrices Q and Q' may be 
estimated by the following equations: 

Simplification of Estimation Model of Digitizing Error in the Following Four 
P P 

Special Cases 
Q = '0 - I J = I  $1 - 1  4 Q' = - 1 z ,=I 41 ' : - I  471 (I6) (11 if the digitizing process is not stochastic or the random 

motion is too small to be considered, then Equation 20 may 
where be reduced to 

Rk = 1 1 
n - m - 1 t=m+z a; = - 6 2  . a; = - &2 A %' A '"Y' 

(23) 

R' = 
n - m - 1 t=rn+z 

(2) The line function f(x, y) = 0 is reduced to a point (a,, b,) 
if m is equal to zero in Equation 3. Then Equation 20 is re- 

Equations 1 7  are formulae for computing the autocorrelations duced to 
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Equation 24 is an error estimation formula for repeatedly 
digitizing a point n times. 
( 3 )  The line function f ( x ,  y )  = 0 becomes a straight line (x 
- a,)lal = (7 - b,)lb, if m is equal to one in Equation 3. 
Then Equation 20 is reduced to 

Equation 25 is an error estimation formula for digitizing a 
straight line. 
(4) If m = 2 in Equation 3 ,  the line function f ( x ,  y )  = 0 be- 
comes a quadratic curve shown as follows: 

Then Equation 20 is reduced to 

Determination of the Backward Difference Operator's Order 
( d =  m t  1) 
The efficiency of filtering the trend motion from a stochastic 
observation sequence depends on the selection of the back- 
ward difference operator's order d = m + 1. Hence, choosing 
an appropriate d is a key problem for generating a random 
field and for building an efficient estimation model of the 
digitizing error. A proper d could be identified by means of 
examining the autocovariance functions of the original obser- 
vation sequence and a new stochastic sequence after having 
completed the backward difference process if a map line is 
short and simple. However, if the map line is long and com- 
plicated, then we should divide this line into several parts 
according to the type of trend and then determine order d 
based on the complexity of each part. 

Amrhein and Griffith (1991) qualitatively classified dif- 
ferent kinds of lines in terms of complexity of them (see Fig- 
ure 1). Line (a) is the simplest and line (d) is the most 
complicated. For establishing the relationship between d and 
degree of complexity, it is necessary to derive some mathe- 
matical formulae which could be used to describe the com- 
plexity quantitatively. 

Manual digitizing process is a kind of low speed discrete 
data acquisition. After having digitized a map line, a point 
sequence with known coordinates of knot points has been 
generated. In other words, this line is represented approxi- 
mately by (n - 1) broken lines. 

The complexity of a line could be evaluated quantita- 
tively by the following factors: ( 1 )  degree of tortuosity and 
( 2 )  degree of fluctuation. The first factor is the total sum of 
absolute values of turning angles from the start point to the 
end point. The second one is a kind of global measure of de- 
viation of knot points from the "reference line." The refer- 
ence line is the standard line to be used for measuring the 
degree of fluctuation. 

(a) (c) - 
(b) - (dl w 

Figure 1. Lines with different complexities. 

Definition of Degree of Tortuosity 
In fact, the degree of tortuosity is not only determined by the 
sum of turning angles, but is also related to scale. In other 
words, the degree of tortuosity of a line is reduced if the 
scale of this line is enlarged when the sum of turning angles 
keeps unchanged. To avoid this problem, the definition of 
degree of tortuosity should be extended as follows: 

where A is the scale factor, and cuk and llikll are the turning 
angle and length of line L, between points k and k + 1. So if 
a map 1Qe could be regarded as one consisting of (n - 1) 
vectors L, (k = 1,2, ..a, n - I ) ,  then we have 

2 2 

where 1, = (xk+, - xk) > + (yk+,  - y,) j,  i-= ( 1 , O )  and 7 
= (0,l)  are the>unit v-ectpr of coordinates; llL,ll = [(xk+, - xk)' 
+ (yk+, - '; andLkeLk+l = ( x ~ + I  - ~ k ) ( ~ k + z  - x~+I) + (yk+l 
- yk)(yk+, - yk+,) are the scalar products. Apparently, the de- 
gree of tortuosity of a line can be computed by using Equa- 
tion 27 if the coordinates of knot points are known. 

Definition of Degree of Fluctuation 
For defining the degree of fluctuation, we need to give the 
definition of the reference line and methods of measuring the 
degree of fluctuation. 

Definition of median line operation V,: assuming that a 
line is described by a point sequence { P ( n )  I P,, k = 1 2 ,  .-., 
n ) ,  the middle point of line L, is defined by P i  = m d (Pk ,  1 Pk+, 1. The connection line between two adjacent mi dle 
points is called the median line. This results in a new bro- 
ken line L; ( u )  consisting of a point sequence ( P 1 ( u )  I P i ,  k 
= 1,2, 0 - - ,  u )  . L:, ( u )  is also called the first-order median line 
of the original line L ( n )  and denoted by L; ( u )  = V, L ( n ) .  
Similarly, the d-order median line operator is expressed by 
L$ ( u )  = V: L ( n ) .  Obviously, the d-order median line opera- 
tor satisfies V: L ( u )  = vd; (Vm L ( n ) ) ,  where V :  = 1. The 
median line operator has two properties: (1) If line L ( n )  is a 
closed broken line consisting of n points { P ( n )  I Pk, k = 1,2, 
..a, n ) ,  then L$, ( u )  = V:, L ( n )  is still a closed broken line with 
the same number of knot points, u = n ,  but the area and pe- 
rimeter of polygon L$ (n) is smaller than Ld-2 (n). If d + m, 

L$ ( n )  will be reduced to a point (see Figure 2a); ( 2 )  If line 
L(n)  is an open convex broken line, after d = (n - 1)-order 
V $ ,  L(n)  operation, line L(n)  will be reduced to a straight line 
(see Figure 2b). This straight line is selected as the reference 
line in this paper. In the computation of degree of complex- 
ity, a closed broken line could be treated as an open broken 
line if any two adjacent knot points are assumed to be dis- 
connected. 

There are many methods of measuring the departure of 
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d l  

dz 

d3 

(a) Close broken-line 

Median line 

(b) Open broken-line 

Figure 2. Broken lines and median 
lines. 

knot points from the reference line; for instance, the sum of 
distances of knot points of a broken line from the reference 
line or the largest one of them. In this paper, the mean 
square distance is chosen as the total measure of fluctuation: 
i.e., 

Lines 5 6 Y 

Straight line 0 0 0 

.\/z 3 Regular triangle 
1 

1 8 ~ ~  
-R -7rR 
4 4 

Square 

Regular hexagon 

Note: R is the radius of the circle as shown in Figure 3. 

n-1 

y = 8 C  a,. 
k=2 

For better understanding the concept of measuring 
degree of complexity, the degrees of complexity of four open 
broken lines: straight line, regular triangle, square, and regu- 
lar hexagon are calculated by using Equation 32 and are 
listed in Table 1. 

Numerical Examples 

Efficiency of the Estimation Model of Digitizing Error Evaluated by Using 
Simulating Data 
To examine the efficiency of the backward difference opera- 
tors and approaches proposed for determining appropriate 
order of the operators, several sets of simulating data were 
generated. Three types of lines (33a), (33b), and (33c) were 
used in this simulation, where line (33a) is simple, line (33b) 
is complicated, and line (3%) is the most complicated: i.e., 

x t = l + t + t Z + t 3 + t 4  
where ek denotes the distance from knot point k to the refer- (t = 1,2;--, 100) (334 
ence line. Let's assume that GI, y,) and (F,, y2) are the coor- y, = 1 + t + 2tZ + 3t3 + 4t4 
dinates of both end points of the reference line, respectively; 
then this reference line can be expressed by the following Random motion can be generated by the following two-&- 
equation: mensional p-order autoregressive functions: 

which can be written in the form 

Distance ek can be computed by 

Definition of Degree of Complexity 
With considering factors (1) and (2) simultaneously, the de- 
gree of complexity of line could be described by the follow- 
ing equation: 

Radius 

Figure 3. Regular hexagon with circum- 
scribed circle. 
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d P &x (mm) Cy (mm) 6 

0 f 0.332 +- 0.329 0.9962 
2 1 f 0.173 -1-0.178 0.9990 

2 f 0.130 f0.127 0.9994 

0 f 0.101 f 0.098 0.9990 
1 t 0.122 f0.123 0.9998 
2 3~0.157 f 0.160 0.9990 

0 f0.131 f0.129 0.9992 
4 1 f 0.182 f 0.185 0.9987 

2 f 0.323 t0 .320 0.9954 

Note: 5 denotes the degree of fitting. 

TABLE 3. EVALUATION OF THE ESTIMATION MODELS USING SIMULATING DATA 

Line d Y &x (mm) cy (mm) 

33a 2 1.21 20.122 f 0.123 
33b 3 3.08 f 0.120 f 0.124 
33c 4 5.37 f0.125 f 0.126 

TABLE 4. EVALUATION OF THE ESTIMATION MODELS USING REAL DATA 

p = 0: no random motion (344 

p = 1: v d z t  - V ~ Z , _ ~  = pt (34b) 

p = 2: v d z t  - vdz t+]  - +2 v d ~ t _ Z  = pt ( 3 4 ~ )  

p = 3: v d z t  - vdz t_ ,  - +2 V ~ Z , + ~  - +3 v ~ z ~ - ~  = pt (344 

where 

and {pt) is the white noise sequence with zero mean vector 
and variance 0.12mm x I,; here, I, is the two-dimensional 
unit matrix. 

The simulating test was carried out in two steps: 
(1) Line (33a) and autoregressive function (341) were se- 

lected for generating a simulating data. In this case, d = 3, p 
= 1 could be considered as the most proper values of d for 
the backward difference operator and p for the autoregressive 
function, respectively, and &x = k O0.120mm, CY = -t 0.120mm 
could be regarded as theoretical values of digitizing error in 
this simulating data. 

"Models" consisting of different combinations of d 
= 2,3,4 and p = 0,1,2 were employed to fit the simulating 
data and to examine what happens if the orders are chosen 
improperly. The results of this experiment are listed in Table 
2. 

It is clear to see from Table 2 that model with d = 3, p 
= 1 has the best degree of fitting (5 = 0.9998) and estimated 
values t+x = f 0.122mm and &,, = 5 0.123mm are the clos- 
est to their theoretical values. 

(2) The second experiment is to use lines (33a), (33b), 
(33c), and autoregressive function (34b) to generate three sets 
of simulating data. The degrees of complexity of these three 
lines could be computed by using the simulating data based 
on Equation 32. The values of d and p are chosen depending 
on the calculated degrees. The computed results are listed in 
Table 3. 

It is shown apparently in Table 3 that the estimated val- 
ues of digitizing error are very close to their theoretical val- 
ues. In other words, the estimation model may not be sensi- 
tive to the type of line being digitized if the value of d is 
selected appropriately. Because the length of this paper is 
limited, the problem of how to choose a proper value of d in 
terms of degree of complexity will be discussed in details in 
our future paper, "Approaches for Separating Trend Motion 
from Stochastic Sequence Series for Building Estimation 
Model of Digitizing Error." 

Efficiency of the Estimation Model of Digitizing Error Evaluated by Using Real 
Data 
The efficiency of the estimation model of digitizing error 
proposed in this paper has been evaluated theoretically. It is 
necessary to examine the efficiency by using real data. A cir- 

Line d P &x (mm) kY (mml 5 
Circle 3 1 f 0.135 C0.137 0.9996 
Contour 3 1 f0.132 k0.134 0.9996 
Seacoast 3 0 f0 .131 f0.130 0.9997 

cle, a contour line, and a seacoast line on a 1:10,000-scale 
topographic map have been digitized by using a Calcomp 
9100 digitizer. The sizes of these three sets of digitized data 
are 65 by 2, 87 by 2,  and 183 by 2, respectively. The com- 
puted results are listed in Table 4. 

The specifications for the Calcomp 9100 digitizer are: di- 
mension: 36 by 48'; resolution: 0.001'; digitizing accuracy: 
0.010 t 0.0005'; and the maximum positioning error 
< 0.020'. 

Table 4 shows that the estimated values of digitizing er- 
ror are slightly different. It indicates that the estimation 
model proposed in this paper may not be sensitive to the 
type of line to be digitized. The small difference in the re- 
sults could be explained because digitizing a complicated 
line will lead to more difficulty for an operator to control a 
cursor in positioning than would digitizing a simple line. 

Conclusion 
Theoretical estimation models of digitizing error have been 
derived in this paper. In addition, the models have been sim- 
plified for practical use. The key problem in this paper is to 
search for ways to be used for efficiently removing the trend 
motion from a stochastic sequence series of digitizing data. 
For a short and simple map line, the backward difference 
process could be an efficient approach to filter the trend mo- 
tion from the random sequence series. For a long and com- 
plicated line, however, it could be impossible to find a 
polynomial to simulate that line. In this case, this line 
should be divided into several parts based on the type of 
trend. To improve the efficiency of the backward difference 
process, the order of the backward difference operators 
should be selected in terms of the type of trend in each part. 
Because the lines on the map are usually complicated, they 
are not easily expressed by polynomial functions mathemati- 
cally, From this point of view, the degree of complexity of 
line suggested in this paper could be an efficient way to de- 
scribe the type of the line in general. For choosing the value 
of order of the backward difference operator appropriately, 
several approaches for measuring the degree of complexity of 
line have been proposed. 
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