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Abstract 
Wavelets are an increasingly widely used tool in many appli- 
cations of signal and image processing. This paper reviews 
the basic ideas of wavelets for representing the information 
in signals such as time series and images, and shows how 
wavelet shrinkage may be used to smooth these signals. This 
is illustrated by application to a synthetic aperture radar im- 
age. Some guidelines on using wavelet shrinkage are given. 

Introduction 
Wavelet analysis has recently been recognized as a tool with 
important applications in time series, function estimation, 
and image analysis. Applications in remote sensing have in- 
cluded the combination of images of different resolutions 
(Garguetduport et al., 1996), image compression (Werness et 
al., 1994), the provision of edge detection methods (Li and 
Shao, 1994), and the study of scales of variation (Lindsay et 
al., 1996). As the development of wavelet methods is recent, 
the fundamentals are not yet widely understood, and guid- 
ance on their practical use is hard to find. Much of the litera- 
ture is not easily accessible without much mathematical 
sophistication. 

This paper explains the fundamental ideas of wavelets 
in a non-mathematical way. Their use for smoothing data 
and images, particularly by wavelet shrinkage, will be re- 
viewed. This will be illustrated by application to a synthetic 
aperture radar image. 

Wavelets 
Wavelets arose from signal processing theory, a signal being 
the variability of some quantity over time. They can be gen- 
eralized to two-dimensional signals, of which images are a 
special case. Wavelet decomposition is an alternative way of 
presenting the details of a signal which differs from specify- 
ing the value of the signal at successive times, the so-called 
time domain representation. 

Other ways of doing this have been used for a long time. 
The best known is the Fourier series. This represents a signal 
in terms of sine waves with frequencies which are multiples 
(harmonics) of a basic frequency. In many applications this 
is a useful way of decomposing a signal, and its properties 
can be understood in terms of these oscillations at different 
frequencies. The sine waves used are orthogonal to each 
other (two functions At) and g(t) are orthogonal if 
5: f(t]g(t]dt = 0). For a signal sampled at n points, a full re- 
construction can be made from n Fourier components. This 
is termed the Fourier or frequency domain representation of 
a series. 

A drawback to the Fourier representation is that the fre- 
quency components apply to the signal as a whole, and the 
way that the signal variability changes over time may be im- 
portant. However, it impossible to say what the frequency 
components are at a time point, but only in a region about it. 
To put it another way, a signal cannot be highly localized in 
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both the time and frequency domains (this limitation gives 
rise in physics to the Heisenberg Uncertainty Principle). One 
approach is to estimate Fourier components locally, in a set 
of short intervals, or convolved with a decaying weight func- 
tion about each point. To do this, however, is to lose the or- 
thogonality and economy of representation of the Fourier 
method. Wavelets preserve these advantages, while enjoying 
good spatial and frequency resolution. 

The wavelet approach to signal representation is based 
on representing the signal at different scales or resolutions. 
At a particular resolution, the signal is approximated by a 
sum of scaling functions. The difference between the resolu- 
tions (termed the detail at the finer resolution) can be ex- 
pressed by a sum of wavelet functions. For certain scaling 
and wavelet functions, this hierarchical or multiresolution 
representation can be constructed using scaled versions of 
the same functions at each resolution. 

For example, consider the simplest multiresolution rep- 
resentation, based on the Haar scaling function and wavelet. 
These are illustrated in Figure 1. They are piecewise con- 
stant, and it is clear how they may be used to approximate 
signals. Figure 2 shows a signal crudely approximated by the 
Haar scaling function at two different resolutions. 

It is clear that the signal could be approximated in this 
way at ever higher resolutions until it is as close to the origi- 
nal signal as we wish. If this is only available at discrete 
time points, the finest resolution approximation is exact. The 
wavelet representation consists of specifying an approxima- 
tion to the signal at some coarse resolution, and then speci- 
fying the refinements needed at each stage to achieve the 
next resolution. In Figure 2, we see that the approximation 
(a] can be refined to (b) by the addition of two Haar wavelets 
(Figure 2b). One covers the first half of the time domain, and 
has a negative coefficient. The other covers the second half, 
and has a slightly smaller positive coefficient. A further four 
wavelets could then be added to (b) to refine it further. In 
the wavelet representation, we specify the coefficients of the 
scaling functions at the coarsest resolution (which could be 
just the average of the signal) and the coefficients of all the 
wavelets needed to refine it to the finest resolution. If the 
signal is of length Zm, then 1 + 1 + 2 + 4 +...+2"-l = 2" 
coefficients are needed. (The wavelet representation is most 
convenient for 2" time points, and some modifications are 
needed when this is not so - see Discussion below.) 

Among the most important benefits of a wavelet repre- 
sentation are 

Single wavelet coefficients provide information about how 
the signal is changing over time: for example, the coefficient 
of the wavelet which refines the coarsest (overall average) ap- 
proximation to obtain the next resolution tells us about the 
overall increase or decrease of the signal; 
Some wavelet coefficients can be discarded (for economy of 
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Figure 2. Approximating a signal using Haar scaling functions. (a) Approx~mation at 
next-to-coarsest resolution. (b) Approxlmatlon one level finer than (a). (c) The detail 
signal indicating the extra information present in (b). 
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representation) while still retaining the major features of the This is reviewed in the next section. 
signal: this is a form of data compression; and The Haar wavelet is the simplest and easiest to under- * If one believes that fine details are noise, contaminating the stand. H ~ ~ ~ ~ ~ ~ ,  there are many possibilities. ~ ~ l l ~ ~  discus- 
true signal of interest, then discarding or reducing them may sion of the properties of wavelets may be found in Strang 
give a result closer to the true signal. 
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Figure 1. (a) The Haar scaling funct~on. (b) The Haar wavelet. 
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Figure 3. Scaling functions. (a) Daubechies-4. (b) 
Daubechies-6. (c) Daubechies-8. 

(1989), Mallat (1989a; 1989b), Daubechies (1992), and Kay 
(1994). The two most important properties are that the scal- 
ing functions can be represented as the sum of scaled and 
translated versions of themselves (for example, the Haar scal- 
ing function h(t) can be written h(t) = h(2t) + h(2t - 1)) and 
the wavelets should be orthogonal to scaled and translated 
versions of themselves. Note that by "scaled," we mean by 
a power of 2, and by "translated," we mean by an integer 
amount. 

The principal disadvantage of the Haar wavelet is its dis- 
continuity. This limits its ability to approximate continuous 
signals. A commonly used family of continuous scaling func- 

tions and wavelets are those of Daubechies (1988). They are 
the only continuous wavelets with full scaling and transla- 
tional orthogonality of scaling functions and wavelets which 
have a finite support: i.e., they are non-zero only over a finite 
range. To achieve these properties requires strange looking 
functions. Some of these - the Daubechies-4, Daubechies-6, 
and Daubechies-8 scaling functions - are shown in Figure 3. 
Although continuous, the Daubechies-4 is differentiable no- 
where, and has some fractal self-similarity. It is defhed as 
the solution of the recursion equation 

1 + f i  3 + 45 
d(t) = - d(2t) + --- d(2t - I) 

4 4 

Although it is not apparent from Figure 3, combinations 
of this scaling function can approximate linear functions 
very well. The Daubechies-6 and Daubechies-8 functions, 
which are smoother, are defined from similar recursions. The 
Haar wavelet may be thought of as Daubechies-2. These 
wavelets will be used in the section on Image Filtering. A 
useful source of computer algorithms for the Daubechies 
wavelets is Press et al. (1993). 

Wavelets may also be used to represent higher dimen- 
sional signals such as images. One approach to a two-dimen- 
sional wavelet representation is to base the scaling functions 
and wavelets on products of one-dimensional functions. If 
+(x) and +(x) are a scaling function and wavelet, respec- 
tively, then 4(x)4(y) is a two-dimensional scaling function, 
and the detail needed to achieve the next finest resolution 
can be represented by three wavelets, +(x)lCl(y), $fx)+Cy), and 
+(x)$fy). A fuller description may be found in Mallat (1989a) 
and Kay (1994). It is also possible to construct two-dimen- 
sional wavelets that are not products of one-dimensional 
functions. For example, Hitchcock (1994) constructs a wave- 
let with 45" rotational symmetry. 

Wavelet Shrinkage 
Noise in a signal may be simply measurement error, or it 
could be fluctuation details which are a nuisance when the 
underlying trends or discontinuities are being investigated. 
Many methods have been developed for smoothing signals, 
in the hope that the noise can be suppressed and the signifi- 
cant patterns retained and revealed. These have ranged from 
simple moving averages or moving medians to methods of 
considerable mathematical complexity. Wavelets seem to of- 
fer a smoothing approach which is relatively simple to use, 
while adapting well, and automatically, to the form of the 
signal being smoothed. One way of doing this is by shrinking 
individual wavelet coefficients and reconstructing a signal 
from these shrunken coefficients. 

w' I 
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I 

Figure 4. Wavelet coefficient thresholding. Note that below -a and 
above a, the lines have a slope of 1. 
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Figure 5. Wavelet shrinkage. (a) A signal. (b) The signal 
with added noise. (c) The signal restored by wavelet 
shrinkage. 

A full description of the method may be found in Don- 
oho and Johnstone (1994) and Donoho et al. (1995). Only the 
basic idea is presented here. The noisy signal is first decom- 
posed into its wavelet representation. Then all wavelet coef- 
ficients finer than some resolution level (which we will 
denote j,) are transformed: i.e., 

w +  a  if w 2 - a  
d = i0 i f - a < w < a  

w - a  if w 2 a  

where w  is an original wavelet coefficient, w' is the trans- 
formed coefficient, and a is some threshold value. In effect, 
the transform pushes all coefficients towards zero by an 
amount a,  setting them equal to zero if they are already 
within a  of zero. This is illustrated in Figure 4. 

The idea behind the transform is that major trends and 
discontinuities will contribute to large wavelet coefficients, 
while noise will only generate small coefficients. These small 
coefficients will be removed by the transform, while those 
corresponding to the features of interest will remain. An al- 
ternative transform, whereby coefficients between -a and a  
are set to zero and others are left unchanged, has sometimes 
been used, but it may be shown that the shrinkage transform 
is a more effective estimator of the true (noise-free) wavelet 
coefficients under reasonable assumptions, such as their hav- 
ing a unimodal distribution symmetric about zero. 

The use of wavelet shrinkage is illustrated in Figure 5. 
Figure 5a shows a signal sampled at 256 time points. Figure 
5b shows the same signal with random N(0, 1) noise added. 
Figure 5c shows the signal smoothed by wavelet shrinkage, 
with j, = 4 (where j, = 0 is the full signal and j, = 8 is the 
signal mean only) and a = 3.3. The Daubechies-6 wavelet 
was used. It is apparent that most of the noise has been re- 
moved. The restoration is not perfect - a few of the smaller 
bumps in Figure 5a have also been lost, and the peaks and 
troughs are sharper. This latter effect is a consequence of the 
shape of the Daubechies-6 function. 
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Image Filtering 
Wavelet shrinkage can be used to smooth images. The ap- 
proach is similar to that for one-dimensional signals. At each 
resolution level, we obtain the coefficients for the products 
of scaling and wavelet functions in the horizontal and verti- 
cal directions (i.e., four combinations). Shrinkage is applied 
to the coefficients involving a wavelet product. 

Figure 6a shows a synthetic aperture radar (SAR) image 
of an area near Thetford Forest, England, obtained from the 
Maestro campaign (Ispra, 1989). The speckle in the image is 
intrinsic to SAR imaging, and its variance is known (Oliver, 
1991; Horgan, 1994). Because the speckle contains little use- 
ful information, smoothing is desirable. Figures 6b, 6c, and 
6d show the result of wavelet shrinkage, using, respectively, 
the Haar, Daubechies-4, and Daubechies-6 wavelets. A thresh- 
old of 28 was used (the pixel intensities ranging from 0 to 
255) and j, = 3. This threshold was about half the minimax- 
optimal Donoho threshold (see below), which gave too strong 
a smoothing. 

We can see that, in all the wavelet-shrunk images, the 
variability within the dominant field pattern has been 
smoothed, while edges and some other features which can be 
seen near the top left and bottom right corners have been 
preserved. Smoothing by the Daubechies wavelets appears to 
produce smoother and more satisfying results than does the 
Haar wavelet. In particular, the field boundaries are better 
preserved - they appear more jagged with the Ham wavelet. 
It seems to matter less whether the Daubechies-4 or Daube- 
chies-6 wavelets are used. Some artifacts of the shape of the 
Daubechies functions are presmt. This would be the case 
with any other functional representation system also. 

Practical Use of Wavelet Shrinkage 
In using wavelet shrinkage as described here, three choices 
will be needed. First, which wavelet to use; second, what 
resolution level j, to smooth from; and third, what threshold 
a  to use. Theoretical guidance is available on the last of 
these. Donoho et al. (1995) show that choosing a  = 
a\/- (where a is the noise standard deviation and n is 
the number of time points) has some optima1 properties, in 
that it minimizes the maximum reconstruction error that 
would be expected across a wide class of functions (the min- 
imax criterion). However, it is not clear that such a criterion 
is the most suitable for practical use. 

Some guidance on these issues can be obtained from a 
simulation study (Horgan, 1997). Although carried out with 
one-dimensional signals, it should be applicable to images 
also, because the way in which wavelets capture signal infor- 
mation and respond to noise is essentially the same regard- 
less of dimension. Only the Haar and Daubechies wavelets 
shown in Figure 3 were used. The principal conclusions 
were 

The main determinant of the behavior of the wavelet shrink- 
age is whether there are rapid oscillations present in the sig- 
nal (it is assumed that they are present in the noise). Even 
though discontinuities generate high frequency components 
(in the Fourier sense), a signal with discontinuities but no 
rapid oscillations behaves more like a slowly varying signal. 
For slowly varying signals, the Daubechies-4 wavelet gives 
the best results. For rapidly varying signals, the Daubechies-8 
wavelet gives best results at low noise levels, the Daubechies- 
6 wavelet at higher levels. The Haar wavelet always gives in- 
ferior results. Perhaps the only reason for using it is that it is 
easy to program. 
The Donoho threshold is known to be optimal according to 
the minimax criterion. In practical applications, it may be felt 
that a criterion such as minimizing the mean square error or 
mean symmetic error (Marron and Tsybakov, 1995) is more 
appropriate. If so, a threshold less than the Donoho threshold 
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Figure 6. Image smoothing by wavelet shrinkage. (a) A SAR image. Smoothing by shrink- 
age is shown based on (b) the Haar, (c) the Daubechies-4, and (d) the Daubechies-6 
wavelets. 

a, should be used, particularly for low noise levels. This will 
apply when a, is based on a signal of len th 256 and also on 
a wide range of other lengths because varies very 
slowly. 
Shrinkage should be performed only at the finest resolution 
levels: 2 or 3,  or perhaps 4, for slowly varying signals. 

Another issue unrelated to these is that of dealing with 
images whose dimensions are not powers of two. The recur- 
sive nature of wavelet algorithms works best with power-of- 
two sizes, and some ad hoc adaptation is required for all 
other sizes. The easiest modification is to fill the image out 
to the next highest power of two. This can be done by filling 
the extra space with zeros, the image mean, the first or last 
rows or columns, reflection, or wrapping. In Figure 6, the 
images were 250 rows by 256 columns, and an extra six 
rows were created from the reflection of rows 245 to 250. 
These were removed after shrinkage. 

For the sAR image used in our example, the noise stan- 
darddeviation can be derived from theory to be 16.03 (= 

for four-look-averaged log-transformed imagery 

scaled by 25 for display purposes). Although the theory is a 
simplification, examination of the pixel values within the 
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apparently homogeneous fields in Figure 6a showed good 
agreement. Autocorrelation in pixel values was also negligi- 
ble. When the noise variance is not known, or theory needs 
confirmation, some means of estimating the noise variance is 
required. Donoho et al. (1995) suggest using the median ab- 
solute deviation (MAD) of the wavelet coefficients at the fin- 
est resolution divided by 0.645 (the MAD of the standard 
normal distribution). The rationale is that the wavelets at the 
finest resolution are mostly noise, and the few which are not 
will not much affect the robust estimation involved in the 
median. If the Haar wavelet is used, the finest wavelet coeffi- 
cients are simply the differences between adjacent pixels di- 
vided by d2. If this estimation is applied to the SAR image in 
Figure 6, the estimated standard deviation is 16.44, close to 
the theoretical value. 

Discussion 
There have been many other methods proposed for smooth- 
ing SAR images. A review of many may be found in Oliver 
(1991). Simple linear filters (Glasbey and Horgan, 1995, Ch.3) 
are the the most widely available, and have properties which 
are well understood. Their principal disadvantage is that 
edges are blurred and small but important features may be 
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Figure 7. Alternative smoothing filters. (a) Moving median filter in a square 5 by 5 window. 
(b) Lee's filters in a square 5 by 5 window. (c) Tomita and Tsuji 's filter using octagonal 
sub-windows of radius 2. (d) Modified version of (c) proposed by Glasbey and Jones. 

lost. Filters such as the median (Pratt, 1978) avoid some of 
these problems, but for a more substantial improvement, fil- 
ters need to be adaptive - they operate differently depend- 
ing on local image properties. There tend to be two elements 
to such filters. One is that they inspect the amount of local 
variation in pixel intensities. Where this is highest, it as- 
sumes that there is an edge nearby and less or no smoothing 
is done than when local variation is lower. Examples of such 
filters are given by Lee (1981; 1983). The second idea is that, 
by examining several windows near a pixel, the one to 
which the pixel is most similar ("belongs" in the ground 
cover sense) may be selected, and smoothing done in that 
window. For an example, see Tomita and Tsuji (1977). Glas- 
bey and Jones (1997) provide some fast algorithms for com- 
puting these filters. These ideas continue to develop. For 
recent work, see Martin and Turner (1993) and Smith (1996). 

Figure 7 shows some of these filters applied to the SAR 
image. In the absence of an objective measure of ground 
truth, or how smooth the truth is, any comparison is subjec- 
tive. The median filter, shown in Figure 7a preserves bound- 
aries well and is widely available in image processing soft- 
ware. However, it is unable to preserve small details. The 
Lee filter, shown in Figure 7b does preserve small details, 
while smoothing homogeneous regions. It is somewhat simi- 
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lar to the Daubechies wavelet-shrunken images in Figures 6c 
and 6d. It appears more speckly, particularly near field bor- 
ders. The Tomita and Tsuji filter, shown in Figure 7c, very 
effectively preserves field boundaries, but is poor at preserv- 
ing small details. The modified version suggested by Glasbey 
and Jones [1997), shown in Figure 7d, is better in this regard, 
but still not as good as the Lee filter or Daubechies wavelet- 
shrunken images. 

Beyond filtering, there is a large literature on segmenta- 
tion - the assigning of pixels to discrete groupings. Pointers 
to the literature are given by Oliver (1991), Dobson et al. 
(1995), and Smith (1996). 

These approaches can give good results. However, their 
adaptive nature, which is their strength in particular applica- 
tions, means that they often need to be tailored to each im- 
age source, land-cover pattern, and application for which 
they are used. We have presented wavelets as an alternative 
approach to image smoothing. Although their use as de- 
scribed here is a sort of filter, and can be seen as adaptive in 
some ways, this adaptation is automatic, at least with regard 
to the resolution of the image. This derives from the nature 
of wavelets - they are handled in a similar way at all reso- 
lutions. The choice of threshold, a, may need more care. 

It is our expectation that, as wavelets become more 
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widely understood a n d  used, they will  have a n  increasing 
impact  o n  all  aspects of remote sensing. In  this paper, one  
application h a s  been  discussed. T h e  results have been  im- 
pressive, in that  a n  effective smoothing which preserves fea- 
tures of importance has been achieved without  the  use of 
detailed knowledge of the  nature of the  underlying signal. 
The  results appear  fairly robust to  changes in t h e  parameters 
of t h e  shrinkage algorithm, so  careful fine-tuning is not  
needed. For image smoothing, these properties can  only b e  
considered as ideal. 
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