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Abstract 
Cartographers often need to use information in existing land- 
cover maps when compiling regional or global maps, but 
there are no standardized techniques for using such data ef- 
fectively. An iterative, "map-guided" classification approach 
was developed to compile a spatially and thematically con- 
sistent, seamless land-cover map of the entire Intermountain 
Semi-Desert ecoregion from a set of semi-independent subre- 
gional maps derived by various methods. A multi-temporal 
dataset derived from AVHRR data was classified using the 
subregional maps as training data. The resulting regional 
map attempted to meet the guidelines of the proposed Na- 
tional Vegetation Classification System for classification at 
the alliance level. The approach generally improved the spa- 
tial properties of the regional mapping, while maintaining 
the thematic detail of the source maps. The methods de- 
scribed may be useful in many situations where mapped in- 
formation exists but is incomplete, has been compiled by 
different methods, or is based on inconsistent classification 
systems. 

Introduction 
Cartographers are often asked to compile land-cover maps of 
specific regions for which land-cover mapping already exists 
for smaller subsets of the region. These existing maps are 
rarely ideal for the assigned task because they may be out- 
dated, use a classification scheme designed for a different set 
of objectives from the current task, or are not at the desired 
spatial resolution. Sometimes several maps, perhaps covering 
the entire study area, will be available but have different 
temporal, thematic, and spatial properties from each other as 
well as from the target product. The two most commonly 
used options for dealing with existing maps are remapping 
and mosaicking. With the first option, the cartographer 
chooses to ignore the information in the original maps and to 
remap the area rather than attempting to resolve their differ- 
ences. The second option is to mosaic the maps together, 
perhaps with some attempt to match their classification 
scheme (i.e., "cross-walking") but retaining any mismatches 
that will likely occur at map boundaries. If the maps overlap, 

rules for determining the preferred map source must be iden- 
tified. In addition, the cartographer could do the cross-walk- 
ing plus attempt to smooth or adjust the mismatches in 
polygon boundaries and thematic labeling at map edges (i.e., 
"edge-matching"). If the region is quite large, both options 
(remapping and edge-matching) can entail more effort than is 
practical. Remapping is a particularly unsatisfying option 
given that it ignores so much available, if imperfect, data. 
Merely cross-walking maps into a common scheme may also 
be inadequate, not only for esthetic reasons, but also because 
the regional map may still lack the consistency necessary for 
the kinds of analyses for which it is being compiled. If the 
classification scheme of the source maps is too incompatible, 
the cross-walk may only be reasonable at a grosser level of 
aggregation than is useful for the analysis. 

As a case in point, the Gap Analysis Program (GAP) 
(Scott et al., 1993), coordinated by the Biological Resources 
Division of the U.S. Geological Survey (formerly the National 
Biological Service), is conducting assessments of the manage- 
ment status of native plant communities over entire multi- 
state ecoregions. Maps of plant community types are com- 
piled over the individual states within the region. Although 
GAP has standards for mapping land-cover, the maps pro- 
duced for individual states are not entirely consistent, due to 
the evolution of the standards over the duration of the pro- 
gram, differences in interpretive methods, and differences in 
available ancillary information. 

The objective of a regional gap analysis is to evaluate the 
conservation status of cover types at the "alliance" level, as 
surrogates for biodiversity as a whole. Alliances are d e h e d  
by the dominant canopy plant species (FGDC, 1996). This is 
a more detailed classification than most regional-scale remote 
sensing applications that focus on structural rather than flo- 
ristic differences (e.g., Running et al., 1995; Cihlar et al., 
1996). There has been concern about the feasibility of edge- 
matching the state-level GAP maps to make a seamless re- 
gional land-cover map (Zube, 1994; DellaSala et al., 1996). 

Initial examination of the state-level land-cover maps of 
a region in the western United States suggested that simply 
mosaicking them would not provide the consistent product 
needed for gap analysis. Some classes were too general, 
while others were too detailed. The s~at ia l  resolution varied 
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considerably according to the mappiLg method and the re- 
mote sensing and ancillary data sources used. Mapping the 
region again but using a single method was considered an 
unacceptable alternative given the large investment in pro- 
ducing the state maps. The task then was to synthesize a re- 
gional map from the existing GAP state maps, improving the 
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spatial and taxonomic consistency while maintaining their 
best information. The desired consistency refers not only to 
the vegetation classification but also to the spatial resolution 
of the map and to the absence of artificial seams at state 
boundaries created by independent mapping. 

An innovative approach was developed for this research 
project using existing maps as training data for classifying 
NOAA Advanced Very High Resolution Radiometer (AVHRR) 
meteorological sensor data. The objectives of this paper are 
to present this "map-guided classification" technique with an 
example from a region of the Intermountain West and to de- 
termine whether AVHRR data products could provide the de- 
sired spatial consistencv and thematic detail. The generalitv 
of the iechnique to similar applications for compilyng land: 
cover maDs will be discussed as well as the limitations. This 
effort m&ks one of the first applications of the proposed Na- 
tional Vegetation Classification System (NVCS) (FGDC, 1996) 
at a regional mapping scale and, therefore, provides one test 
of the feasibility of implementing these standards in real- 
world situations. 

Background on Broad Scale Land-Cover Mapping 
Regional to global land-cover mapping has become an in- 
creasingly important data source in a variety of scientific 
studies, including land-use change, biogeochemistry cycle 
modeling, climate modeling, water-energy-vegetation inter- 
actions, and ecosystem response to environmental change 
(summarized in Townshend et al. (1994)). For such studies, 
land cover often needs to be determined only at a structural 
level, perhaps discriminating life-forms (tree versus shrub 
versus herbaceous), leaf longevity (evergreen versus decidu- 
ous), and leaf type or shape (needle- versus broad-leaved). 
However, knowledge of the floristic variation in plant com- 
munity types is critical in planning c~nservation~strate~ies 
that will protect all species and communities (Scott et al., 
1993). 

Landsat Thematic Mapper (TM) data are generally not a 
viable option for mapping land cover over large regions be- 
cause of the immense data volumes required, particularly if 
multi-date imagery is necessary to discriminate between 
land-cover types. With its relatively narrow swath width, TM 
imagery can not always be obtained from the same date over 
the entire region, which adds atmospheric and phenological 
variability to the dataset and complicates accurate classifica- 
tion. With few satellite passes during the growing season, 
Landsat also provides few opportunities to obtain cloud-free 
images of an entire region. 

AVHRR imagery has become a popular alternative for 
land-cover mapping at regional to global scales because it 
is relatively inexpensive, has high temporal frequency for 
avoiding cloud cover, and has more manageable data vol- 
umes than TM. Most often, multispectral AVHRR data are first 
transformed into a single index such as the Normalized Dif- 
ference Vegetation Index (NDVI) and composited over a 10- to 
30-day period to reduce cloud cover (Holben, 1986). Love- 
land et al. (1991), for example, used eight monthly compos- 
ites of NDVI to classify land cover of the conterminous 
United States. Kremer and Running (1993) were able to sepa- 
rate big sagebrush, introduced cheatgrass, and native bunch- 
grass at the Department of Energy's Hanford Reservation in 
Washington state by utilizing phenological differences de- 
tected from multi-temporal composites of NDVI. Lloyd (1990) 
derived phenological variables from similar NDvI composites 
and classified them. Lambin and Ehrlich (1995) integrated 
NDVI with land-surface temperature from AVHRR thermal in- 
frared data to improve classification of land cover in Africa. 
Cihlar et al. (1996) also worked with NDVI, reflective red and 
near-infrared channels, and one thermal band to classify land 
cover in Canada. They used principal components analysis 

to extract the main phenological patterns in each channel or 
index. In discriminating relatively simple classes on a global 
scale, combinations of NDVI-derived phenological variables 
(e.g., amplitude of NDVI from annual minimum to annual 
maximum) and thermal data (e.g., maximum annual land- 
surface temperature) produced results superior to applying 
the NDVI composites directly (DeFries et al., 1995). Running 
et al. (1995) have proposed a classification logic based on 
these phenological variables (i.e., derived from NDVI) for 
global land-cover mapping into 12 basic structural categories. 
Thus, there have been many datasets derived from AVHRR 
images that have been successfully used as inputs in regional 
land-cover classification, including direct indices such as 
NDVI, principal components of time-series data, and biophys- 
ical metrics derived from NDVI. 

Several methods have been applied to classify land 
cover from these Avm~-based indices over regional domains. 
The standard method is some form of statistical clustering 
such as maximum likelihood. Decision trees not only per- 
form the classification, but also can reduce the dimensional- 
ity of the dataset while providing useful insights into the 
interrelations between variables (Lloyd, 1990; Running et al., 
1995; Hansen et al., 1996). Only the input channels that best 
discriminate between classes are used, and the set of chan- 
nels used to classify a given output class can vary between 
classes. Neural networks and evidential reasoning have also 
been applied to image classification (Gong, 1996) but are 
generally less familiar to most practitioners. The "best" clas- 
sification method for land-cover mapping is still an open 
research question (Lloyd, 1990). 

Existing Mapping of the lntermountain Semi-Desert Ecoregion 
The study area for developing the map-guided classification 
methodology was the Intermountain Semi-Desert (ISD) ecore- 
gion (Bailey, 1995). This ecoregion consists of the plains of 
the Columbia and Snake rivers and the Wyoming Basin in 
portions of Washington, Oregon, Idaho, Nevada, California, 
Utah, Wyoming, Colorado, and Montana (Figure 1). The ISD 
ecoregion is primarily characterized as sagebrush steppe, or 
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Figure 1. Regional map of the lntermountain Semi-Desert 
ecoregion and the three subregions used for classifica- 
tion in this project. 
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Figure 2. Detailed map of the original polygons 
from the state GAP maps of the Idaho-Nevada 
border. 

sparse shrub cover (Artemisia species) interspersed with na- 
tive bunchgrass (Kiichler, 1970). The sparse shrub, grass, and 
woodland cover challenge most remote sensing techniques 
for determining land cover at the alliance level (Knick et al., 
1997). The various state-level GAP projects in this ecoregion 
were among the first to complete their land-cover mapping, 
but these semi-independent maps have not been compiled 
previously into a consistent, alliance-level, regional map. GAP 
and The Nature Conservancy were both eager to conduct re- 
gional conservation assessments and thus needed such a map 
as the basis. 

The ISD ecoregion encompasses 412,000 kmz (equivalent 
in size to the state of California) and a range of environmen- 
tal conditions. The rainshadow effect produced by the Cas- 
cade-Sierra Nevada ranges favors shrub cover and limits tree 
cover to higher elevations, narrow riparian corridors, or 
sparse pinyon or juniper woodland. In low-lying areas that 
are subject to periodic flooding, sagebrush is replaced by 
saltbush (Atriplex) and greasewood (Sarcobatus) communi- 
ties. Shrub species are replaced by perennial grasses where 
deeper soils occur. Most relatively level areas with adequate 
water supplies and suitable soils have been converted to ag- 
riculture (West, 1988). Annual grasses, especially cheatgrass 
(Bromus tectorum), have invaded the region since the 1870s. 
Cheatgrass is better adapted to frequent disturbance than is 
native bunchgrass for multiple reasons. It also creates self- 
perpetuating stands even when mechanical disturbance is re- 
moved because its dense cover burns hotter and more fre- 
quently than native grasses (Mack and Thompson, 1982; 1 Rickard and Sauer, 1982). As a consequence, cheatgrass is 
now the dominant grass of the IsD ecoregion. 

Despite the relatively homogeneous appearance of sage- 
brush steppe, the ecoregion is floristically complex. There 
are eight species or subspecies of Artemisia that dominate 
various plant communities. Three juniper and two pinyon 
species occur in different portions of the ecoregion. Addi- 

tionally, many of these cover types have sparse canopies so 
that soils strongly affect the surface reflectance. Remote sens- 
ing alone would be an inadequate data source to distinguish 
the communities formed by these closely related and spec- 
trally similar species. 

The cover types in the ecoregion also display differences 
in their phenology which may be detectable with multitem- 
poral remote sensing (Kremer and Running, 1993). The 
grasses flourish in the late spring and early summer while 
soil moisture from winter precipitation still remains (West, 
1983). Cheatgrass becomes senescent by late May while 
bunchgrass (Pseudoroegneria-Poa-Festuca species) lasts until 
the end of June (Kremer and Running, 1993; Knapp, 1996). 
Deep-rooted sagebrush (Artemisia spp.) has a later growing 
season. 

The purpose of gap analysis is to evaluate the extent and 
level of protection of mappable surrogates of biological di- 
versity at a regional scale. To accomplish the objective, map- 
ping can be moderately coarse in spatial detail but requires 
relatively fine discrimination of land-cover types to capture 
all the habitats important for biodiversity. The current stan- 
dards for GAP land-cover maps are a minimum mapping unit 
of 100 ha (1 kmz) and a classification at the level of alli- 
ances. Two recent land-cover maps cover the region of inter- 
est: the seasonal land-cover regions map derived from 1 kmz 
AVHRR time series data (Loveland et a]., 1991) and Kiichler's 
map of potential natural vegetation (Kiichler, 1970). The for- 
mer has a suitable spatial resolution, but the classification is 
not sufficiently detailed floristically to meet GAP objectives. 
Kiichler's map was at an extremely small scale and did not 
portray actual vegetation and thus was also not suitable for 
regional conservation assessment (Scott et a]., 1993). 

Land cover has been mapped more or less indepen- 
dently for each of the nine states in the ISD ecoregion by the 
individual state GAP projects. Although most state GAP proj- 
ects used 1990 ( +  2 years) satellite imagery from the Landsat 
Thematic Mapper (TM) sensor, combined with field invento- 
ries and existing maps of vegetation, in compiling their land- 
cover data, there were significant differences in methods and 
products. Maps for Idaho (Caicco et al., 1995) and Oregon 
(Kagan and Caicco, 1992) were developed as prototypes and 
used photointerpretation techniques with older Multispectral 
Scanner images and larger minimum mapping units than did 
the other states. In contrast, land-cover mapping in Nevada 
and Utah was done with digital image processing of TM im- 
age mosaics and ecological modeling with topographic varia- 
bles (Homer et al., 1997). The 30-m pixels in the classified 
image were aggregated to the 100-ha minimum mapping unit 
(MMU). This approach generally achieved greater spatial reso- 
lution at some expense in classification detail. The other 
state GAP projects photointerpreted TM data (e.g., Davis et al., 
1995; Cassidy, in press; Driese et al., 1997). Most of the 
maps have not yet been validated with a formal accuracy as- 
sessment (except see Caicco et al. (1995) and Edwards et a]. 
(1995)) although some field data collection is underway. 

Despite general similarities in these land-cover maps, 
they differ to some extent in the cover classifications used 
and in their spatial resolution. Further work was needed in 
cross-walking the separate classifications into a consistent re- 
gional scheme. Edge-matching is also a problem because the 
spatial grain of the maps changed across many of the state 
boundaries due to the methods rather than actual vegetative 
patterns (Figure 2). Grain tended to be much finer in states 
that used supervised classi£ication of digital imagery than in 
those that used the photointerpretation approach. 

The potential consequences of simply mosaicking and 
cross-walking the state GAP maps into a "patchwork quilt" 
regional map without some attempt at edge-matching are not 
only technical. Because these maps are intended to provide 
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information to policy makers about the protection of plant 
communities and animal habitat, it is important that the final 
product be visually credible. A mosaic, while retaining the 
information in the state maps, has the effect of highlighting 
the inconsistencies and raising questions about the validity 
of the analysis. For these technical and policy-oriented rea- 
sons, we developed a methodology that retains much of the 
information in the original maps while minimizing inconsis- 
tencies between them. 

Methods 
The map-guided classification procedure requires four basic 
steps. The state maps are cross-walked to a common land- 
cover classification; AVHRR time series data and elevation 
data are preprocessed; the AVHRR and elevation data are clas- 
sified using the cross-walked state maps as training data, and 
the output classified map is post-processed to deal with spe- 
cial cases. 

The GAP land-cover maps for the individual states were 
cross-walked into consistent cover types according to the 
proposed National Vegetation Classification System (FGDC, 
1996). This hierarchical scheme begins with structural and 
broad ecological properties at higher levels, with floristic di- 
visions at the lower levels, even for Planted/Cultivated cate- 
gories (Table 1). Although some of the GAP map classes 
matched directly with NVCS alliances, some classes could 
only be assigned at a higher classification level. Three main 
difficulties in the cross-walking arose: (1) not all states dis- 
tinguished forest from woodland (a structural difference). 
This omission created uncertainty in assignment to a forma- 
tion at the top of the classification tree even when the flo- 
ristic assignment was certain. (2) Some GAP cover classes 
were labeled as mosaics of more than one type, often from 
two different structural formations. Furthermore, four states 
(California, Washington, Wyoming, and Colorado) labeled 
map units as landscape mosaics comprised of two or three 
cover types. Although this technique provides more thematic 
information than a single-value classification, the location 
within a polygon of the secondary cover types is not speci- 
fied. Thus, these attributes are difficult to use in a traditional 
image classification approach. (3) Taxonomic (floristic) detail 
varied between states and between classes. In some cases, 
this occurred where the dominant species came from mixed 
types in more than one formation such as lodgepole pine- 
aspen. Alternatively, some cover types do not have a diag- 
nostic species but contain a mix of species which varies 
from place to place. "Mountain brush" is an example of one 
of these diverse cover types that does not fit the NVCS 
scheme well. Some grouping of types was necessary where 
individual dominant species were impossible to determine. 
For example, grasses were aggregated into four types at the 
formation or subformation level: dry perennial grassland 
(dominated by Pseudoroegneria and Poa species), moist per- 
ennial grassland (dominated by Festuca species), artificial 
seedings of Agropyron cristatum and related species for 
rangeland improvement, and annual grasses (usually Bromus 
tectorum). These aggregations follow the NVcs hierarchy to 
the "group" level but constitute formations not in the stan- 
dards to represent collections of alliances that could be iden- 
tified with satellite data. 

Multi-temporal AVHRR imagery was selected as an inde- 
pendent data source to provide a consistent spatial resolu- 
tion for the regional map and to add plant phenologies as 
detected from space to aid classification. AVHRR can be effec- 
tive in discriminating the sparse vegetation types of the In- 
termountain West (Kremer and Running, 1993). For map- 
guided classification, A V m  data similar to the NDVI time se- 
ries were compiled but with several differences. First, daily 
AVHRR images for the 1990 growing season were processed 

TABLE 1. LEVELS, PROPERTIES, AND EXAMPLES OF THE PROPOSED NATIONAL 
VEGETATION CLASSIFICATION SYSTEM (FGDC, 1996). 

Level Defining Properties Examples 

Subclass 

Group 

Subgroup 

Formation 

Order Lifeform Tree-, shrub, or herba- 
ceous-dominated 

Class Lifeform and relative Closed tree canopy (60- 
cover 100% cover); open tree 

canopy (25-60%); 
shrubland with shrub 
cover >25% and tree 
cover <25%; herba- 
ceous with shrub and 
tree cover <25% 

Leaf phenology, leaf Evergreen or deciduous 
type, periodicity or mixed; perennial or 

annual 
Climate, leaf morphol- Temperate needle- 
ogy and phenology leaved; Cold-deciduous 

Alliance 

Community 
Association 

Source 

Broad environmental 
and physiognomic 
factors 

Rounded-crowned tem- 
perate or subpolar nee- 
dle-leaved evergreen 
open tree canopy; Ex- 
tremely xeromorphic 
deciduous subdesert 
shrubland with or with- 
out succulents 

Diagnostic or domi- Juniperus occidentalis; 
nant species of over- Sarcobatus vermicula- 
story tus 
Diagnostic or domi- Juniperus occidentalis/ 
nant species of over- Artemisia tridentata/ 
story and understory Poa secunda; Sarcoba- 

tus vermiculatus/Dis- 
tichlis stricta 

into ten-day (or 14-day during cloudy periods) composite im- 
ages. This compositing process (Stoms et al., 1997) uses a 
weighted combination of thermal infrared and satellite zenith 
angle to remove cloud contamination as well as to minimize 
the distortion in spatial and radiometric properties associated 
with off-nadir viewing. AVHRR datasets were generated for 
four periods throughout the 1990 growing season (5-16 April, 
17-28 June, 20-31 July, and 19-30 September) to capture the 
main intra-annual variation of the phenology of the semiarid 
vegetation of this region. In particular, June was added to 
help discriminate between native bunchgrasses and cheat- 
grass. Selection of time periods was partially constrained by 
the number of dates for which imagery was available from 
the USGS EROS Data Center. 

The derived datasets included A V m  Band 2 (near infra- 
red), Band 4 (thermal infrared), and NDVI for each of the four 
composite periods (three bands for each of the four dates). 
Principal components analysis was used to reduce the large, 
relatively correlated dataset (Cihlar et al., 1996; Hirosawa et 
al., 1996). Five of the principal components, accounting for 
85 percent of the variance in the 1 2  input channels, were 
then selected for use with the classifier. The first component 
is primarily an average annual reflectance of the near infra- 
red or Band-2 data. The second component appears to con- 
trast average annual thermal infrared with NDVI. The inter- 
pretation of the third and fourth components is less obvious, 
but the fifth component contrasts July near infrared with that 
of the other months, possibly reflecting the difference in 
grass phenologies. The AVHRR dataset provided a consistent, 
1-km spatial resolution over the entire ecoregion. 

Sometimes information classes in quite distinct ecologi- 
cal settings can have similar spectral characteristics. In such 
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cases, the use of elevation or topographic data can assist in 
properly separating them (e.g., Franklin et al., 1986; Cibula 
and Nyquist, 1987; Homer et al., 1997). Therefore, as an ad- 
ditional input channel for the classifier, a 1-krn-resolution 
digital elevation dataset (U.S. Geological Survey, 1993) was 
modified. The ISD region spans more than 8 degrees of lati- 
tude, which is large enough to produce shifts in elevational 
ranges of plant communities from the southern to the northern 
limits (Allen et al., 1991). Consequently, the digital elevation 
pixels were adjusted 0.625 m higher per km of northness 
(Schoenherr, 1992) to generate an "equivalent elevation" im- 
age. All five principal components and the equivalent eleva- 
tion data were normalized to the same dynamic range prior to 
classification by giving each band the same mean (126.5) and 
standard deviation (126.5). 

The cross-walked state GAP maps were sampled to create 
training signatures. Rare and special land-cover classes were 
addressed differently than were the widespread map classes. 
Several of the 48 alliances in the ecoregion are relatively rare 
and tend to drop out of the output map if not given extra 
weighting in the sampling for training the classifier. A square 
root sampling strategy was applied for all other classes with 
more than 200 pixels in the input maps. For remaining types 
with fewer than 200 pixels, the entire population of the class 
was used in developing training signatures. 

Map-guided classification is an iterative, two-step proce- 
dure. In the first step, unsupervised clustering is performed 
on a random sample of pixels using the ISOCLUSTER function 
in ARCIINFO GRID. Next, a standard maximum-likelihood clas- 
sifier (MLCLASSIFY) in ARCIINFO GRID assigns unsampled pix- 
els to these clusters. The information classes in the input 
map are compared with the spectral clusters, and the spec- 
tral cluster with the highest level of association (i.e., the 
highest ratio of pixels in a cluster and information class 
combination relative to the sum of pixels in the cluster in all 
classes) is assigned to its corresponding information class. 
The algorithm then removes pixels in that spectral cluster 
from the data set and repeats the two-step procedure with 
the remaining data. The level of association from the first 
iteration is multiplied by 0.95, and this value is set as the 
threshold for assignment in the next iteration. If no cluster 
reaches the threshold in subsequent iterations, the current 
highest association becomes the new threshold. Processing 
continues iteratively until all pixels are assigned to the alli- 
ance type that best matches their spectral signature or until a 
stopping rule is invoked. Based on initial runs, we decided 
to classify three subregions (the Columbia Basin, the south- 
ern Columbia Plateau, and the Wyoming Basin; Figure 1) 
independently to preclude types being extrapolated inappro- 
priately to other subregions. 

Three post-processing steps complete the map classif3ca- 
tion. First, a majority filter was applied to smooth the classi- 
fied image and remove isolated pixels, which were likely to 
contain mixed classes. In addition, some land-cover types 
that had been accurately delineated in the original GAP maps 
were overlaid onto the classified image data. These classes 
were not mapped with AVHRR data because they were clearly 
visible in TM data (e.g., lakes, salt flats), were easier for hu- 
man interpreters to see than computers (e.g., urban and de- 
veloped areas), or were rare and of special conservation 
interest but hard to detect at the resolution of AVHRR (e.g., 
narrow riparian forests). Areas with these special cover types 
were masked from the image data and then incorporated 
from the original maps into the newly classified version in a 
post-processing step so that this information would not be 
over-generalized or lost. The total area of 35 classes region- 
wide and five classes in particular subregions that were 
"burned-in" from the source GAP maps amounted to 17  per- 
cent of the total area of the ecoregion. Eight classes were 

mapped entirely from the AVHRR dataset. In other words, 83 
percent of the region was classified through the map-guided 
classification procedure. The last step was to vectorize the 
final raster land-cover map. 

Validating regional-scale land-cover maps lacks an ac- 
cepted methodology such as the error matrix used with 
larger scale maps (Stoms, 1996; Zhu et al., 1996). Reference 
data of 1-kmz sample plots are likely to contain mosaics of 
cover types, making an assignment to a single class unlikely. 
Also, the cost of collecting enough plots in each of the sev- 
eral dozen classes over a vast study area was prohibitive. As 
an alternative to a formal error matrix analysis, a more quali- 
tative approach was used to evaluate both the input GAP 
maps and the map-guided classifications in order to gauge 
whether the derived map was actually improving the accu- 
racy of the original along with the spatial consistency. An 
existing dataset of 1-kmz field-based plots (Burgan et al., 
1993) was obtained from the uSGS ERoS Data Center. This da- 
taset was originally compiled to validate the 1990 seasonal 
land-cover regions database (Loveland et al., 1995). The plots 
had been located by randomly selecting 700 7.5-minute 
quadrangles in the conterminous United States and picking 
up to five plots in each of the selected quadrangles. Plots 
were accumulated so that the number of plots was propor- 
tionally distributed in relation to the area of each land-cover 
region in the Loveland et al. map. U.S. Forest Service per- 
sonnel visited each accessible plot and recorded information 
about the structure and composition of the dominant trees, 
shrubs, grasses, and cultural land uses. Data were ultimately 
collected for 2,284 plots nationally, of which 78 occurred 
within the ISD ecoregion. The field data sheets distinguished 
between tree cover of 30 to 60 percent and 60 to 100 per- 
cent, which was virtually the same as the Nvcs divisions be- 
tween open and closed tree canopy. Based on the species 
composition and canopy cover data, each plot in the ISD was 
assigned to one of the alliances in the GAP land-cover maps. 
Tree-dominated and some shrub-dominated types could be 
assigned to specific alliances. Other shrub types were only 
identified at the genus level (i.e., sagebrush-Artemisia spe- 
cies) which could be any of eight alliances. Grasses were 
coded as annual or perennial, but the GAP dry versus moist 
bunchgrass types had not been distinguished in the plots. 
Various revisions of the derived map were compared to the 
pIot data to assess whether the improved appearance of the 
map-guided classification (MGC) map was at the expense of 
reduced classification accuracy. The plot data were com- 
pared using a fuzzy sets approach (Gopal and Woodcock, 
1994) to the final GAP land-cover map. In fuzzy accuracy as- 
sessment, samples are categorized by linguistic values (i.e., 
absolutely right, good answer, reasonable or acceptable an- 
swer, understandable but wrong, and absolutely wrong). This 
method recognizes the inherent ambiguity, or fuzziness, of 
land-cover classes which is obscured in traditional correct1 
incorrect assessment techniques. In addition, several revi- 
sions of the MGC map were reviewed by the cartographers 
who had compiled the original GAP data as a check that the 
classification was meeting our objectives without abusing 
their efforts. 

Results 
A regional land-cover map with 48 alliances/cover types was 
generated by the map-guided classification and post-process- 
ing procedures. Over 50 percent of the region was mapped as 
one of three widespread cover types: Artemisia tridentata, A. 
tridentata-A, arbuscula, or agriculture. Seventeen types had 
mapped distributions with less the 1,000 krnz each (or 0.25 
percent of the total region). 

Average polygon size of the vectorized output map was 
16.7 kmz, compared to 13.2 kmz in the combined source 
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Figure 3. Detailed map of the final polygons 
from the map-guided classification of the Idaho- 
Nevada border. 

had some overlap in species with the map class but there 
was clearly a better type that they should have been labeled. 
Most of the disagreements, however, occurred at the eco- 
tones between cover types, and thus could be the result of 
registration error (in either the imagery, the GAP maps, or the 
plot locations) or of problems with mixed pixels. Many of 
the 78 plots occur within 1 krn, the width of the pixels, from 
a boundary between cover types. For 15 of these plots that 
differed from the map, the cover types in the neighboring 
MGC map polygon agreed with the plot data. If these are also 
considered as consistent observations, the level of complete 
agreement increases to 62 percent. Thirteen plots (17 per- 
cent) were completely inconsistent with the map class as- 
signment, including comparisons with polygons within 1 km 
of their locations. Seven of these inconsistencies were in poly- 
gons that had been "burned-in" from the source maps and 
thus were probably due to generalization of the source maps 
or problems with cross-walking rather than the product of 
the map-guided classification itself. 

The source maps were also compared with the 78 plots 
to evaluate the relative accuracy of the map-guided classifica- 
tion. Thirty-two plots (41 percent) were completely consis- 
tent with the source maps, compared with 31 plots in the 
map-guided classification. Both the source maps and the 
map-guided classification map had an additional 1 7  plots (22 
percent) with a "reasonable" label. Thus, 63 percent were at 
least partially consistent (62 percent for the map-guided clas- 
sification). The source maps had more absolutely wrong la- 
bels (19 percent) compared to 17 percent for the map-guided 
classification. However, some of the source maps contained 
additional attributes for secondary or tertiary cover types in 
the polygon. When these attributes are also taken into ac- 
count, a total of 88 percent of the plots were labeled with 

maps. Thus, there was a small decrease in overall spatial res- 'Orrect Or types. The raster map produced by 

elution, but, by inspection, the gains in spatial consistency One 'Over type per 
compensate for the loss of small polygons. Many of these pixel. the not consider 
smaller map units were apparently lost when the maps were these additional attributes, it should be remembered that 

rasterized prior to classification (mean size after rasterization their true spatial location within polygons is undetermined. 

and revectorization = 33.1 km". Once the smallest polygons 
were filtered out by the rasterization process, the map-guided Discussion and Conclusions 
classification actually improved the spatial resolution (num- AVHRR data products were classified using an iterative, map- 
ber of polygons) roughly by a factor of two. The output map guided classification technique developed for this research 
is virtually seamless across state lines as can be seen by project. The map-guided classification appears to be a practi- 
comparing Figures 2 and 3 for an enlargement of the Idaho- cal approach for synthesizing land-cover maps from a set of 
Nevada boundary. source maps that are only partially consistent. The greatest 

Use of the 78 plots provided a qualitative evaluation of strength of the MGC approach is that it uses whatever data 
the major strengths and limitations of the land-cover map, are available to guide the classification. It differs from tradi- 
but observations were too few to allow a statistically rigorous tional supervised classification, however, in that it uses en- 
accuracy assessment. Forty percent of the plots were mapped tire mapped classes rather than limited training sites. The 
with the "best" class according to the fuzzy sets method (i.e., MGC procedure is also iterative and only assigns class labels 
absolutely right or good answer). These plots were com- in each iteration to clusters with a strong association with a 
pletely consistent with the MGC map in both structural and training map class signature. Low-probability class assign- 
floristic attributes. Another 22 percent were partially consis- ments that might be made in a single-pass algorithm are 
tent with the map (e.g., having the correct dominant species avoided in MGC. The most obvious classes with unambiguous 
present but in different percent cover in terms of the struc- spectral signatures, such as most agriculture in this semi-des- 
tural classification). For instance, ten plots were recorded in ert region, are classified in early iterations. The MGC method 
the field as grassland types but were classified as shrub types should work as well with TM imagery or other multispectral 
on the map. Of these ten plots, however, six had between 15 data as it did with AVHRR data. We are currently using the 
and 20 percent cover by the same shrub species as the mapped same basic technique for mapping land-use change over a 
alliance and thus were reasonably considered a shrub type, large region with multiple TM scenes by using a classified 
even though this would not be the best class assignment. image map for one year to classify image data for a later 
Four plots mapped as sagebrush were recorded as non-vege- year. The MGC method should also work at other mapping 
tated in the field. These four plots occur on a lava flow area scales, and even where there is incomplete input mapping, 
in Idaho, which had a special class in the original GAP map so long as adequate training data exists in the source maps 
for sagebrush on lava fields. In the cross-walking, this type for all desired output classes. 
was assigned to Arternisia tridentata, even though the per- AVHRR-derived variables and equivalent elevations were 
cent cover may be less than the NVCS threshold. used in this research to provide a consistent 1-km spatial 

Seventeen plots (22 percent) were labeled incorrectly but resolution to the final regional map. Multi-temporal AVHRR 
with understandable misclassification. A few of these plots composites through the 1990 growing season helped discrim- 
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inate alliances by their distinct phenologies in addition to 
their spectral values. The regional land-cover map retains 
only small inconsistencies across state boundaries that was 
more evident in the source maps. This improvement is a 
product of both the consistent spatial resolution of the 
AVHRR data but also of the single regional classi£ication, as 
opposed to the independent classifications done within indi- 
vidual states for the source maps. The MGC methodology 
should be robust with data from any year, despite inter-an- 
nual variation in weather-driven phenologies (Reed et al., 
1994), because it does not pattern-match observed greenness 
trajectories to a library of known phenological responses. In- 
stead, the map-guided classification takes the observed spec- 
tral values and matches their empirical clusters to 
information classes in an existing map. 

The proposed National Vegetation Classification System 
is explicitly defined to use existing capabilities of remote 
sensing for mapping the structural levels of the hierarchy, 
with floristic detail for determining alliances provided by 
quantitative field inventory data. As one of the first applica- 
tions of the proposed NVCS scheme for regional scale land- 
cover mapping, this case study provides some insights into 
the technical limitations and ecological realities encountered 
in a real-world situation. The greatest difficulty and source of 
uncertainty in mapping NVCS alliances at a regional scale in- 
volved the highest structural levels of classification, particu- 
larly between open- and closed-canopy tree-dominated types 
(i.e., at the level of Classes in NVCS) and between grassland 
and shrubland (i.e., Orders). Because canopy density can 
have a strong effect on the habitat suitability for wildlife and 
understory plants, an incorrect assignment to woodland in- 
stead of forest, or shrubland instead of grassland, could be as 
serious as floristic errors in biodiversity assessments such as 
gap analysis. Much of the confusion between the map and 
the plot data occurred where the map was labeled as a shrub 
formation, but the plot contained only sparse shrub cover 
(i.e., less than 25 percent). Tree-dominated types were rela- 
tively minor in the ISD ecoregion or clearly belonged in open 
canopy types (e.g., pinyon-juniper), so this issue was less of 
a concern than it might be in an ecoregion characterized by 
both forest and woodland classes. This problem in the re- 
gional mapping could have been reduced if the source maps 
had followed the WCS hierarchy more precisely with regard 
to canopy cover. Unfortunately, some types in the source 
maps spanned a range of cover densities, such as "sage- 
brush-steppe" which could indicate sparse to denser shrub 
cover. Therefore, the cross-walk created for the regional map 
was forced to assign such ambiguous types into a single 
NVCs Order (e.g., Artemisia tridentata shrubland). The NVCS 
Group for Herbaceous temperate perennial grassland with a 
shrub layer of 10 to 25 percent was never used in this appli- 
cation even though it is common in the ecoregion. Thus, this - 
was a limitation of the source maps rather than of the NVCS 
scheme itself, but accurate discrimination of types that are in 
reality a continuum of canopy cover will continue to be a 
major obstacle for regional mapping from remotely sensed 
data. 

A second difficulty we encountered in trying to meet the 
NVCS standards involved types that could not be conven- 
iently divided into alliances even though the formation was 
unambiguous. Some land-cover types were aggregated to for- 
mations either because they were too small to be mapped as 
a separate class or because the source GAP maps did not con- 
sistently distinguish alliances within formations. For in- 
stance, the alliances within the seasonal/temporarily flooded 
cold-deciduous closed tree canopy formation were often ag- 
gregated in the source map classification. Because of the 
spectral similarity of these alliances, there was no simple 
method to extract them from the AVHRR data. This aggrega- 

tion was more of a cartographic decision than a weakness in 
the proposed wCS. For types like Mountain brush, the prob- 
lem is that the type has no clear diagnostic or dominant spe- 
cies and is more of a general category for highly diverse 
shrub communities that share many of the same canopy spe- 
cies. The NVCS framework does not appear to handle such 
types well below the formation level. These issues indicate 
that what is possible using remotely sensed data over large 
geographic regions will continue to fall short of the ideal of 
completely achieving the NVCS standards. 

The map-guided classification method provided an inno- 
vative means of compiling a regional land-cover map, but ad- 
ditional improvements may be possible. The NVCS scheme 
for classifying land cover is hierarchical, beginning with 
structural or physiognomic features at the highest levels. 
This suggests that a hierarchical approach to mapping might 
be appropriate as a two-stage classi-fier. Logic rules could be 
used for structural classification, similar to those proposed 
by Running et al. (1995). If the source map labels are consis- 
tent with the inference of logic rules applied to AVHRR data 
at the formation level, the source nlap alliance label would 
be assigned. If not, the map-guided classification or further 
ecological rules would be invoked. It should be noted that 
the classification logic in Running et al. (1995) uses AVHRR- 
derived variables to determine leaf type and phenology and 
permanence of aboveground live biomass, but does not dis- 
tinguish life form or canopy density. Therefore, that particu- 
lar hierarchical approach would not directly lead to a classi- 
fication scheme compatible with the NvCS. Alternatively, a 
map-guided classification could be used as part of an eviden- 
tial reasoning approach (Gong, 1996) which would integrate 
spectral data and derived indices or biophysical metrics with 
the source map labels and environmental variables. Such a 
two-step approach may lead to higher accuracy but would 
require greater effort to develop the set of deductive rules. 

The procedures described in this paper successfully met 
the objectives to produce a seamless regional land-cover map 
at the alliance level. The multi-temporal AVHRR data pro- 
vided consistent spatial resolution throughout the region and 
minimized the inconsistencies across state boundaries while 
preserving the best information in the source maps. Further 
improvement in accuracy is certainly possible. Based on the 
reviews from regional botanists, however, we believe the 
map-guided classification land-cover map is of sufficient 
quality to be useful for regional conservation assessment and 
for stratifying the ecoregion for detailed field survey. 
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