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Introduction 
In remote sensing accuracy assessment applications, the con- 
fidence interval is commonly used as a way to establish an 
appropriate sample size. However, confidence intervals are 
also informative when included in the accuracy assessment 
report. Many reports and papers give accuracy figures and 
leave out confidence intervals. In those cases where a confi- 
dence interval is constructed, the standard approach is to de- 
rive the interval through the use of a normal approximation 
of the binomial distribution or by referring to exact tables. 
This note briefly discusses the benefit of using confidence in- 
tervals. The main objective is to describe the calculation of 
an exact equal-tail confidence interval for the proportions of 
correctly classified pixels. The exact confidence interval is 
not based on a normal approximation but, instead, uses the 
relationship between the binomial and F distributions. While 
the derivation of the exact confidence interval relies on a 
somewhat involved mathematical relationship between the 
probability density functions, in practice the exact confi- 
dence interval is a relatively straightforward formula. With 
the percentiles of "F" Distributions now commonly available 
in hand calculators and spreadsheet (and other) programs, 
the exact confidence interval is easily calculated. After pre- 
senting the formula for the exact confidence interval, we will 
present an example using both the normal approximation 
and the exact confidence interval. 

Confidence Intervals in Remote Sensing Accuracy Assessment 
Traditional accuracy assessment of classified land-cover data 
is based primarily on data summarized in an "error matrix" 
or a "confusion matrix." This is a square matrix, with the 
number of rows and columns equal to the number of catego- 
ries in the classification. The elements of the matrix compare 
the relationship between reference data and the correspond- 
ing satellite image classification (Lillesand and Kiefer, 1994, 
p. 612). The error matrix, once constructed, can be used to 
obtain estimates such as the overall accuracy, user's accu- 
racy, producer's accuracy (Aronoff, 1982) and the Kappa 
Coefficient (Congalton et al., 1983). All of these figures are 
estimates based on the accuracy assessment sample. Because 
it is only a sample of location on the thematic map, the ac- 
curacy assessment figures contain a stochastic or random ele- 
ment. That is, we do not know the true accuracy of the 
classified data but acquire estimates from the accuracy as- 
sessment sample. Because the figures are estimates, there is 
an associated margin of error. The magnitude of this margin 
of error is relayed through the statistical concept of a confi- 

dence interval. This interval has an associated confidence co- 
efficient, which can be interpreted as the probability that the 
given interval contains the true parameter (Steel and Torrie, 
1980, p. 63; see also most any introductory text on statistical 
inference). 

The most common use of confidence intervals in remote 
sensing studies appears to be as a guide for sample size de- 
terminations (several references related to this point, as well 
as a relevant discussion, appear in Congalton (1991) under 
the "Sampling Considerations" section, p. 44). However, in 
addition to determining sample size, confidence intervals are 
also helpful in relaying the statistical uncertainty associated 
with the given estimate and can be informative and useful 
when presented along with the accuracy figure extracted 
from the error matrix (Card, 1982; Richards, 1993, p. 275). 

Calculation of Exact Confidence Intervals for Thematic Raster 
Data 
Consider the estimate of accuracy 

where x is the number of sample sites correctly classified 
and n is the number of samples. Note that the x and n could 
pertain to the overall accuracy or the accuracy for a given 
class. A common method used to construct a confidence in- 
terval found in many elementary statistics texts is to use a 
large scale, normal approximation (Bain and Engelhardt, 
1987, p.345; Brockett and Levine, 1984, section 5.3; Casella 
and Berger, 1990, example 9.4.5; Cochran, 1977, pp. 57-58; 
Larson, 1982, pp. 294-297; Montgomery, 1991, section 2.4.3). 
Equation 2 gives the formula used to derive the confidence 
interval using the normal approximation: i.e., 

where z is the 100 x (1 - a1pha)th percentile from a standard 
normal distribution. 

In the remote sensing literature, Hord and Brunner 
(1976) use a normal approximation to construct a table of 95 
percent confidence intervals as a function of x and n while 
Card (1982) uses the normal approximation for his confi- 
dence intervals for marginal thematic map accuracies. Fur- 
ther work similar to these two studies could utilize the exact 
confidence interval given below by implementing the exact 
confidence interval in those places where the normal approx- 
imation has been used. 
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TABLE 1. APPROXIMATE AND EXACT CONFIDENCE ~NTERVALS FOR THREE 
SITUATIONS 

Normal 
Approximation Exact Interval 

lower upper lower upper 
x n p limit limit limit limit 

Situation 1 24 25 0.96 0.8832 1.0368 0.7965 0.9990 
Situation2 48 50 0.96 0.9057 1.0143 0.8629 0.9951 
Situation3 96 100 0.96 0.9216 0.9984 0.9007 0.9890 

The normal approximation assumes that the "margin of 
error" associated with the estimated parameter is symmetric. 
However, for a confidence interval on a proportion near one, 
say 0.98, the confidence interval if not symmetric. That is, 
the lower limit on the confidence interval is further from 
0.98 than is the upper limit. In general, if the sample is rela- 
tively small or the proportion is near either 0 or 1, the nor- 
mal approximation can be inappropriate. The common 
approach is to say that, for n greater than a number between 
30 and 60, it is safe to use the normal approximation (Rich- 
ards, 1993, p. 612). Samuels and Lu (1992) give more in- 
volved guidelines for when the normal approximation is 
acceptable. In the event that a normal approximation is not 
appropriate, one should turn to exact confidence intervals 
based on the binomial distribution itself (Cochran, 1977, p. 
59). Blyth and Still (1983) present a detailed discussion of 
binomial confidence intervals and normal approximations; 
they also give a table for exact binomial 95 percent and 99 
percent confidence intervals. The trouble with using bino- 
mial tables is that they may not be readily available and they 
may be limited to only a few confidence coefficients. 

There is an exact confidence interval based on the rela- 
tionship between the binomial distribution and the F distri- 
bution (Blyth, 1986). The confidence internal has the form 

- t.,,x+11,2,n-,,a/z 

S 
x + l  

(3) 
I+- Fz(w+1),z(n-x),u/z 

n - x  

where F,, ,, .,,,, is the upper 100 ~ ( 1  - alpha)" percentile 
from an F distribution with vl and v2 degrees of freedom. 
Most introductory statistical texts contain a description of 
the F distribution and the associated degrees of freedom; for 
example, see Casella and Berger (1990, p. 449). Equation 3 
requires that, in the endpoint adjustment, the lower endpoint 
is 0 if x = 0 and the upper endpoint is 1 when x = n. That 
is, if x = 0, the lower confidence limit is set to zero; if x =n,  
the upper confidence limit is set to 1. The derivation of the 
formula in Equation 3 is given in Blyth (1986). There are 
several steps required in the derivation, and the resulting for- 
mula is not intuitively obvious. However, the following exam- 
ple will hopefully show how the formula is easy to implement 
and provides more statistically sound confidence intervals. 

Some Example Confidence Intervals 
In these examples, we will present the upper and lower con- 
fidence intervals for both the normal approximation and the 
exact interval. Each of the confidence intervals will be for a 
95 percent confidence coefficient. We will do this for three 
different situations. In all three cases, the estimated propor- 
tions are the same while the sample size differs. 
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First, consider the situation where 25 samples were col- 
lected. From these, 24 point were correctly classified. That 
is, 

x = 24 and n = 25, which results in p = 0.96. 

Using these numbers with the normal approximation 
(given in Equation 2), we get 

which results in the interval [0.883186, 1.0368141. 
Using these same n = 25 and x = 24 with the exact for- 

mula (given in Equation 3), we get 

which results in the interval [0.7965, 0.99901. This confi- 
dence interval and confidence intervals for two other situa- 
tions are given in Table 1. 

Note the desirable feature that the exact intervals is 
bounded by zero and one whereas, for n = 25 and 50, the 
normal approximation puts an upper limit on p beyond the 
range of the parameter. A common practice is to simply cut 
off the confidence interval at 1. However, this changes the 
width of the interval and thus changes the confidence coeffi- 
cient associated with the interval. By construction, the exact 
confidence interval will not have a lower limit less than zero 
nor have an upper limit greater than one. This means that 
there is no need to adjust the confidence interval and, so, the 
given confidence coefficients can be maintained. 

Conclusion 
With the value of the F distribution built into statistical soft- 
ware packages, many hand calculators, and most current 
spreadsheet programs, the exact confidence interval is easy 
enough to compute. Because this was not always the case, 
the normal approximation was often the easiest way to esti- 
mate the desired confidence interval. When the normal ap- 
proximation was not appropriate, tables were the easiest way 
to get exact confidence intervals. Because the percentiles of 
the F distribution built into calculators and software are now 
generally more accessible (and certainly less bulky and time 
consuming) than statistical tables, and given the relatively 
simple formula in Equation 3 ,  it is as easy to construct the 
exact confidence interval as it is to use the normal approxi- 
mation and it is easier than using tables. 

We hope that the simple formula presented in Equation 
3 will encourage those reporting overall accuracy assessment 
figures to include confidence intervals for the estimated pro- 
portion and use the exact confidence interval. 
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