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Abstract 
Variation in the distribution of species richness as a result of 
introduced errors of omission and commission in the Gap 
Analysis database for Oregon was evaluated using Monte 
Carlo simulations. Random errors, assumed to be indepen- 
dent of a species' distribution, and boundary errors, assumed 
to be dependent on the species' distribution, were simulated 
using ten rodent species. Error rates of omission and com- 
mission equal to 5 and 20 percent were used in  the simula- 
tions. Indications are that predictions of species richness 
within a Gap Analysis database can be very sensitive to both 
types of errors with sensitivity to random error being much 
greater. Implications are that the inclusion of error modeling 
in  applied GIS databases is critical to spatially explicit con- 
servation recommendations. 

Introduction 
With increasing use of remote sensing and geographic infor- 
mation system (GIS) databases, the concern with accuracy 
and how to assess accuracy has grown (Goodchild and Go- 
pal, 1989; Story and Congalton, 1986; Jansen and van der 
Wel, 1994). Sources of error include lack of spatial and the- 
matic accuracy (Janssen and van der Wel, 1994), but lineage 
of the data and temporal accuracy can also be important 
(Thapa and Bossler, 1992; Lanter and Veregin, 1992). There 
is also a need to understand how error propagation can affect 
the results of a layer-based GIs (Veregin, 1989; Lanter and 
Veregin, 1992; Veregin, 1994). 

The Gap Analysis Project (GAP), which utilizes a layer- 
based G I ~ ,  has emerged as a strategy for conserving biological 
diversity (Scott et al., 1987; Scott et a]., 1993). GAP studies 
have been conducted on a state-by-state basis, and specific 
guidelines for conducting GAP studies are outlined in Ma and 
Redmond (1992), Scott et al. (1993), Jennings (1993), and 
USDI, National Biological Survey (1994). In general, the ba- 
sic steps in a Gap Analysis are (1) the development of a vege- 
tation map based on Landsat Thematic Mapper (TM) imagery 
and other information, (2) the development of a species dis- 
tribution map based on existing range maps and other dis- 
tributional data as well as the use of habitat-relationship 
models (see Morrison et al., 1992), and (3) combining these 
maps to identify habitats and species that are underrepre- 
sented in the current network of biodiversity management ar- 
eas. One parameter of interest in a Gap Analysis is a map of 
species richness which is then combined with additional 
map layers containing land-management and ownership in- 
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formation to identify "gaps" in the protection of species-rich 
areas, i.e., identify regions of high species richness (biodi- 
versity) that are not currently within protected areas (see 
Scott et a]., 1993). 

The most common procedures used in Gap Analyses to 
predict species occurrence are based on the intersection of 
coarse species range information as reflected in vegetation 
association and county-of-occurrence data (Scott et al., 1993; 
Butterfield et al., 1994). As such, the habitat selection prob- 
lem is simplified in only being concerned with predicting 
species presencelabsence. Although simpler, defining and 
characterizing the geographical range of a species is contro- 
versial and very imprecise (Rapoport, 1982). 

Given these procedures, GAP studies require reasonably 
accurate habitat-type maps and sound habitat-relationship 
models. Unfortunately, there has been little work on quanti- 
fying the sensitivity of GAP results to errors associated with 
these basic components. It is widely recognized that sensitiv- 
ity analyses and validation of habitat-based predictions of 
species occurrence are necessary to evaluate model perform- 
ance (Lyon et al., 1987; Scott et a]., 1993), yet few species- 
habitat relationship databases have been evaluated (Berry, 
1986). Stoms (1992) has examined the sensitivity of GAP 
studies to the effects of habitat-type map generalization by 
varying minimum mapping units, but additional study aimed 
at exploring how habitat-type errors impact GAP results re- 
mains to be done. Investigations of habitat-relationship mod- 
els sometimes cast serious doubt on their reliability, which 
raises concerns regarding the performance of these models in  
GAP studies. For example, a sensitivity analysis of a habitat- 
relationship model for the California condor (Gymnogyps cal- 
ifornianus) indicated that the model was relatively robust to 
uncertainties in input data (Stoms et al., 1992). But Block et 
al. (1994) tested habitat-relationship models for relatively 
well studied taxa such as amphibians, reptiles, birds, and 
small mammals in California and found that agreement be- 
tween predictions and residency status ranged from 48 to 78 
percent for two databases, with errors of omission (species 
were not predicted but in fact were observed) and commis- 
sion (species were predicted but were not observed) ranging 
from 6 to 39 percent and 20 to 44 percent, respectively. 

It is inconceivable that either absolutely error-free habi- 
tat-type maps or perfect habitat-relationship models can be 
produced. Thus, GAP studies must incorporate some error 
from these sources. How these errors affect GAP results and 
interpretation of these results has not been thoroughly ex- 
plored. 

The objective of this study was to investigate how uncer- 
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tainty in vertebrate species distributions would affect results 
of a contemporary GAP study. Specifically, we investigated 
how spatially independent errors and spatially dependent er- 
rors in species distribution would affect the distribution of 
species richness as measured by area. Note that no attempt 
was made to identify the cause of these errors. This study 
simply investigated results of errors likely to exist in many 
Gap Analysis projects, regardless of source. 

Methods 
The Oregon GAP GIS database was used in this study (T. 
O'Neill, pers. comm., Oregon Department of Fish and Wild- 
life). The Oregon data consisted of a digital vegetation map 
that divided the state into over 12,000 vegetation polygons 
based on vegetation cover types (which were identified using 
satellite imagery), physiographic provinces (based on Puchy 
and Marshall (1993)), and political boundaries. The Oregon 
data also included habitat-relationship information for over Figure 1. Three physiographic regions of Oregon used in 

800 wildlife species that classified species occurrence based the simulations (Puchy and Marshall, 1993). Areas with a 

on vegetation type, physiographic region, and political subdi- species richness 2 5 are illustrated In black. 

vision data layers. By combining these digital layers, it was 
possible to construct a species distribution layer showing the 
presence or absence of each species in each vegetation poly- 
gon. Presence or absence data was then used to generate a The second technique introduced spatially dependent er- 
map of vertebrate species richness. rors (boundary errors) along edges of each species "true" 

The fundamental parameter manipulated in this study range, where the true range was assumed to be the species' 
was the presence or absence of a particular species in a par- range as determined by the original Oregon data. Thus, spa- 
ticular polygon based on vegetationlphysiographic regionlpo- tially dependent errors only occurred along boundaries of the 
litical subdivision. Four possible outcomes are possible from species' range, with errors of omission occurring in polygons 
an accuracy assessment. If a species is actually present in a within the true range of the species and errors of commis- 
polygon and the GAP procedure predicts species presence, sion occurring in polygons just outside the true range. Errors 
then no error occurs. Similarly, if a species is not present in of this sort are likely to occur in GAP studies if inaccuracies 
a polygon and the procedure predicts species absence, then in species predictions from habitat-relationship models occur 
no error occurs. However, if a species is actually present in a at the boundary of a species range, or if there is difficulty as- 
polygon but the procedure indicates species absence, then an sociated with precisely defining boundaries of vegetation 
error of omission occurs. An error of commission occurs if, polygons. 
in fact, a species is not present in a polygon, but the proce- Total area for each level of species richness was evalu- 
dure indicates species presence. ated for boundary and random error at simulated error rates 

To evaluate the effect of errors of omission and commis- of 5 percent and 20 percent. These rates were within the 
sion on a GAP study, data received from the Oregon Depart- range found in other studies (cf. Flather et a]., 1997). For 
ment of Fish and Wildlife were considered "truth," i.e., both random and boundary errors, we evaluated the hypoth- 
errors were introduced into the Oregon database and esti- esis: 
mated effects of these introduced errors were compared to H,: Errors of omission and commission of 5 percent and 20 
the original Oregon GAP database. The independent variable percent introduce no change in the distribution and 
was the level of uncertainty (errors of omission and commis- amount of total area of vertebrate species richness pres- 
sion) and the dependent variable was the distribution of spe- ent in the results of the Oregon GAP. 
cies richness measured as total area in km2. We focused on "biological" significance rather than "statisti- 

Monte Carlo computer simulation was used to simulate cal" significance (e.g., using Student's T-test), because statis- 
effects of error on vertebrate species distribution maps using tical significance could have been attained by merely 
~ ~ c / I n f o  and simulation routines written in C. Each iteration increasing the number of iterations for each simulation. 
of the Monte Carlo simulation randomly introduced a prede- The Monte Carlo simulations were extremely time con- 
fined amount of error into the species distribution map, suming and required large amounts of computer storage 
thereby producing a new error-filled species distribution space; therefore, we subsetted the original data as follows. A 
map. Areas of vertebrate species richness in the error-filled smaller vegetation map was extracted from the original data 
map were then compared to areas of vertebrate species rich- and a subset of the 800 available species was chosen for 
ness in the original map in order to quantify changes in the analysis. The smaller map consisted of three of the 1 2  physi- 
distribution of species richness as a function of the intro- ographic provinces (East Slope Cascades, Basin and Range, 
duced errors. Two different techniques were used to intro- and Owyhee Uplands) from the original map and contained 
duce error into the species distribution map. The first 3,238 vegetation polygons (Figure 1). We chose a taxonomi- 
technique introduced spatially independent errors (random cally similar subset of the 800 available species. The selected 
errors) throughout the vegetation map without regard to the species subset consisted of ten rodents: mountain beaver 
range of any particular wildlife species. Thus, any polygon (Aplodontia rufa), deer mouse (Peromyscus maniculatus), 
in the habitat map where species X did occur was a candi- yellow-pine chipmunk (Tamias amoenus), white-tailed ante- 
date for an error of omission of species X and any polygon lope squirrel (Ammospermophilus leucurus), northern flying 
where species X did not occur was a candidate for an error squirrel (Glaucomys sabrinus), California kangaroo rat (Dipo- 
of commission of species X. An example of these types of er- domys californicus), desert woodrat (Neotoma lepida), 
rors are inaccuracies of vegetation mapping - errors in such heather vole (Phenacomys intermedius), water vole (Micotus 
maps are unlikely to be dependent upon ranges of the wild- richardsoni), and sagebrush vole (Lemmiscus curtatus). The 
life species found in the mapped region. reduced data sets were joined to create a digital map show- 
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ing the distributions of each of the ten rodents throughout 
the study region, which then became the basis for the Monte 
Carlo simulations (Figure 1). The original base map for the 
three physiographic regions included approximately 89,195 
kmz. Approximately 82,904 kmz (93 percent) of the base map 
had species richness of 0 to 4 and 6,291 krn2 (7 percent) had 
species richness of 5 or 6. No polygons had a species rich- 
ness 2 7 for the original map. Subsets chosen were arbitrary, 
and implications of the choice of regions and species are ad- 
dressed in the discussion section. 

Each iteration of the Monte Carlo simulation introduced a 
predefined level of either random or boundary error into the 
original Oregon data map. Error amounts were measured as 
percentages. A 5 percent commission error for species X 
meant that each polygon where species X did not occur had a 
5 percent chance of having species X introduced. A 5 percent 
omission error for species X meant that each polygon where 
species X occurred had a 5 percent chance of having species 
X removed. Errors of commission and omission were simulta- 
neously simulated at the chosen error level. For both random 
and boundary error, the simulation methods were identical 
except that, in the boundary-error simulations, errors could 
only occur in appropriate regions along edges of the various 
species ranges, whereas random errors could take place any- 
where within the study area. Appropriate regions for bound- 
ary error of omission for species X were identified by finding 
the total area comprising the species' range and symmetri- 
cally contracting the boundary of the area until 90 percent of 

Original Map 

11 5% Random Error 

20% Random Error 
n 
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0 1 2 3 4 5 6 7  

Species R ichnes s  
Figure 2. Average total area in km2 for polygons 
with species richness of 0 to 7 for the 50 repeti- 
tions when random errors were simulated. 

the original area remained. The region between the original 
boundary and the 90 percent contracted-area boundary were simulated 5 percent error of omission and commission for 
deemed to be suitable for errors of omission. Appropriate each category, an error matrix, using the expected values for 
regions for boundary errors of were then identi- the binomial distribution, can be calculated (Table I). Sirnu- 
fied by expanding the original species X range boundary by lated and expected results based on area of species richness 
the same amount as it was decreased in the previous step Were very similar, as can be seen by comparing the Expected 
and deeming the region between the original and expanded Row Total and simulated Results. Overall theoretical map 
boundaries the appropriate region for commission errors. accuracy was 63 percent and errors of omission range from 

The two error rates were used for both random and 35 to 40 percent while errors of commission range from 12 
boundary error cases, resulting in a total of four Monte carlo to 76 percent. The high variability in errors of commission 
simulations. Each simulation consisted of 50 iterations, and are largely dependent on the area size of the nearest species 
each iteration produced a map with species richness for each rich category. For e x a m ~ l e ~  commission error for species 
polygon. The total area by species richness class (i.e., 0, 1, ri~hness of 3 was 63 percent. This result is largely due to the 
..., 10 species) was recorded for each iteration. These results fact that species richness equal to 4 in the original map cov- 
were then compared to the results for the original Oregon ered 45,667 kmz; consequentl~p a larger portion, 5,901 kmzj 
GAP database. Identification of areas of high species richness was converted to a species richness of 3 after the simula- 
(hot spots) is one of the goals of GAP, but rather than arbitrar- tions. The expected error matrix when a 20 Percent error of 
ily defining some level of species richness as "hot" (e.g., omission and commission is simulated had an overall map 
polygons with more than five species), we present results accuracy of only 28 percent with errors of omission ranging 
based on changes in the amount of area for each species from 40 to 83 percent and errors of commission ranging from 
richness class. In the case of random error, where expected 23 to 95 Percent (Table 2). 
values for changes in area can be calculated, error matrices Figure 3 illustrates how the total area with a species 
(Story and Congalton, 1986) are used to illustrate the results. richness of 4 and 5 varies for the 50 repetitions of the ran- 

dom error simulations (a species richness of 4 and 5 were 

Results chosen arbitrarily for purposes of illustration, and variability 
in distributions were similar for other species richness cate- 
gories). Coefficient of variation of the total average area for 

Random Error species richness of 4 was 5.7 percent and 10.1 percent for 
When random error was simulated, areas of species richness random error of and 20 penent, respectively. coefficient of 
changed when to the map .ariation of the total average area for fichness of 5 
(Figure 2). With a 5 percent random error, total area de- was 13.8 percent and 12.3 percent for random error of 5 and 
creased for species richness of 0, 1, and 4 by an average of 2O percent, respectively. 
21 to 30 percent and increased for species richness of 2, 3, 5, 
and 6 by an average of 35 to 158 percent. With a 20 percent 
random error, the same species richness categories decreased Boundary Error 
and increased in area, but the effects were magnified with For boundary error simulations, average areas of species 
decreases ranging from 50 to 72 percent and increases rang- richness changed little when compared to the change due to 
ing from 57 to 506 percent. For both error rates, there was an random error (Figure 2 versus Figure 4). Total area decreased 
increase in total average area for species richness of 7 from 0 on average for a species richness of 0, 1, 4, 5, and 6 by 1 to 
km2 in the original data to 292 krn2 and 2878 km2 for 5 per- 21 percent and increased on average for species richness of 2 
cent and 20 percent error, respectively. and 3 by 5 and 8 percent when a 5 percent spatial error was 

Based on the original species richness categories and a simulated. With a 20 percent boundary error, the same spe- 
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TABLE 1. ERROR MATRIX (STORY AND CONGALTON, 1986), BASED ON THE EXPECTED VALUES FOR THE BINOMIAL DISTRIBUTION, FOR SPECIES RICHNESS BY AREA WHEN 
5 PERCENT ERRORS OF OMISSION AND COMMISSION ARE SIMULATED WITH THE ORIGINAL OREGON GAP ANALYSIS DATABASE CONSIDERED TRUTH (I.E., "COLUMN TOTAL" 

Is THE ACTUAL AREA BY SPECIES RICHNESS I N  THE "TRUE" MAP AND, "ROW TOTALS" ARE THE AVERAGE SPECIES RICHNESS EXPECTED AND ACTUAL AFTER 50 
SIMULATIONS). 

Original Map Species Richness 
Expected Expected Actual 

Species Row Row Commission 
Richness 2 3 4 5 6 Total Total Error 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Column 
Total 

Omission 
Error Accuracy 

cies richness categories decreased and increased in area, but 
effects were larger with decreases ranging from 4 to 25 per- 
cent and increases ranging from 16 to 29 percent. 

When 50 repetitions were simulated with boundary er- 
rors, distributions in total area for species richness of 4 and 
5 were much less variable than for random error (Figure 3 
versus Figure 5). Coefficient of variation of the total average 
area for species richness of 4 was 0.34 percent and 1.20 per- 
cent for spatial error of 5 and 20 percent, respectively. Coef- 
ficient of variation of the total average area for species rich- 
ness of 5 was 0.18 percent and 0.65 percent for boundary 
error of 5 and 20 percent, respectively. 

range should have the greatest effect on determining areas of 
high species richness because errors of omission and com- 
mission are allowed to enter in areas where animals might 
obviously not exist. Alternatively, the method for simulating 
boundary error should result in fewer changes in areas asso- 
ciated with high species richness because our method as- 
sumes that animals have some definable range, and errors in 
omission and commission can only occur within a restricted 
area of the range boundary. Our implementation of boundary 
error is conservative, though, because restricting errors to a 
region of + 10 percent of a species' range is of a finer scale 
than Gap Analyses which predict species occurrence at the 
resolution of polygons defined by vegetation type, physio- 
graphic region, and county. 

Wildlife data used in Gap Analyses are compiled from a 
variety of sources such as range maps, state Natural Heritage 
program databases, museum specimens, and other available 
information and literature (Scott et al., 1993). The types and 

Discussion 
The two types of errors simulated in this study can be 
viewed as extremes of a continuum. A priori, it is reason- 
able to expect that our method of simulating random error 
throughout the vegetation map without regard to a species 

Original Map Species Richness 
Expected Expected Actual 

Species Row Row Commission 
Richness 0 1 2 3 4 5 6 Total Total Error 

Column 
Total 

Omission 0.89 0.83 0.77 0.72 0.69 0.68 0.69 
Error 

Map 0.27 
Accuracv 
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Figure 3. Distribution of total area for 50 simulations 
summed over all polygons when species richness equals 
4, (A) 5 percent and (C) 20 percent random error, and 
when species richness equals 5, ( B )  5 percent and ( D )  
20 percent random error. 

a 5 and 20 percent error rate, respectively) when focusing ex- 
clusively on the 1,300-kmz affected area. As suggested by 
Scott et al. (1993), if the GAP study is used to make a prelim- 
inary determination of species rich areas, the implications of 
not considering random and boundary errors could result in 
focusing the preliminary study on a large number of incor- 
rect areas. 

Error rates for omission and commission found in Block 
et al. (1994) and Edwards et al. (1996) suggest that the 5 and 
20 percent error rates used in this study are not unreasonable 
(and compared to some studies, our rates may be conserva- 
tive). Both types of errors might directly be attributable to the 
vegetation layer, wildlife habitat relationship models, or from 
inaccuracies in the species database due to poor data or in- 
sufficient sampling. In addition, simple habitat relationship 
models do not account for community and ecosystem pro- 
cesses that may be important in determining species occur- 
rences (Conroy and Noon, 1996). 

An alternative to using species richness, termed "set- 
coverage" or "representativeness," has been proposed for 
GAP (Wright et a]., 1994; Kiester et a]., 1996; Scott et a]., 
1996). A prioritization analysis defines the minimum number 
of polygons needed to ensure that all species are represented 
at least once in the entire area (Margules et al., 1988). This 
approach may lead to a more comprehensive representation of 
species within a state, but i t  probably will do nothing to miti- 
gate the effects of errors in omission and commission. Re- 
cently, Freitag et al. (1996) compared the selection of con- 
servation reserve areas based on species richness using an 
iterative reserve selection algorithm (set-coverage). They 
compared the results when reserve selection was based on a 
species distributional database taken from published range 
maps versus an actual species records database. Freitag et al. 
(1996, p. 695) stated that "... the real problem revolves 
around data input. Should we accept and tolerate a higher 
degree of false-positives [commission errors1 (as represented 
by the overestimates of distribution maps) or false-negatives 
[omission errors] (found in the less well surveyed grid 
squares of the point data base)?" They did not evaluate ef- 
fects of these errors on set coverage, but we hypothesize that 
set-coverage methods may be more sensitive to such errors, 
partially because the approach may more closely emulate 

magnitudes of errors associated with each of these sources 
could be quite variable, but it is conceivable that lineage, 
spatial, thematic, and temporal errors exist (Thapa and Bos- 
sler, 1992; Lanter and Veregin, 1992; Williams, 1996). Kan- 
don1 errors that can arise during vegetation mapping (Thapa 
and Bossler, 1992) may propagate through habitat-based 
models of species occurrence in a manner similar to our im- 
plementation of rand0111 errors. Boundary errors might arise 
because the functional relationships used in the wildlife hab- 
itat relationship models are biased. Conseq~~ently, errors that 
exist in a GAP data set are probably a combination of random 
and boundary errors. 

In our simulations, random error resulted in large 
changes in species rich areas. Failure to recognize this type 
of error could result in extremely unreliable information. 
Changes in species richness areas due to l~oundary error 
were much smaller relative to the size of the base map area. 
Still, these small changes could be important ecologically, 
politically, and econon~ically when making spatially explicit 
conservation recommendations. 

In a GAP study, one might define an area of high species 
richness. For example, the highlighted area in Figure 1 repre- 
sents areas with a species richness of 5 or greater (approxi- 
mately 6,291 kmL). The area subject to change under the 
boundary error simulations would be -t 10 percent, or ap- 
proximately 1,300 km2. The simulatio~ls resulted in a 9 and 
33 percent decline in area (118-km2 and 428-kmqecli~le for 
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sis capabilities into a GAP seems essential; otherwise, users 
of GAP wil l  b e  unaware of t h e  uncertainty associated wi th  
their analyses. 
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