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Abstract 
Windows are commonly used in digital image classification 
studies to define the local information content around a sin- 
gle pixel using a per-pixel classifier. Other studies use win- 
dows for characterizing the information content of a region, 
or group of pixels, in an area-based classifier. Research on 
identifying window size and shape properties, such as mini- 
mum, maximum, or optimum size of a window, is almost ex- 
clusively based on the results from automated classifications. 
Under the notably different hypothesis about optimum sizes 
of windows in automated classifications and approaches for 
determining such optimum window size, this article presents 
a cognitive approach for evaluating the functional relation- 
ship between window size and classification accuracy. Using 
human subjects, a randomized experimental design, and a 
continuum of window sizes, portions of digital aerial photo- 
graphs were classified into urban land-use classes. Unlike 
ihe-findings from purely automated approaches, classifica- 
tion accuracv from visual analvsis increased in a monotonic 
form with &;easing window &ze for the urban land-use 
classes investigated. A minimum window size of 40 by 40 
pixels (60-m by 60-m ground areal was required for classify- 
ing Level II urban land use using 1.5-m by 1.5-m resolution 
data (2 75 percent accuracy). This finding is dramatically 
different from the "ideal" window size range (i.e., 3 by 3 to 9 
by 9) and functional relation between window size and clas- 
sification accuracy found in automated per-pixel classifica- 
tions. A theoretical curve depicting the relationship between 
classification accuracy and window size, spatial resolution, 
and classification specificity is presented. 

Introduction 
"...how humans perceive the spatial aspects of tone 
is the key to improving automated analysis proce- 
dures." 

Estes et a]., 1983, p. 991 

"Substantial research is required to define how im- 
age interpreters perform their job and to formalize 
this process before it can be automated." 

Argialas and Harlow, 1990, p. 883 

The above statements express the conclusions of many re- 
mote sensing scientists in their quest for developing and ap- 
plying automated image information extraction methods for 
mapping land uselland cover using high spatial resolution 
imagery. These two statements suggest that better automated 
classifiers might be designed and implemented based on the 
perceptual and cognitive processes used by human image in- 
terpreters. Although Estes et al. (1983) encouraged work in 
understanding the human interpretation process more than 
13 years ago, there has been little work in understanding the 
human perception or cognition of remotely sensed imagery. 
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Despite this lack of research, we often design automated 
measures of image cues, such as texture or pattern, with an 
implicit assumption that we are emulating visual cues or at 
least matching human performance (Conners and Harlow, 
1980; Merchant, 1984a; Jensen, 1996, p. 187). But how do we 
know that such measures emulate visual cues of human pro- 
cesses without studying the human processes and perform- 
ance? 

One problem of automating visual cues is that of deter- 
mining the appropriate window size (expressed as either a 
submatrix of pixels or total ground area) for measuring local 
information. How much local information is essential for ad- 
equately characterizing the pixel (or area, if an area-based 
classifier)? From a computational perspective, the ideal win- 
dow size is the smallest size that also produces the highest 
accuracy. The most common approach for determining the 
appropriate window size is based on empirical results using 
automated classifications. In general, for per-pixel classifica- 
tions, the appropriate size for operating on spectral data 
ranges from a 3 by 3 to a 9 by 9 matrix of pixels (Jensen, 
1979; Gong et al., 1992; Greenfield, 1991; Jensen, 1996). 
Larger window sizes do not increase classification accuracy 
(and may actually decrease classification accuracy) but do in- 
crease computational demands. Research in the appropriate 
window size for area-based classification is practically non- 
existent. Exceptions would be the determination of optimum 
window size for edge enhancements based on the variability 
in local differences (Chavez and Bauer, 1982). The identifica- 
tion of a method for determining optimal window size a 
priori classification is elusive (Gong and Howarth, 1992). 

If the intent is to design automated logic that emulates 
visual interpretation cues and processes, we need to study 
such human processes and performance. Fundamental work 
is needed to define how much information or data are re- 
quired for a human to correctly classify the land uselland 
cover of an image. We can characterize this information 
amount as the window size. Relevant questions related to 
window sizes might be 

What is the functional relationship between window size and 
classification accuracy? 
What is the minimum size window that a human would need 
to accurately classify land use? 
Would a human interpreter's classification accuracy continue 
to increase as window size increased? 

This article describes the results of a cognitive study de- 
signed to determine answers to the three research questions 
above. Using a continuum of window sizes in random order, 
human subjects were asked to classify high spatial resolution 
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Figure 1. Conceptual model for the prlmary stages in the human Image 
~nterpretatlon process (for remotely sensed imagery). The order In which 
features are identified and the rnterrelationsh~ps in image cues, objects, 
image scale, and ancrllary data are not known. 

imagery into urban land-use classes. The subject data were 
then analyzed to define the minimum window size required 
for correct classification of land-use types. A functional rela- 
tion between window size and classification accuracy was 
also constructed. The results of this study suggest that hu- 
mans require windows of considerably different sizes from 
what we commonly use in digital image classification stud- 
ies. 

Admittedly, this human-centered approach to determin- 
ing ideal window size for land-use classification is a dra- 
matic departure from the historic methods for researching 
and evaluating automated classification approaches. It may 
be argued that we should not design automated image classi- 
fication logic based on how humans process imagery. This 
study makes the general assumption that the most efficient 
and robust automated approaches to image classification (at 
least for visible wavelength regions of imagery) should be 
founded on human image interpretation processes. 

The research context for this work may be illustrated by 
a conceptual model1 of the human interpretation process 
with remotely sensed imagery (Figure 1). This simple model 
reflects three stages in the analysis of remotely sensed im- 
agery under the assumption that the human (1) operates in a 
manner similar to the instruction found in fundamental air 
photo interpretation texts, (2) uses the basic image cues of 
Estes et al. (1983), and (3) identifies intermediate level ab- 

'There is no established conceptual model for how a human actually 
interprets remotely sensed imagery. This simple model is the au- 
thor's proposed model. 

stractions (or objects) before the final classification. The first 
stage is the extraction of fundamental spatial image cues, 
such as texture and pattern, from tone and/or color. This 
preliminary feature extraction stage has been proposed in the 
guided search theory (GST) model of Cave and Wolfe (Cave 
and Wolfe, 1990; Wolfe, 1994) and the feature integration 
theory of attention model (F'IT) proposed by Treisman and 
Gelade (1980). The GST and FIT models were proposed by 
psychologists based on the vision process of general imagery 
(i.e., non-remotely sensed). In the second stage, intermediate 
level abstractions (e.g., buildings, trees, etc.) are identified 
from the fundamental cues and possibly the original tone/ 
color and feedback from other previously identified abstrac- 
tions. This second stage of abstractions is what Treisman and 
Gelade (1980) might argue is focused attention. The cognitive 
science community, as does the remote sensing community, 
separates descriptive information about the objects in im- 
agery (i.e., knowledge about such objects) from information 
extracted directly from the image. Descriptive information 
about the objects of interest are stored in the human's mem- 
ory. Such memory resident information is referred to as 
"top-down" information while information extracted directly 
from the image is "bottom-up" information. The final classi- 
fication (e.g., land-uselland-cover categories) is derived from 
these intermediate objects in the final stage. In a loose sense, 
the identification of landuselland-cover classes from an ag- 
glomeration of intermediate abstractions may be analogous to 
the "conjunctive search" process proposed in the GST model. 
Tentative classification of selected portions of the image or 
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objects in the image may become new information available 
in a feedback loop when examining other image portions or 
objects. In each of these stages, we may assume that the in- 
terpretation analyst requires some minimum amount of local 
information - the use of a window. 

If we are to develop automated classification algorithms 
that produce identical classifications as the human analyst 
would, we certainly would not expect our automated logic to 
produce the correct classification if the human could not cor- 
rectly classify the image. In automated logic, the window de- 
fines the portion of an image available for a task - it 
determines the datalinformation available to the logic. How 
much datahnformation is needed for accurate classification 
(i.e., how large should the window be?)? This study probes 
that question from the perspective of the human analyst. 

Background on Window Characteristics 
Empirlcal Approaches 
The window defines the sample size and spatial extent of in- 
formation of a portion of remotely sensed imagery. A moving 
window is commonly used in one of three steps of digital 
image classification: 

(1) computing features (e.g., texture) in a preclassification stage 
(Haralick, 1972), 

(2) evaluating neighborhood influences during classification 
(Swain et al., 19891, and 

(3) reclassifying pixels in a post-classification stage (Harris, 
1985). 

Such windows are routinely used on raw spectral data 
for determining edges or measuring texture. Other studies 
have used a window to evaluate neighborhood composition 
or heterogeneity (Murphy, 1985; Fung and Chan, 1994). The 
window has been used in post-classification studies to 
"smooth" or remove "noise" for classified maps (Thomas, 
1980; Gurney, 1981; Harris, 1985; Bauer et al., 1994; Fuller 
et al., 1994; Barnsley and Barr, 1996). More recent work in 
geographic information systems (GISs) has attempted to for- 
malize the language of window operations as local or zonal 
operators (Tomlin, 1990). The characteristics of the window 
used in any of the three steps are its size, shape, repetition 
of application, and the dynamic nature of the sizelshape 
characteristics in its use. With few exceptions (e.g., Mer- 
chant, 1989a; Merchant, i989b; Hodgson, 1991; Dillworth, 
1991), the window is treated as square and of fixed size. A 
number of studies have discussed the problems of bounda- 
ries and edges between land-cover categories using a moving 
window of fixed sizelshape and have suggested alternative 
solutions (Hsu, 1978; Merchant, 1984a; Merchant, 1984b; 
Hodgson, 1991; Dillworth 1991; Gong, 1994). 

In digital image classification, a distinction is made be- 
tween whether the classification logic uses a per-pixel or an 
area-based classifier. In a per-pixel classifier, each pixel is 
uniquely classified using spectral features and more often 
with additional spatial information from the surrounding 
area, defined by the window. An area- or region-based classi- 
fier would classify all pixels within the window together us- 
ing spectral and spatial information extracted within the 
window. 

Research on determining appropriate measures for char- 
acterizing the information content in a window has been 
conducted since the early 1970s (Figure 2). A number of 
studies have used a specific size window for evaluating dif- 
ferent classification logic or deriving measures of texture, 
pattern, context, etc. With limited exceptions, previous 
works with windows in image classification have used the 
concept of texture for describing spatial variability in bright- 
ness values or frequency of classes. Few studies have com- 
pared classification results using a range of window sizes 

(Figure 2). It is interesting that most window sizes studied 
are small - less than a 9 by 9 matrix of pixels. 

The seminal works on second-order texture statistics by 
Haralick et al. (1973) were based on windows of 64 rows by 
64 columns in size or 20 rows by 50 columns. In this effort, 
the grey-tone spatial dependency matrix was developed 
along with 14 fundamental measures of texture from this 
spatial dependency matrix. Classification of photomicro- 
graphs, digitized aerial photography, and Landsat MsS im- 
agery using an area-based classifier resulted in overall 
accuracies of 89 percent, 82 percent, and 84 percent, respec- 
tively. 

Hsu (1978) examined the difference in classification ac- 
curacy of digitized panchromatic aerial photographs using 3 
by 3 or 5 by 5 window sizes and 23 texture measures. The 
ground resolution of the digitized photography examined 
was approximately 9 m or 17  m for the different images. 
These small window sizes were justified by the interest in 
detailed landscape information and the problem of "edge ef- 
fects" from larger windows. Classification accuracies were 
from 85 percent to 90 percent. Others have used 3 by 3 win- 
dows and first-order measures of texture to measure vegeta- 
tion structure (Cohen and Spies, 1992) and mapping urban 
environments (Jensen, 1979) in per-pixel classifiers. 

In a comparison of texture algorithms, Conners and Har- 
low (1980) examined four texture algorithms and the features 
of each. A window size of 128 by 64 was used with syn- 
thetic imagery in the comparison. 

Historicallv, texture measures were based on either sta- 
tistical method; (first-order statistics) or structural methods 
(second-order measures of texture). More recently, Wang and 
He (1990) introduced a third method of texture analysis, 
called the "texture spectrum," based on the frequency of 
"texture units." Fundamentally, the texture units are based 
on a 3 by 3 matrix of pixels while the texture spectrum is 
characterized by the frequency of texture unit values with an 
n by n matrix of pixels. Using a 30 by 30 matrix of pixels to 
compute the texture spectrum, the results from a per-pixel 
classification of four Brodatz natural texture images (Brodatz, 
1968) was greater than 95.9 percent accuracy for all four 
classes. No explanation was provided for the choice of the 
30 by 30 matrix size. Wang and He (1990) also provided an 
example of the separability between three rock units imaged 
with synthetic aperture radar using a 40 by 40 matrix size 
with the texture spectrum. No explanation was provided for 
either matrix size or the ground units associated with the 
SAR data. 

A few studies have examined the effects of window size 
on classification accuracy using per-pixel classifiers. Gong et 
al. (1992) compared the classification accuracy of three tex- 
ture measures (statistical, second-order statistics, and texture 
spectrum) and SPOT multispectral data with window sizes of 
3 by 3, 5 by 5, and 7 by 7. A rural-urban fringe landscape 
was classified into ten Level I1 and six Level I land-use clas- 
ses. Overall best classification accuracy (Kappa of 0.665) 
with a single texture measure and the three SPOT bands was 
with a 5 by 5 window size and the second-order texture 
measurement. Using a simple first-order statistical measure 
with a 3 by 3 window size and three SPOT bands resulted in 
a Kappa of 0.640. The authors indicated that windows larger 
than 7 by 7 gave unsatisfactory results. 

In a later study, Gong and Howarth (1992) also at- 
tempted to develop a method to predict the optimum size 
window for deriving texture before the accuracy assessment. 
In their study, a method for characterizing the grey-level fre- 
quencies within a window was introduced. The classification 
logic used a minimum-distance measure (i.e., Manhattan 
metric) with the local grey-level frequencies in multiple 
bands. The classification logic and window selection method 
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was tested with SPOT multispectral data on an urban-rural 
fringe landscape. Window size ranged from a 3 by 3 to a 2 1  
by 2 1  matrix. Overall, the highest classification accuracy 
(Kappa of 0.616) was obtained with a 9 by 9 window. How- 
ever, the authors found that some land-use classes main- 
tained relatively high accuracies as window size increased 
while other classes decreased in accuracy. Using divergence 
as a means to determine the optimum size window did not 
produce satisfactory results. 

128 x 128 

64x64 

Perceptual/Cognitive Approaches 
Although there have been perceptual or cognitive studies 
with imagery in general (e.g., terrestrial scenes from a 
ground-based observer, interpretation of maps), few studies 
have focused on remotely sensed imagery collected vertically 
above the Earth. Research that focused on human cognition 
related to remotely sensed image interpretation was con- 
ducted by Hsu and Burright (1980) and Hodgson and Lloyd 
(1986) where comparisons were made between the human 
estimates of texture and the statistical measurements of tex- 
ture. Hsu and Burright quantitatively assessed the differences 
in texture of subimages (10 row by 13 column matrices) by 

TYPE OF STUDY 
Automated Classification 

8 PerceptuaVCognitiva Classification 9 
i Indicates a Range in Window 
j Sires Were Studied 

$ 
Connem 6 Harloq 19.90. 

Hodgm and Uoyd, 19.96 Hemliok. 1973 

$ /  
Haralkk, 1973 a 

a 0 

requiring human subjects to estimate the dissimilarity of tex- 
ture between pairs of choropleth maps. Their study used four 
choropleth maps (seven gray levels) and ten subjects (cartog- 
raphy students). Although the stimuli for their study were 
not remotely sensed imagery, their explicit purpose was to 
extend the relationship between statistical measures of tex- 
ture and perceptual texture to perceptions of texture to re- 
motely sensed image classification. With some reservations, 
the authors found that texture may be one dimensional. 

Hodgson and Lloyd (1986) assessed the human percep- 
tionlcognition of texture using reaction times to indicate the 
dissimilarity in texture between pairs of subimages. The tex- 
ture scale for all subimages (64 by 64 in size) was derived 
from a multidimensional scaling of reaction times. In con- 
trast to Hsu and Burright (1980), in this study a linear scale 
of texture was indirectly elicited from human subjects. This 
indirect approach was used to overcome the problem of sub- 
jects stating what they think they did when, in fact, their 
cognitive process may have used other methodslmeasures. 
Such disagreement between humans verbal descriptions of 
their process and the actual cognitive processes has been 
demonstrated in several other studies (Lewicki and Bizot, 
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Figure 2. Previous work in evaluating the use of window size for local spectral operators and its effect 
on classification accuracy. Few studies have specifically examined a range in window sizes to determine 
the optimum size. Most work has focused on automated classification logic, while only a couple of 
studies have tested for cognitive response. 



1988; Lundberg, 1988). In the Hodgson and Lloyd (1986) 
study, the relative difference in texture was determined im- 
plicitly using the response time of subjects to every combina- 
tion of texture images displayed on a CRT screen. The study 
used ten subimages digitized from panchromatic aerial pho- 
tography (256 gray levels) and 28 subjects (remote sensing 
students). In contrast to the work by Hsu and Burright 
(1980), texture appeared to be clearly one-dimensional. Also, 
the first-order texture measurements were more strongly cor- 
related to the cognitive scale of texture than were the sec- 
ond-order statistics (e.g., those based on the grey-tone spatial 
dependency matrix). Despite the strong similarity in cogni- 
tive texture and first-order texture measures, it is interesting 
to note that many automated classification studies favor us- 
ing second-order texture measures. 

Variants on Window Characteristics 
The window size is generally assumed to be a static, sym- 
metric window, yet other work has advocated various shapes 
and sizes, and even dynamic windows. Merchant (1984a; 
1984b) first suggested the concept of a dynamic geographic 
window that changes size and shape to fit the application. 
Analogous to an n by n geometric window that includes the 
centered pixel and its neighbors, the geographic window in- 
cludes the "field" (or patch) of interest and the neighboring 
fields (or patches) of interest. Hodgson (1991) and Dillworth 
(1991) also argued for a dynamic window size rather than a 
fixed size window. Hodgson (1991) demonstrated how multi- 
ple windows of a variety of shapes and sizes could be used 
simultaneously to build evidence for characterizing the ho- 
mogeneity of a landscape. Dillworth (1991) also argued that 
no one geometric window size provides the best results for 
any image and suggested an adaptable window that dynami- 
cally changes for a given region. 

It may be that a square window or any regular geometric 
shaped window is not robust for automated classifications. 
Dynamic windows that change in shape and size according 
to some local structure may be more appropriate. The human 
interpreter may actually use non-geometric and even dy- 
namic windows. 

Summary of Previous Work 
Practically all previous work using windows in either a per- 
pixel or area-based classification logic only implement a 
square window of fixed size. Evaluation of the effects of win- 
dow size on classification accuracy has been confined to per- 
pixel classifiers. It is interesting to note that, although the in- 
troduction and classical comparisons of texture by Conners 
and Harlow (1980), Haralick et al. (1973), and Wang and He 
(1990) used somewhat large windows (i.e., 20 by 50, 64 by 
64, and 128 by 64 pixels) for deriving texture measures, the 
applications of these measures of texture that followed used 
relatively small windows - 3 by 3, 5 by 5, or 7 by 7 pixels 
in size (Irons and Petersen, 1981; Jensen, 1996; Gong et al., 
1992; Woodcock and Strahler, 1987) . In part, the interest in 
smaller windows may be due to the negative effects of using 
large windows, such as for edge effects (Hsu, 1978; Town- 
shend, 1986; Gong, 1994). This focus on small window sizes 
in previous works may also stem from the desired mapping 
precision and the spatial resolution of the imagery. Most en- 
vironmental work and land use projects of urban and subur- 
ban landscapes need land unit classification approaching ' 1 4  

to '/L acre in size. With the historically available satellite im- 
agery (e.g., SPOT, Landsat) this requires classification ap- 
proaching the pixel scale. 

Based on the previous works (primarily per-pixel classi- 
fication logic), different theoretical curves for the relationship 
between classification accuracy and window size may be 
suggested (Figure 3). We might assume that classification ac- 
curacy would be highest at small window sizes (e.g., 3 by 3 
to 7 by 7 pixels) and would decrease with increasing win- 
dow size (Figure 3a or 3b). If we follow the examples pro- 
vided by the authors who introduced the familiar grey-tone 
spatial dependency matrix (Haralick, 1973) and texture spec- 
trum (Wang and He, 1990), then much larger matrices would 
be needed (i.e., greater than 20 by 50 pixels). Preliminary 
work with high spatial resolution imagery by the author sug- 
gests that the visual interpreter would also need large win- 
dow sizes, and the functional relationship may follow a 
sigmoid curve (Figure 3c). This latter functional relation was 
also noted in early work by Wharton (1982) with 7.5-m reso- 

a) 
WINDOW SlZE 

0% I ; 
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Figure 3. Theoretical and empirical relationships between classification accuracy and window 
size for the different land-use/land-cover classes. (a) and (b) suggest classification accuracy is 
greatest for small window sizes and decreases with increasing window size. (c) suggests that 
classification accuracy increases monotonically with increasing window size, but in a sigmoid 
shape. All theoretical functions may be dependent on the spatial resolution of imagery. 
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lution remotely sensed data, although his classifier operated 
on biophysical components rather than purely spectral val- 
ues. 

The next generation small satellites will have spatial res- 
olutions of 1 m to 3 m for panchromatic bands. For mapping 
units of ' 1 4  to '12 acre, pixel groups must be classified into 
land-uselland-cover classes. The nature of spectral informa- 
tion content within a window over such a small geographic 
area may require a reconsideration of traditional measures of 
texture, pattern, etc., and the window size. 

This study focused on the analysis of high spatial resolu- 
tion imagery that will be available from the next generation 
small satellites, such as Earthwatch (3m by 3m and l m  by 
lm) and Orbital Sciences ( lm by lm). A range in window 
sizes were examined with high spatial resolution data to de- 
termine which of the functional forms postulated (e.g., Fig- 
ure 3) best models the performance of a visual analyst. 

Methodology 
The primary considerations in this cognitive study of win- 
dow size were the experimental design, land-use classifica- 
tion scheme, range in window sizes, image spatial resolution, 
number of stimuli, and subjects. The stimuli consisted of a 
random set of subimages, each representing a geometric win- 
dow of certain extent, extracted from black-and-white aerial 
photography. The set of subimages represented a range in 
window sizes. The critical minimum and maximum window 
sizes would be determined based on the expected improve- 
ment and saturation in classification accuracy of these win- 
dow subimages by a set of subjects (e.g., Figure 3c). It was 
assumed that the subject would be synergistically using a 
number of image interpretation elements, such as tone, pat- 
tern, texture, shape, size, and association. No attempt was 
made to determine the relative importance in the interpreta- 
tion elementsZ in the classification of each land use. The as- 
sumption was only that the necessary measures of 
information for correct classification were contained in the 
respective window size. 

Eliciting Human Procedures 
One method for approaching the problem of selecting an ap- 
propriate window size is simply to ask the interpreter - 
"What is the minimum size geometric window necessary to 
classify this image?" This kind of structured interview is 
problematic for many cognitive studies, such as the window 
question, because the subjects may provide an answer for 
their belief (e.g., "I used a 50 by 50-pixel window") but may 
be inaccurate when forced to use such a window size. The 
problem is that humans often have a difficult time articulat- 
ing processes that are subliminal. Several studies have dem- 
onstrated that humans can even "implicitly" learn sequences 
of graphical patterns or complex relations between elements 
and subsequently use this learned information yet be unable 
to articulate the sequences or relations (Lewicki and Bizot, 
1988). In fact, when asked to explain one's heuristic, humans 
often provide justifications of their results rather than de- 
scriptions of their method (Lundberg, 1988). 

A research design can be constructed to subtly tease out 
this information from human image interpreters. Much work 
in creating such designs was developed in psychology (Har- 
vey and Gervais, 1981), cartography (Olson, 1979), behav- 
ioral geography, and more recently in artificial intelligence 
(Lundberg, 1989). A key method used in such a research de- 
sign is the manipulation of the stimuli until a change in the 

=As noted by Estes et al. (1983, p. 933), the basic interpretation ele- 
ments used in image analysis have not been defined - "...there is 
not agreement on the number, or the ordering of these elements ex- 
cept at the primitive level." 

response is noted. Classification accuracy may be viewed as 
the subject response. Indicators of a change in response or 
process are often subjects' answers to questions posed andlor 
subjects' response times to a question. A correct answer with 
a faster response time indicates the stimuli added informa- 
tion or was more easily processed by the subjects. In this ex- 
periment, the variation in window size was the stimulus 
manipulated. This study used the correctness in answers as 
an indicator of response change. 

For the classification accuracy and window size prob- 
lem, the expectation was that the function will follow one of 
the three curves suggested in previous works (Figure 3). 
However, based on the author's work in human image analy- 
sis, interpreters may not be able to correctly classify individ- 
ual pixels or even very small windows of pixels into Level I1 
land-use categories. As the window size increases, the classi- 
fication accuracy is expected to increase (Figure 3c). It was 
postulated that the classification accuracy should rapidly in- 
crease at some window size and then increase at a decreas- 
ing rate as the window size further increases. 

Imagery and Classification Scheme 
A data set of windows of various sizes and land-use classes 
was collected from black-and-white aerial photography of the 
Denver, Colorado metropolitan area. The source aerial pho- 
tography was flown on 15 October 1964 at a scale of 1: 
17,400. Earlier work by Welch (1982) recommended a 
ground resolution in the range of 0.5m to 3m for mapping 
Level I1 urban land use through visual interpretation. The 
aerial photography in this study was scanned at a pixel size 
of 1.5m by 1.5m to insure that all of the Level II classes 
could be accurately identified in the selected range of win- 
dow sizes. For this study, the subimages represented Level 11 
land-use classes of residential, commercial, and transporta- 
tion (Anderson et al., 1976) because these are particularly 
problematic to discriminate between (Jensen, 1979; Jensen, 
19961. 

The desirable range in window sizes included the small- 
est window where almost n o  trained interpreters would be 
able to identify the land-use classes accurately (Figure 4). 
The upper end of the window scale would include a size 
where accurate classification by almost all interpreters would 
be possible. A preliminary examination of the photography 
suggested that most trained visual analysts should be able to 
discern among the three land-use classes with a window ap- 
proximately 1.5 ha in size. This size area would correspond 
to a square window on the ground of 122 m by 122  m (i.e., 
80 by 80 pixels of 1.5-m imagery). As a conservative mea- 
sure, a submatrix of 100 rows by 100 columns (150-m by 
150-m ground units) was chosen as the largest size of 
window. It was expected that even an expert interpreter 
would have a difficult time correctly discriminating between 
the land-use classes at window sizes smaller than about 0.20 
ha (a 45-m by 45-m square window). Again, a smaller size 
window of 15 m by 15 m (or a 10- by 10-pixel submatrix) 
was chosen as a conservative limit (Figure 4). As one may 
see in Figure 4, accurate classification of the smallest win- 
dow sizes is exceedingly difficult. 

The complete set of stimuli consisted of three land-use 
classes at ten different window sizes. Because the use of only 
one prototype for a given window size and land-use class 
may bias the experiment, five different geographical locations 
for subimages for each land-use class and window size were 
selected. The window sizes used in the study ranged from a 
10 by 10 subimage (15 m by 15 m on the ground) to a 100 
by 100 subimage (150 m by 150 m on the ground). Each sub- 
sequent window size was 10 rows by 10 columns larger than 
the previous. Thus, the complete data set consisted of 150 
unique subimages. 
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Figure 4. Examples of the range in window sizes for the land-use/land-cover classes of 
commercial, residential, and transportation. The schematic key representing the relative size 
of typical features in the urban land-use categories is also shown. 

EXAMPLE STIMULI 

Commercial Residential Transportation 
Subimage Geographic Geographic 

Extent Area 

100 x 100 150m x 150m 2.25ha 

135m x 135m 1.82ha 

a m  120m x 120m 1.44ha 

105m x 105m l.1Oha 

.81 ha 

II II .56ha 

WB rn a 40x40 
60m x 60m .36ha 

rn 1911 rn 30 x 30 
45m x 45m .20ha 

e En II 20 x 20 3om x 3om .09ha 

ra BI E 10 x 10 15m x 15m .02ha 

REFERENCE SCHEMATIC 

SUlGLE FAMILY 
INTERSTATE 

2-Lane Highway 

Reproduction (Note: The change in scale does not change the inherent 1.5- 
To create a large set of these stimuli in this study, the subi- m spatial resolution of the digital imagery.) The combination 
mages were converted to TIFF format and printed as half-tone of the pixel size at printed scale, line screen, and dot resolu- 
images using a high resolution Lineotronics filmwriter. The tion was sufficient to depict the original gray-tone range in 
film output resolution was 1270 dots per inch with a 175- the original photography adequately. A random number 
line screen. All subimages were enlarged by 220 percent to keyed to each land-use class, subimage, and window size 
allow for viewing without the use of magnification lenses. was located outside each window. 
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Residential 
Commercial 

Image Classification 
A subject pool of 25 undergraduate students who had just 
completed an aerial photography course was selected. The 
use of trained students is a common and valid practice used 
in perceptual/cognitive studies and matches the objectives of 
this research study. A thorough discussion of the land-use/ 
land-cover classification system and sample imagery was 
used to insure the subjects understood the tasks and were 
competent. Subjects were told that the images were fiom the 
same series of 1:17,4OO-scale aerial photography of the Den- 
ver metropolitan area with which they had previously 
worked. All subjects had interpreted similar black-and-white 
aerial photography at the same scale in three different labo- 
ratory exercises a month earlier in the course. Thus, each 
student had a thorough understanding of the definitions of 
each land-use class as elaborated in the document by Ander- 
son et al. (1976). 

A small trial dataset consisting of five different subima- 
ges was used to orient the subjects to the nature of the exper- 
iment and resolve any questions about the tasks. Each 
student was then given a set of 30 different subimages - ten 
different window sizes for each of the three land-use classes. 
No student had the same set of 30 images. A reference sche- 
matic depicting the relative scale of a two-lane street, a four- 
lane highway, a single-family residential home, and a scale 
bar was given to each subject (bottom of Figure 4). The sub- 

3 20- 

0 

jects could refer to this schematic during the experiment. 
The subimages were provided in random order in an enve- 
lope. The subject was asked to only pick up and interpret 
one window at a time, without referring to other previously 
intermeted imaees. 

- 

?he cpesticn asked of each subject was 
"Is this area predominantly residential, commercial, 
or transportation?" 

Each subject was to answer the question for the given win- 
dow and then write down the random number of the photo 
subimage with the subimage classification. 

O rb $Q ;O r6 rb do L A ;o_ L- subimage dimension 

. (ha .She 1.0ha 2.0ha - ground area 

SUBIMAGE SIZE 
Figure 5. Classification accuracy for each land-use/land- 
cover class as a function of window size. The minimum 
classification accuracy for each class would be about 33 
percent if all subjects randomly selected a class for each 
windows. 

Results 
Because there were only three land-use classes, the mini- 
mum expected classification accuracy, by chance, for each 
class would be about 33 percent. In a general sense, the rela- 
tionship between classification accuracy and window size 
followed a logarithmic curve rather than an expected sig- 
moid curve. The classification accuracy for the smalleqt win- 
dow size (i.e., a 10 by 10) was very poor, ranging from 32 
percent for transportation to 54 percent for residential (Fig- 
ure 5). The accuracy of classification increased immediately 
for all three land-use classes as window size increased, satu- 
rating at about 40 by 40 pixels (60m by 60m). At large win- 
dow sizes, the accuracy ranged from 88 percent for 
commercial to 100 percent for residential. There was little 
variation in accuracy with window sizes larger than 40 by 40 
pixels - except for commercial. 

A more specific examination of the commercial stimuli 
revealed that certain subimages were more often misclassi- 
fied than others. In fact, two of the five different commercial 
subimages at the 90- by 90-pixel window size were misclas- 
sified by six of the 25 interpreters. Apparently, due to the 
nature of commercial land use (such as large homogeneous 
areas of parking lots or buildings), very large windows are 
required to encapsulate enough spatial information for accu- 
rate classification of some areas. Although the leading tail of 
the anticipated sigmoid curve was not found, this would be 
due to the smallest window of only 10 by 10 pixels rather 
than the common window size in automated procedures of 3 
by 3 or 5 by 5 pixels. Such very small window sizes would 
undoubtedly have been misclassified by the subjects, thus 
providing the leading tail of the sigmoid curve. 

An examination of the between-class confusion reveals 
that the commission errors of residential were generally with 
commercial and vice versa (Table 1). For instance, the sub- 
images of residential land use that were incorrectly classified 
were almost always committed as commercial land use. As 
indicated earlier, the large omission error for 90 by 90 win- 
dows of commercial was due to two specific subimages. Mis- 
classified subimages of commercial land use were generally 

Residential Commercial Transportation 
committed to.. commited to.. committed to.. 

Window Size Commercial Transportation Residential Transportation Commerical Residential 
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committed as residential land use (Table 1). There were al- 
most no commission or omission errors for transportation 
with window sizes greater than 30 by 30 pixels. Apparently, 
the unique large linear features associated with the transpor- 
tation class were easily discernable. 

The finding that classification accuracy of these Level I1 
land uses requires larger windows (greater than 40 by 40 pix- 
els) supports the argument by Merchant (1984a) that small 
window sizes constrain adequate contextual analysis. The 
large window size found in this study is also commensurate 
with the large window sizes used in the seminal works by 
Haralick (1972), Conners and Harlow (1980), and Wang and 
He (1990). The implications of these findings are that if the 
goal in digital image logic is to construct an automated clas- 
sifier that operates in the same manner as the human, then 
window sizes should be much larger than the common 3- by 
3- or 5- by 5-pixel windows used in automated approaches. 
It also calls into question the notion of using small windows, 
regardless of the classification algorithm (e.g., neural net- 
work, maximum likelihood, etc.) in classifying land uselland 
cover from panchromatic, color, or color-IR imagery. If the 
human cannot correctly classify small subimages, then 
should we expect an automated classifier to do so? 

The finding that there is a bias in commission errors by 
human interpreters may have implications on the use of such 
reference data and the interpretation of the error matrix for 
all other remote sensing accuracy assessments and error 
propagation (Lanter and Veregin, 1992). Treatment of bias in 
the reference data would require an understanding of the ex- 
pected biases within the classification scheme used in a spe- 
cific application. From this study, human-derived 
classification of Level I1 urban categories is most accurate for 
residential and transportation and least accurate for commer- 
cial. 

Discussion 
The design of the experiment used in this study precludes 
the use of certain types of information gathered by the hu- 
man interpreter during many image interpretation applica- 
tions. For instance, the stimuli were presented to the subjects 
one at a time, in completely random order, and without vi- 
sual comparisons between stimuli. In normal circumstances, 
the photo interpreter may proceed from known to unknown 
parts of a photograph, thereby using information gained from 
one part of the scene in classifying other parts of the scene 
(Stone, 1964). Although the known-to-unknown reasoning 
could occur within a subimage, the experimental design did 
not allow it to occur between subimages. The lack of this 
feedback in the experiment may explain why there was still 
some classification error at the larger window sizes for com- 
mercial and residential. These misclassifications might be 
avoided in normal interpretation if the interpreter uses the 
concept of a dynamic window, where the window increases 
in size to adapt to the local context. Also, the geographic 
functional linkages (e.g., commercial development along 
larger transportation corridors) may be better processed by 
visualizing the entire study area, or at least a larger area than 
that expressed with the window size range in this study. In 
fact, the human may be using a hierarchy of windows for the 
three different stages (Figure I). Either of these concepts that 
may be at work in visual analysis is problematic to imple- 
ment in a digital logic. 

The range in window sizes and spatial resolutions exam- 
ined in previous work (Figure 2) indicates that few efforts 
have examined the effects of window size on classification 
accuracy. To a limited extent, the influence of window size 
with moderate resolution imagery (e.g., 20 m to 30 m) on au- 
tomated classification accuracy has been examined. This 
study has examined the effects of window size (from 10 by 

,001 ha 1.000 ha 

WINDOW SIZE (in Ground Area) 

Figure 6. Theoretical relationship between image 
classification accuracy, window size, spatial 
resolution, and detail of the classification 
system. 

10 to 100 by 100 pixels) on classification accuracy for high 
spatial resolution imagery (i.e., 1.5 m) and visual classifica- 
tion. The concept of dynamic window sizes and its effect on 
accuracy for any resolution imagery, using either visual or 
automated approaches, has not been examined. 

The relationship between classification accuracy and the 
use of a specific window size by visual interpreters (a cogni- 
tive process) and the spatial resolution of the imagery (a 
measure of scale) may also vary. This process-scale relation 
is similar to the notion of changes in the dominant processes 
as a function of the scale of analysis - a concept well recog- 
nized by ecologists (Levin, 1992) and geographers (Meente- 
myer, 1989). For image analysis, the interpreter may use 
different cognitive processes in a classification depending on 
the scale of the imagery. If the human visual process uses 
window size differently depending on the scale of the im- 
agery, then window size may better be defined as ground 
area rather than a unitless matrix of pixels. Studies of cogni- 
tive processes and studies of automated classification logic 
should each examine the covariation in spatial resolution 
and ground area encompassed by a window. If this covaria- 
tion is understood, then a more robust, and perhaps dy- 
namic, automated classification logic could be designed. 

It is suggested that a range in sigmoid curves could be 
used to express the functional relation between classification 
accuracy and window size, spatial resolution, and specificity 
of land-uselland-cover classes (Figure 6). Coarser spatial res- 
olution imagery would tend to decrease classification accu- 
racy. However, the overall classification accuracy also 
depends on the requested specificity in land-uselland-cover 
categories. In general, it is expected that Level I categories 
could be classified with higher accuracy than Level I1 catego- 
ries. Also, classification accuracy may be less with coarser 
spatial resolution imagery. 

A change in cognitive process with changes in scale may 
also suggest that different information measurement logic be 
used at different image scales. For instance, texture measure- 
ment 1 may be better at image scale A while texture measure 
2 would be better at scales larger than A. Presuming that the 
process-scale relation exists, it must still be determined 
whether the changes in process are linear, nonlinear, or 
stepped. 

Finally, the problem of formalizing the process used by 
the human image interpreter still remains. It is one conclu- 
sion to discover the relative window sizes that contain the 
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necessary information content. However, h o w  the  h u m a n  de- 
termined the  information from the  spatial variations i n  tone 
within the  window is  a major step. It is sometimes assumed 
that texture algorithms a n d  the  measures derived from these 
algorithms adequately describe the  information content in a 
subimage for discriminating between other subimages (Con- 
ners a n d  Harlow, 1980). Visual interpreters may  use  a multi- 
stage approach (e.g., Figure 1) to  abstract t h e  information 
content within a window, such  as  deriving (1) edges and tex- 
ture from tonal variation, (2) intermediate objects from conta- 
gion, and (3) l and  use from objects. Determining t h e  stages in 
t h e  visualization process, cognition of image cues and ob- 
jects, type of objects a n d  object parts, methods for associat- 
ing these objects, a n d  feedback between stages, are  
fundamental  to  modeling t h e  h u m a n  image interpretation 
process. Additional work by  several researchers using differ- 
e n t  landscapes could formalize the  relations between spatial 
resolution (scale), window size (geographic extent), window 
shape, klassification specificity, a n d  classification logics (pro- 
cesses) required to  interpret imagery accurately. 

For researchers interested i n  comparative studies o r  for 
testing other classification logic a n d  methods, the  digital data 
used  in this cognitive s tudy are available o n  the  Internet a t  
http://www.cla.sc.edu/geog/geogdocs/departdocs/facdocs/ 
hodgson.htm1. 
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