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Abstract

Variation in the distribution of species richness as a result of
introduced errors of omission and commission in the Gap
Analysis database for Oregon was evaluated using Monte
Carlo simulations. Random errors, assumed to be indepen-
denl of a species’ distribution, and boundary errors, assumed
to be dependent on the species’ distribution, were simulated
using ten rodent species. Error rales of omission and com-
mission equal to 5 and 20 percent were used in the simula-
tions. Indications are that predictions of species richness
within a Gap Analysis database can be very sensitive to hoth
types of errors with sensitivity to random error being much
greater. Implications are that the inclusion of error modeling
in applied GIS databases is critical to spatially explicit con-
servation recommendations.

Introduction

With increasing use of remote sensing and geographic infor-
mation system (GIS) databases, the concern with accuracy
and how to assess accuracy has grown (Goodchild and Go-
pal, 1989; Story and Congalton, 1986; Jansen and van der
Wel, 1994). Sources of error include lack of spatial and the-
matic accuracy (Janssen and van der Wel, 1994), but lincage
of the data and temporal accuracy can also be important
(Thapa and Bossler, 1992; Lanter and Veregin, 1992). There
is also a need to understand how error propagation can alfect
the resulls of a layer-based GIs (Veregin, 1989; Lanter and
Veregin, 1992; Veregin. 1994).

The Gap Analysis Project (GApP), which utilizes a layer-
based G18, has emerged as a strategy for conserving hiological
diversity (Scott et al., 1987; Scott et al., 1993). GAP studies
have been conducted on a state-by-state basis, and specific
guidelines for conducting GAP studies are outlined in Ma and
Redmond (1992), Scott et al. (1993), Jennings (1993), and
USDI, National Biological Survey (1994). In general, the ba-
sic steps in a Gap Analysis are (1) the development of a vege-
tation map based on Landsat Thematic Mapper (TM) imagery
and other information, (2) the development of a species dis-
tribution map based on existing range maps and other dis-
tributional data as well as the use of habitat-relationship
models (see Morrison ef al., 1992), and (3) combining these
maps to identify habitats and species that are underrepre-
sented in the current network of biodiversity management ar-
eas. One parameter of interest in a Gap Analysis is a map of
species richness which is then combined with additional
map layers containing land-management and ownership in-
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formation to identify “gaps” in the protection of species-rich
areas, i.e., identify regions of high species richness (biodi-
versity) that are not currently within protected areas (see
Scott et al., 1993).

The most common procedures used in Gap Analyses Lo
predict species occurrence are based on the intersection of
coarse species range information as reflected in vegetation
association and county-of-occurrence data (Scott et al., 1993;
Bullerfield et al., 1994). As such, the habitat selection prob-
lem is simplified in only being concerned with predicting
species presence/absence. Although simpler, defining and
characterizing the geographical range of a species is contro-
versial and very imprecise (Rapoport, 1982).

Given these procedures, GAP studies require reasonably
accurate habitat-type maps and sound habitat-relationship
models. Unfortunately, there has been little work on quanti-
fying the sensitivity of GAP results to errors associated with
these basic components. Il is widely recognized that sensitiv-
ity analyses and validation of habitat-based predictions of
species occurrence are necessary to evaluate model perform-
ance (Lyon et al., 1987; Scott et al., 1993}, yet few species-
habitat relationship databases have been evaluated (Berry,
1986). Stoms (1992) has examined the sensitivity of cap
studies to the effects of habitat-type map generalization by
varying minimum mapping units, bul additional study aimed
at exploring how habitat-type errors impact GAP results re-
mains to be done. Investigations ol habitat-relationship mod-
els sometimes cast serious doubt on their reliability, which
raises concerns regarding the performance of these models in
GAP studies. For example, a sensitivity analysis of a habitat-
relationship model for the California condor (Gvmnogyps cal-
ifornianus) indicated that the model was relatively robust to
uncertainties in input data (Stoms et al., 1992). But Block et
al. (1994) lested habitat-relationship models for relatively
well studied taxa such as amphibians, reptiles, birds. and
small mammals in California and found that agreement be-
tween predictions and residency status ranged from 48 to 78
percent for two databases, with errors of omission (species
were not predicted but in fact were observed) and commis-
sion (species were predicted but were not observed) ranging
from 6 to 39 percent and 20 to 44 percent, respectively.

It is inconceivable that either absolutely error-free habi-
tat-type maps or perfect habitat-relationship models can be
produced. Thus, GAP studies must incorporate some error
from these sources. How these errors affect GAP resulls and
interpretation of these results has not been thoroughly ex-
plored.

The objective of this study was to investigate how uncer-
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tainty in vertebrate species distributions would affect results
of a contemporary GAP study. Specifically, we investigated
how spatially independent errors and spatially dependent er-
rors in species distribution would affect the distribution of
species richness as measured by area. Note that no attempt
was made to identify the cause of these errors. This study
simply investigated results of errors likely to exist in many
Gap Analysis projects, regardless of source.

Methods

The Oregon GAP GIS database was used in this study (T.
O'Neill, pers. comm., Oregon Department of Fish and Wild-
life). The Oregon dala consisted ol a digital vegetation map
that divided the state into over 12,000 vegetation polygons
based on vegelation cover Llypes (which were identified using
satellite imagery), physiographic provinces (based on Puchy
and Marshall (1993)), and polilical boundaries. The Oregon
data also included habitat-relationship information for over
800 wildlife species thal classified species occurrence based

on vegetation type, physiographic region, and political subdi-

vision data layers. By combining these digital layers, it was
possible to construct a species distribution layer showing the
presence or absence of each species in each vegetation poly-
gon. Presence or absence data was then used lo generate a
map of vertebrate species richness.

The fundamental parameter manipulated in this study
was the presence or absence of a particular species in a par-
ticular polygon based on vegetation/physiographic region/po-
litical subdivision. F'our possihle outcomes are possible from
an accuracy assessment. If a species is actually present in a
polygon and the GAP procedure predicts species presence,
then no error occurs. Similarly, il a species is not present in
a polygon and the procedure predicts species absence, then
no error occurs. However, it a species is actually present in a
polygon but the procedure indicates species absence, then an
error of omission occurs. An error of commission occurs if,
in fact, a species is not present in a polygon, but the proce-
dure indicates species presence.

To evaluate the effect of errors of omission and commis-
sion on a GAP study, data received from the Oregon Depart-
ment of Fish and Wildlife were considered “truth,” i.e.,
errors were introduced into the Oregon database and esti-
mated effects of these introduced errors were compared to
the original Oregon GAP database. The independent variable
was the level of uncertainty (errors of omission and commis-
sion) and the dependent variable was the distribution of spe-
cies richness measured as total area in km?®,

Monte Carlo computer simulation was used to simulate
effects of error on vertebrate species distribution maps using
ARC/Info and simulation routines written in C. Each iteration
of the Monte Carlo simulation randomly introduced a prede-
fined amounl of error into the species distribution map,
thereby producing a new error-filled species distribution
map. Areas of vertebrale species richness in the error-filled
map were then compared to areas of vertebrate species rich-
ness in the original map in order to quantify changes in the
distribution of species richness as a function of the intro-
duced errors. Two different techniques were used fo intro-
duce error into the species distribution map. The first
technique introduced spatially independent errors (random
errors) throughout the vegetation map without regard to the
range of any particular wildlife species. Thus, any polygon
in the habitat map where species X did occur was a candi-
date for an error of omission of species X and any polygon
where species X did not occur was a candidate for an error
of commission of species X. An example of these types of er-
rors are inaccuracies of vegetation mapping — errors in such
maps are unlikely to be dependent upon ranges of the wild-
life species found in the mapped region.

1212

Figure 1. Three physiographic regions of Oregon used in
the simulations (Puchy and Marshall, 1993). Areas with a
species richness = 5 are illustrated in black.

The second technique introduced spatially dependent er-
rors (houndary errors) along edges of each species “true”
range, where the true range was assumed to be the species’
range as determined by the original Oregon data. Thus, spa-
tially dependent errors only occurred along boundaries of the
species’ range, with errors of omission occurring in polygons
within the true range of the species and errors of commis-
sion occurring in polygons just outside the true range. Errors
of this sorl are likely lo occur in CAP studies if inaccuracies
in species predictions from habitat-relationship models occur
at the boundary of a species range, or if there is difficulty as-
sociated with precisely defining boundaries of vegetation
polygons,

Total area for each level of species richness was evalu-
ated for boundary and random error at simulated error rates
of 5 percent and 20 percent. These rates were within the
range found in other studies (cf. Flather et al., 1997). For
both random and boundary errors, we evaluated the hypoth-
esis:

H, Errors of omission and commission of 5 percent and 20
percent introduce no change in the distribution and
amount of total area ol vertebrate species richness pres-
ent in the results of the Oregon GAP.

We focused on “biological” significance rather than “statisti-

cal” significance (e.g.. using Student’s T-lest), because statis-

tical significance could have been attained by merely
increasing the number of iterations for each simulation.

The Monte Carlo simulations were extremely time con-
suming and required large amounts of computer storage
space; therefore, we subsetted the original data as follows. A
smaller vegelalion map was extracted from the original data
and a subset of the 800 available species was chosen for
analysis, The smaller map consisted of three of the 12 physi-
ographic provinces (East Slope Cascades, Basin and Range,
and Owyhee Uplands) from the original map and contained
3,238 vegetation polygons (Figure 1). We chose a taxonomi-
cally similar subset of the 800 available species. The selected
species subset consisted of ten rodents: mountain heaver
(Aplodontia rufa), deer mouse (Peromyscus maniculatus),
yellow-pine chipmunk (Tamias amoenus), white-tailed ante-
lope squirrel (Ammospermophilus leucurus), northern flying
squirrel (Glaucomys sabrinus), California kangaroo rat (Dipo-
domys californicus), desert woodrat (Neotoma lepida),
heather vole (Phenacomys intermedius), water vole (Micotus
richardsoni), and sagebrush vole (Lemmiscus curtatus). The
reduced data sets were joined to create a digital map show-
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ing the distributions of each of the ten rodents throughoul
the study region, which then became the basis for the Monte
Carlo simulations (Figure 1). The original base map for the
three physiographic regions included approximately 89,195
km?, Approximately 82,904 km? (93 percent) of the base map
had species richness of 0 to 4 and 6,291 km* (7 percent) had
species richness of 5 or 6. No polygons had a species rich-
ness 2 7 for the original map. Subsets chosen were arbitrary,
and implications of the choice of regions and species are ad-
dressed in the discussion section.

Each iteration of the Monte Carlo simulation introduced a
predefined level of either random or boundary error into the
original Oregon data map. Error amounts were measured as
percentages. A 5 percent commission error for species X
meant that each polygon where species X did not occur had a
5 percent chance of having species X introduced. A 5 percent
omission error for species X meant that each polygon where
species X occurred had a 5 percent chance of having species
X removed. Errors of commission and omission were simulta-
neously simulated at the chosen error level. For both random
and boundary error, the simulation methods were identical
except that, in the boundary-error simulations, errors could
only vceur in appropriale regions along edges of the various
species ranges, whereas random errors could take place any-
where within the study area. Appropriale regions for bound-
ary error of omission for species X were identified by finding
the total area comprising the species’ range and symmelri-
cally contracting the boundary of the area until 90 percent of
the original area remained. The region between the original
boundary and the 90 percent contracted-arca boundary were
deemed to be suitable for errors of omission. Appropriale
regions for boundary errors of commission were then identi-
fied by expanding the original species X range boundary by
the same amount as it was decreased in the previous step
and deeming the region between the original and expanded
boundaries the appropriate region for commission errors.

The two error rates were used for both random and
boundary error cases, resulling in a total of four Monte Carlo
simulations, Each simulation consisted of 50 iterations, and
each iteration produced a map with species richness [or each
polvgon. The total area by species richness class (i.c., 0, 1,
..., 10 species) was recorded for each iteration. These results
were then compared to the results for the original Oregon
GAP database. Identification of areas of high species richness
(hot spots) is one of the goals of GAP, but rather than arbitrar-
ily defining some level of species richness as “hot” (e.g.,
polygons with more than five species), we present results
based on changes in the amount of area for each species
richness class. In the case of random error, where expected
values for changes in area can be calculated, error matrices
(Story and Congalton, 1986) are used to illustrate the results.

Results

Random Error
When random error was simulated, areas of species richness
changed substantially when compared to the original map
(Figure 2). With a 5 percent random error, total area de-
creased for species richness of 0, 1, and 4 by an average of
21 to 30 percent and increased for species richness of 2, 3, 5,
and 6 by an average of 35 to 158 percent. With a 20 percent
random error, the same species richness categories decreased
and increased in area, but the effects were magnified with
decreases ranging [rom 50 to 72 percent and increases rang-
ing from 57 to 506 percent. For both error rates, there was an
increase in total average area [or species richness of 7 from 0
km? in the original data to 292 km* and 2878 km* for 5 per-
cent and 20 percent error, respectively.

Based on the original species richness categories and a
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Figure 2. Average total area in km? for polygons
with species richness of O to 7 for the 50 repeti-
tions when random errors were simulated.

simulated 5 percent error of omission and commission for
each category, an error matrix, using the expected values for
the binomial distribution, can be calculated (Table 1). Simu-
lated and expected results based on area of species richness
were very similar, as can be seen hy comparing the Expected
Row Total and Simulated Results. Overall theoretical map
accuracy was 63 percent and errors of omission range from
35 lo 40 percent while errors of commission range from 12
to 76 percent. The high variability in errors of commission
are largely dependent on the area size of the nearest species
rich category. For example, commission error for species
richness of 3 was 63 percent. This result is largely due to the
fact that species richness equal to 4 in the original map cov-
ered 45,667 km?; consequently, a larger portion, 5,901 km?,
was converted to a species richness of 3 after the simula-
tions. The expected error matrix when a 20 percent error of
omission and commission is simulated had an overall map
accuracy of only 28 percent with errors of omission ranging
from 40 to 83 percenl and errors of commission ranging from
23 to 95 percent (Table 2).

Figure 3 illustrates how the total area with a species
richness of 4 and 5 varies for the 50 repetitions of the ran-
dom error simulations (a species richness of 4 and 5 were
chosen arbitrarily for purposes of illustration, and variability
in distributions were similar for other species richness cate-
gories). Coefficient of variation of the total average area for
species richness of 4 was 5.7 percent and 10.1 percent for
random error of 5 and 20 percent, respectively, Coefficient of
variation of the total average area for species richness of 5
was 13.8 percent and 12.3 percent [or random error of 5 and
20 percent, respectively.

Boundary Error

For boundary error simulations, average areas ol species
richness changed little when compared to the change due to
random error (Figure 2 versus Figure 4). Total area decreased
on average for a species richness of 0, 1, 4, 5, and 6 by 1 to
21 percent and increased on average for species richness of 2
and 3 by 5 and 8 percenl when a 5 percent spatial error was
simulated. With a 20 percent boundary error, the same spe-
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TABLE 1. ERROR MATRIX (STORY AND CONGALTON, 1986), BASED ON THE EXPECTED VALUES FOR THE BinomiaL DisTRIBUTION, FOR SPECIES RicHNESS BY AREA WHEN
5 PeRceNT FRRORS OF OMISSION AND COMMISSION ARE SIMULATED WITH THE ORIGINAL OREGON GAP ANALYSIS DATABASE CONSIDERED TRUTH (LE., *'CoLumn Toral™
|s THE AcTUAL AREA BY SPECIES RICHNESS IN THE ‘TRUE' MAP AND, *‘Row TOTALS'" ARE THE AVERAGE SPECIES RICHNESS EXPECTED AND ACTUAL AFTER 50
SIMULATIONS).

Original Map Species Richness

Expected Expected Actual
Species Row Row Commission
Richness 0 1 2 3 4 5 6 Total Total Error
0 1746 516 10 1 0 0 0 2273 2307 0.23
1, 919 10053 a7 59 16 0 0 11434 11462 0.12
2 218 4698 3799 1143 459 4 0 10321 10187 0.63
3 31 984 1561 7520 5901 81 3 16081 16045 0.53
4 3 121 285 2683 29180 783 37 33092 33420 0.12
5 0 10 30 419 8875 3098 283 12715 12499 0.76
6 0 1 2 37 1153 783 929 2905 2968 0.68
7 0 0 0 2 80 81 188 351 292 0.46
8 0 0 0 0 3 4 15 22 14 0.32
9 0 0 0 0 0 0 1 1 1
10 0 0 0 0 0 0 0 0 0
Column 2917 16383 6074 11864 45667 4834 1456 89195 89195
Total
Omission 0.40 0.39 0.37 0.37 0.36 0.36 0.36 Map 0.63
Error Accuracy

cies richness categories decreased and increased in area, but
effects were larger with decreases ranging from 4 lo 25 per-
cent and increases ranging from 16 to 29 percent.

When 50 repetitions were simulated with boundary er-
rors, distributions in total area for species richness of 4 and
5 were much less variable than for random error (Figure 3
versus Figure 5). Coefficient of variation of the total average
area for species richness of 4 was 0.34 percent and 1.20 per-
cent for spatial error of 5 and 20 percent, respectively. Coef-
ficient of variation of the total average area [or species rich-
ness of 5 was 0.18 percent and 0.65 percent for boundary
error of 5 and 20 percent, respectively.

Discussion

The two types of errors simulated in this study can be
viewed as extremes of a continuum. A priori, it is reason-
able to expect that our method of simulating random error
throughout the vegetation map without regard to a species

range should have the greatest effect on determining areas of
high species richness because errors of omission and com-
mission are allowed to enter in areas where animals might
obviously nol exist. Alternatively, the method for simulating
boundary error should result in fewer changes in areas asso-
ciated with high species richness because our method as-
sumes that animals have some definable range, and errors in
omission and commission can only occur within a restricted
area of the range boundary. Our implementation of boundary
error is conservative, though, because restricting errors to a
region of +10 percent of a species’ range is of a finer scale
than Gap Analyses which predict species occurrence at the
resolution of polygons defined by vegetation Lype, physio-
graphic region, and county.

Wildlife data used in Gap Analyses are compiled from a
variety of sources such as range maps, state Natural Heritage
program databases, museum specimens, and other available
information and literature (Scott et al., 1993). The types and

TABLE 2. ERROR MATRIX (STORY AND CONGALTON, 1986), BASED ON THE EXPECTED VALUES FOR THE BinomiaL DISTRIBUTION, FOR SPECIES RICHNESS BY AREA WHEN
20 PrRCENT ERRORS OF OMISSION AND COMMISSION ARE SIMULATED WITH THE ORIGINAL OREGON GaP AnALYSIS Dataase ConsiDEReD TRuTH (L.E., “‘CoLumn Total™
Is THE ACTUAL AREA BY SPECIES RICHNESS IN THE “TRUE™ MAP AND “‘Row TOTALS™ ARE THE AVERAGE SPECIES RICHNESS EXPECTED AND AcTuaL AFTER 50
SIMULATIONS).

Original Map Species Richness

Expected Expected Actual
Species Row Row Commission
Richness 0 1 2 3 4 5 6 Total T'otal Error
0 313 440 41 20 19 1 0 834 862 0.62
1 783 2748 408 274 335 11 1 4560 4543 0.39
2 881 4947 1376 1400 2316 94 10 11024 11154 0.88
3 587 4535 1911 3270 7955 432 58 18748 18658 0.83
4 257 2525 1438 3617 14080 1107 199 23223 22785 0.39
5 77 37 662 2228 12545 1546 400 18378 18911 0.92
6 16 4 196 832 6239 1107 448 9063 8811 0.95
7 2 0 38 194 1831 432 253 2787 2878 0.91
8 0 0 5 28 316 94 74 521 548 0.86
! 0 0 0 2 30 11 11 H4 45 0.80
10 0 0 0 0 1 1 1 3 1 0.67
Column 2916 16381 6075 11865 45667 4836 1455 89195 89196
Total
Omission 0.89 0.83 0.77 0.72 0.69 0.68 0.69 Map 0.27
Error Accuracy
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Figure 3. Distribution of total area for 50 simulations
summed over all polygons when species richness equals
4, (A) 5 percent and (C) 20 percent random error, and
when species richness equals 5, (B) 5 percent and (D)
20 percent random error.

magniludes of errors associated with each of these sources
could be quite variable, but it is conceivable that lineage,
spatial, thematic, and temporal errors exist (Thapa and Bos-
sler, 1992; Lanter and Veregin, 1992; Williams, 1996). Ran-
dom errors that can arise during vegetalion mapping (Thapa
and Bossler, 1992) may propagate through habitat-based
madels of species occurrence in a manner similar lo our im-
plementation of random errors. Boundary errors might arise
because the functional relationships used in the wildlife hab-
itat relationship models are biased. Consequently, errors that
exist in a GAP data set are probably a combination of random
and boundary errors.

In our simulations, random error resulted in large
changes in species rich areas. Failure to recognize this type
of error could result in extremely unreliable information.
Changes in species richness areas due to boundary error
were much smaller relative to the size of the base map area.
Still. these small changes could be important ecologically,
politically, and economically when making spatially explicit
conservation recommendations.

In a GAP study, one might define an area of high species
richness. For example, the highlighted area in Figure 1 repre-
sents areas with a species richness of 5 or greater (approxi-
mately 6,291 km?), The area subject to change under the
boundary error simulations would be =10 percent, or ap-
proximately 1,300 km= The simulations resulted in a 9 and
33 percent decline in area (118-km?* and 428-km* decline for
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a 5 and 20 percent error rate, respectively) when focusing ex-
clusively on the 1,300-kin® affected area. As suggested by
Scott et al. (1993), if the GAP study is used to make a prelim-
inary determination of species rich areas, the implicalions of
not considering random and houndary errors could result in
focusing the preliminary study on a large number of incor-
rect areas.

Error rates for omission and commission found in Block
et al. (1994) and Edwards et al. (1996) suggest that the 5 and
20 percent error rates used in this study are not unreasonable
(and compared to some studies, our rates may be conserva-
tive). Both types of errors might directly be attributable to the
vegetation layer, wildlife habitat relationship models, or from
inaccuracies in the species database due to poor data or in-
sufficient sampling, In addition, simple habitat relationship
models do not account for community and ecosystem pro-
cesses Lthat may be imporlant in determining species occur-
rences (Conroy and Noon, 1996).

An allernative to using species richness, termed “sel-
coverage'' or “‘representativeness,” has been proposed for
GAP (Wright et al., 1994; Kiester et al., 1996; Scott et al.,
1996). A prioritization analysis defines the minimum number
of polygons needed lo ensure Lhal all species are represented
at least once in the entire area (Margules et al., 1988). This
approach may lead to a more comprehensive representation of
species within a state, but it probably will do nothing to miti-
gate the effects of errors in omission and commission. Re-
cently, Freitag et al. (1996) compared the selection of con-
servation reserve areas based on species richness using an
ileralive reserve selection algorithm (set-coverage). They
compared the results when reserve selection was based on a
species distributional database taken from published range
maps versus an actual species records database. Freitag et al.
(1996, p. 695) stated that “... the real problem revolves
around data input. Should we accept and tolerate a higher
degree of [alse-positives [commission errors] (as represented
by the overestimates of distribution maps) or false-negatives
[omission errors] (found in the less well surveved grid
squares of the point data base)?” They did not evaluate ef-
fects of these errors on set coverage, but we hypothesize that
set-coverage methods may be more sensitive to such errors,
partially because the approach may more closely emulate
random error.

—
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Figure 4. Average total area in km? for polygons
with species richness of O to 7 for the 50 repe-
titions when boundary errors were simulated.
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As was the case with this study, using simulation mod-
eling to evaluate GIS applications can be very compuler in-
tensive (Veregin, 1994). As such, we only used a portion of
the entire state of Oregon GAP database and within this re-
gion we arbitrarily chose a subset of ten species for these
simulations. Nevertheless, we argue that the general pattern
of our results would not change substantially if a different
region or a different subset of species were used. The trends
should be the same, with some species resulting in less vari-
ation and some resulting in more variation. Alternatively,
had the entire database been used, we predict the impact
would be greater, with larger variations in species richness
over the entire Oregon map as a result of error propagating
through over 800 species. For example, Veregin (1989, pp.
12-13) illustrates how composite map error increases as the
number of data layers increases, and this would be the case
as each additional species layer is included in the analysis.

Many authors have argued [or incorporation of error
modeling into GIS (Chrisman, 1989; Veregin, 1989; Lanter
and Veregin, 1992; Veregin, 1994). As Lanter and Veregin
have stated, “In such applications input data quality is often
not ascertained ... . Such omissions do not imply that errors
are of such low magnitude that they can simply be ignored.”
Without some indication of the sensitivity of GAP to the
types of errors evident in GIs databases, choosing areas based
on attributes derived from mapped information will prove
difficult. Incorporation of error modeling or sensilivity analy-
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sis capabilities into a GAP seems essential; otherwise, users
of GAP will be unaware of the uncertainty associated with
their analyses.
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