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Abstract 
A new wavelets-based algorithm, FAST Vision (hcets  stereo 
vision), is presented for an automatic and simultaneous de- 
termination of an object surface and its ortho image. Two 
families of orthogonal and C1-continuous (continuously dif- 
ferentiable) object gray-value models, called "S-D-model" 
and "S-model," respectively, were developed from the basic 
concept of multiresolution spaces. Both models establish two 
families of very simple gradient operators and enable FAST 
vision to do a very high resolution representation of an ob- 
ject surface and a fast solution of a very large system of nor- 
mal equations. Test results using digitized aerial images at a 
scale of 1 :4000 show that FAST Vision is capable of a fast, 
highly resolved, reliable, and precise determination of an ob- 
ject surface in  large windows and with rigorous error compu- 
tations. The very high resolution of 2 b y  2 pixels per height 
facet (0.12 b y  0.12 m2  in these tests) was obtained with the 
S-model in practical tests. The precision of the determined 
object surface was k 0.02 to 0.06 m ,  i.e., 0.2 to 0.6 pixels or 
0.03 to 0.1 ' / O O  of the flying height above ground, when com- 
pared with the control data measured by  an operator on a 
Wild AC3 analytical stereoplotter. These figures correspond 
well with the natural roughness of the Earth's surface in  the 
chosen test area. 

Introduction to FAST Vision 
FAST Vision (facets stereo vision) is a method for performing 
digital terrain reconstruction and ortho image computation, 
where digital stereo images are the basic observations. Its ba- 
sic concepts lie in the inverse process of image formation, 
called "image inversion." The first draft of FAST Vision was 
proposed publicly in 1987 (Wrobel, 1987) and, since then, 
new or extended models and algorithms for an operational 
and multifunctional FAST Vision have been presented (Wro- 
bel, 1987; Weisensee, 1992; Kempa, 1995; Tsay, 1996). 

In the process of image formation, an object signal G(X,Y) 
is projected from object space into image space and an image 
signal 6'(x1,y') is then formed in the image plane. On the 
other hand, in image inversion, the image signal C1(x',y') is 
backwards projected from image space into object space. 
Both processes can be generally described mathematically as 
follows: 

image formation: 6' (x', y ' )  < (TI) -I 
G(X, Y) (1) 
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image inversion: e' (x', y ' )  T I  > G(X, Y) 

where C'(xl,y') is the gray value of an image point with image 
coordinates (x1,y'), G(X,Y) is the gray value of an object poi$t 
with horizontal object coordinates (X,Y) corresponding toAG1 
(xl,y'), and T', ( T I - I  are the transformation functions from G'(xl, 
y') to G(X, Y) and its inverse. 

The relationship between the object gray value G(F, Y) of 
a_ SURFEL (=face dement) and the image gray values G'(xl,y'), 
G" (x",y"), . . . . , of the corresponding pixels in stereo images 
B', B", . . . . , respectively, is then given by the following cor- 
respondence condition: 

with the transformation functions T', T", . . . . , of images B', 
B", . . . . , etc. The functions T', T", . . . . , can be strictly de- 
fined by complicated reflectance functions (e.g., see Weisensee 
(1992)), but the related computational costs would be very 
high. Instead of that, a very simple linear function has been 
used to approximate the functions T', T", . . . . , etc. This ap- 
proximation is acceptable only in a small region, e.g., a com- 
putation window or even a height facet, and it has yielded 
great success. 

In the following, one assumes that the interior and exte- 
rior orientation data of all ster$o images B',  B", . . . . , are 
known. An image gray value G'(xl,y') of a pixel i in the fist 
image B' is linearly transformed and projected to the position 
Xp, Yp on an approximate object height surface. The corre- 
sponding object gray-value function is then expanded using a 
Taylor series in which the higher order terms have been omit- 
ted. The basic equation of FAST Vision is then derived (Wrobel, 
1987): i.e., 

+ dGO (X, Y); 

where g; and gd are the multiplication and addition parameter 
of the linear approximation function of the transformation 
function T' for image B'; G'(x', y') and v, (x', y') is the obser- 
vation of the image gray value G'(x', y') of a pixel i and-its 
random observation error, i.e.; G1(x', y') + v,. (x', y') = G1(x', 
y'); dX, and dY, are the corrections of the approximate values 
Xp, YP of the horizontal object coordinates X,, Y, of the corre- 
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sponding SURFEL i for e ' (x ' ,  J'); and dGo(X, Y), is the correc- 
tion of the approximate object gray value GU(X:, Y:)  of the 
SURFEL i that is caused by the corrections of the approximate 
values of the object gray-value model parameters. 

In image inversion, the image signal Gt(x', y ' )  of a pixel i 
moves from image space along its perspective ray to object 
space, where the position and orientation of the ray in space 
is fixed. In the case of central perspective projection, one gets 
Equation 5 after differentiating the collinearity equation with 
known interior and exterior orientation data (Schwidefsky and 
Ackermann, 1976): i.e., 

Yy - Y;; 
dY, = - z:, - z; dZ, 

where X;, YA, ZiI are the object coordinates of the perspective 
center of image B';  and (Xy, I",',Z:), (dX,, dY,, dZ,) are approxi- 
mate values of the object coordinates (X,, Y,, Z,) of SLJRFEL i 
and their corrections. 

By inserting Equation 5 into Equation 4, one obtains 

- Go(X:, Y:) + dGfl(X, Y), (6) 

aGn (X:, Yy) X:' - x,; d'GU (X:', YP) Y:' - Y; + {  ax 
.- + z: - z; a~ 

where dZi'(X, Y), equals dZ, and is the correction of the ap- 
proximate height value ZP of SURFEL i that is caused by the 
corrections of approximate height values on all grid points 
in the handled DTM (digital _terrain model) and depends on 
SURFEL position. 

Equation 6 shows that the image gray-value measurement 
G'(x', y ' )  is directly related to the geometric and radiometric 
object surface functions Z(X,Y) and G(X,Y). The correspond- 
ing Equations 4 through 6 for other stereo images B", . . . . , 
are also used in FAST Vision. 

The Taylor-linearized Equation 6 for all pixels i have to 
be solved iteratively, where the difference between the ap- 
proximate value of every unknown and its true value must be 
smaller than its convergence radius. A larger convergence ra- 
dius can be obtained by enlarging the pixel size. Therefore, a 
multiresolution approach (the image pyramid method) is es- 
sential and very applicable for FAST Vision. For details, please 
see Kaiser et 01. (1992a). 

Furthermore, the function G(X,Y) represented by bilinear 
interpolation in each facet is on each facet border generally 
onlv CO-, but not C1-continuous, so that a point on the facet 

d'G a(; 
border generally has two derivative values - (or -). This ax au 
ambiguous property is a drawback of bilinear interpolation. 
Other interpolation functions, such as higher order splines, 
have continuous derivatives, but they are not used here be- 
cause the related computational costs are higher and the avail- 
able window size is smaller. 

Appropriate wavelets enable FAST Vision to have the fol- 
lowing superior characteristics: (1) an eligible continuity de- 
gree of a represented object gray-value model G(X,Y); (2) 
orthogonality between any two model parameters of G(X,Y), 
which means also a high conlputation speed and independent 
parameters; (3) better stability at larger support than the one 
in bilinear interpolation; (4) a better representation accuracy 
because of the wonderful ability of wavelets: multiresolution 
approximation; and (5) a larger computation window, which 
means that more image inforlnation is available for surface de- 
termination. The reasons why wavelets are used in this partic- 

Two families of wavelets-based, C1-continuous and or- 
thogonal S-D-model and S-model were developed to describe 
G(X,Y). Both models were derived from the basic concepts of 
the so-called multiresolution spaces in the theory of wavelets, 
where the compactly supported Daubechies orthogonal wave- 
lets (Daubechies, 1994) are utilized. 

Fundamental Concept of Multiresolution Spaces 
The concept of multiresolution spaces, denoted by V,, V, E Z, 
has been given in many references with modern mathematical 
notation and concepts that are often unfamiliar to most read- 
ers. Therefore, this concept will be depicted briefly in a user- 
friendly manner using a very simple example of a multifre- 
quency signal function f (see Figure 1). 

The signal f is, e.g., a continuous image or height signal 
and can be decomposed into two components: a trend signal 
T and a detail signal D, i.e., f = T + D. Similarly, this detail 
signal D can also be decomposed into two components: a low - 
frequency component D ,,,, and the rest term D ,,,,,,, i.e., D 
= + DlLIq,,. 

The summation of the trend sienal T and the detail sienal " u 

D ,,,,,, denoted by T' = T + D ,,,,, is usually a better approxima- 
tion off than T. T'  thus presents a finer resolution approxima- 
tion than does T. The change from T to T' results in a resolu- 
tion refinement, e.g., from a coarser resolution space V, to a 
finer resolution space V,,,. The relationship between both res- 
olution spaces V, and V,,, is represented graphically in Figure 
2, where V,,, is decomposed into two orthogonal components 
V, and 0,. This deconlposition is denoted mathematically by 
V, @ 0 ,  = V,,,, where 0, is called the "detail spare" and is an 
orthogonal complement of V, in V,,,. The detail space is often 
named the "wavelet space" or "difference space." The resolu- 
tion space is also named the "scaling space" or "approxima- 
tion space." 

In these three spaces V,, O,, and V,,,, j E Z, there exist 
three groups of orthogonal basis functions qb!,, &,, and qbIL,, 
Vk E Z, respectively. One can use these bas~s functions to ex- 
tract the signals T, Dl,,,, and T' from the original input signal f ,  
respectively. If the index J becomes larger, the approximation 
space V, offers more signal information about f, and T is a bet- 
ter approximation off with a finer resolution. That presents us 
the basic concept of the so-called MRA (multiresolution analy- 
sis). 

The space V,,, can be deconlposed into the spaces V, and 
0 , .  Conversely, one can use these two spaces V, and 0, to re- 
construct the space v,,,. Similarly, the signal T' in the spare 
V,,, can be decomposed into the signals T and D,,,, in the 
spaces V, and O,, respectively. One can also reconstruct the 

(a) f = 

Figure 1. Decomposition of a simple multifrequency sig- 
nal f. 

ular application are then obvious. 
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signal T' using the signals T and Dr,* (Figure 3). In the case of
discrete raster image data, both mean image decomposition
and image recons[uction.

In practice, discrete raster image data with a specified res-
olution give FAST vision the information about real ortho im-
age function of object surface also in a specified resolution
space, e.g., V;rr. These data represent a discrete approximation
of the ortho image function in space V,*.. This approximation
can be represented using the orthogonal basis functions in the
spaces V, and O,. From that idea, a new interpolation model,
called the S-D-model, is derived.

If the approximation of the ortho image function in the
space V;*, is a relatively smooth function, its'detail compo-
nent in the space O, will be close or equal to zero. In this
case, the appioximdtion in the space V;*, is almost or com-
pletely the same as its smooth component in the space Vr that
can be represented using the orthogonal basis functions in the
space Vr. From this idea, one gets a new approximation model
called the S-model.

In other words, the S-D-model is suitable for image data
which are rich in texture and lacking in image noise. How-
ever, the S-model is appropriate for a relatively smooth image
signal with noise.

A New Interpolation Model:The $llModel
The S-D-model describes a signal transformation between the
spaces V;*, and (Vr, Or) (Figures 2 and 3). It is a new interpola-
tion model among some given grid points. If reference data Gt
on grid points with coordinates Xu i : 1' (1') 2n, n e N, are
given, their smooth and detail components Sk, Dk, k : 1 (1) n,
can be determined as follows (Tsay, 1996, pp. 53-55):

2N-1

so : tr h-.Gr.*-,,

2 N 1
sl

D o :  L ( - 1 ) - h ' r r r r - ' G z r + - ,  ( B )

where h-, m : 0 t ir:^-r,are the known filter coefficients
(low-pass filter) for the compactly supported Daubechies
orthogonal wavelets (see Daubechies (199a)); Nis the order of
Daubechies-wavelets; and N > 3 is used here to present a C1-
continuous function.

Then, a new interpolation function G(X), called the "S-D-
model," is defined as

G ( X ) :  
|  { r , t '  +  1 -  z k ) . S .  +  q ( x  +  1 -  2 k ) ' D k l  ( s )

where

x , 3 X { X , , , Y  X e  R ;
X - X .

" : ' -  
+  1 , x €  R ;
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{ is the coordinate of the r'-th grid point, i : 1 [1) 2n
(i.e., the oblect coordinate of the i-th pixel of ortho im-
age in nnsr vision);

AX":  X,* ,  -  X ' ,  i  :  1(1)  2n- ,1;

h(x + 1. - zk) : 2', '  J-- A\;) Qtu - k + 1, - 2k))du;

f r -  / t t  \

q(x + 1.  -  2k) :2 ' , "  J  -  * ( i  -  t r , t  -  t ) ) .  d(u -  (x

+ 1 - 2 k ) ) d u ; a n d
@ and ry' are the Daubechies orthogonal scaling and wave-

let functions derived from a minimum phase filter
(Daubechies, 1994).

Equation 9 defines a C'-continuous curve that passes
through aII reference points G,, i : 1 (1') 2n.

Slmilarlv, for the two-dimensional case, if reference data
G,., on grid points with coordinates (X, Y,\, i : 1 (1) 2n, I : 1
(1.) 2m, are given, one cEIn use, e.g., the following two-dimen-
sional wavelet decomposition to determine their smooth com-
ponents S;1 and detail components Df, ?i, ana 4d i+the X_-,.
y-, and XY-directions, respectively, with i = 1 (1) n' k : 1 (1)
m: i .e . ,

2N-7 2N 1
^ s s , , -
5 , 0 :  

A  4 n p n q l r z  e  r . z k t q . t i
' 2 N - a  

2 N - 7

Dt ,  :  t  L  { _  t ) r h ^h , rN  t t  qcz j  . p - t . z r - q  I" ik  3o 7u\  
^ '  - 'p- '

, r  = 'E 
' i^ ,-rnoro, 

zN-r) pc'+p a,zk+q-1 i
2 N  1  2 N - 1

4t :  
A \[- t) '* 'hrrv-r) pfr(zN r '1 qczl+p-t,*+q t

NffiW
v, @ or v,*,

Figure 2. Graphical representation of the equation
V@O, : V...

Vo.n e N (10 )

(7 )

Then, the two-dimensional S-D-model G(X,Y) is defined
by

G(x,Y) = 
} ? lh"h". so + q"h,. ryo

+ h^Q, .  D i  +  q^q , . \Y l  (11)

where

h . :  h ( x  +  1 -  2 l ) ;  q " :  q ( x  +  1 -  2 j ) ;

h,: h(y + 1 - 2l<); and qr: qly + 1 - 2k).

Equation 11 calculates a C1-continuous surface that passes
through all reference points Gr,, i : 1 (1) 2n, l: 1(1) 2m'

New Symmetrical Gradient 0petatots
Equation 6 shows clearly that the object gray-value gradients
d G  - d G=r*and=uy*" of great importance for FAsr vision and that

they must be computed. For that, one obtains tlre follorving
gradient function by differentiating Equation I for X i.e.,

r

+ D,o*

a
'-J

T'

Figure 3. Signal decomposition T' -+ T + Dr"*; Signal re-
construction T * D,o* -+ T'.
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Figure 4. The function graphs A(u),au) with N = 
3 and Au = 2-lo. 

where 

t + u  S-.' o ( ~ )  . 4'ltldt. and 

Once the scaling function 4 is determined, the corre- 
sponding wavelet function + can be computed using the so- 
called dilation equation (Strang, 1989; Chui, 1992; Daube- 
chies, 1994). 

The derivative function of first order @ exists and is a 
continuous function only in the case of N 2 3. In the appen- 
dix, an algorithm is presented to compute the derivatives of 
the k-th order, i.e., +ck1. One can use that algorithm with k = 1 
to compute the function 4. 

Now, both functions A and 5 can be computed using 
Equations 13 and 14. For example, Figure 4 shows the func- 
tion graphs A(u) and a u )  with N = 3 and Au = 2-lo. 

On a grid point X = X,, V i  E N, Equation 12 is identical 
to 

where 

n = 2 - 2N (2) 4N - 4, if i is an odd number, 
n = 3 - 2N (2) 4N - 3, if i is an even number, and 
k = (i + 1 - n)/2.  

Inserting Equations 7 and 8 into Equation 15, one obtains 

where 

m = 4 - 4N (1) 4N - 3, if i is an odd number, 
m = 3 - 4N (1) 4N - 4, if i is an even number, and 

Dm = -fi%(n) . hm+, + an1 . (-lIm+, . h(zN-l,-cm+n,}. 

Therc is no closed-form analytic formula for the functions 4 
and I), so that the usual conventional procedures to compute 
their function graphs, derivatives, integrals, etc., do not apply. 
Nevertheless, one can use soae  algorithms to compute them 
with arbitrarily high precision. For example, both functions A 
and 5 can be calculated as follows: 

where At = t,,,,, - t ,,,, Vm E Z. 
It is obvious that the scaling function 4, the wavelet func- 

tion I), and the derivative 4' nlust be determined before one 
can compute the functions h and 5: For that purpose, several 
mcthods are available to compute the scaling function 4, e.g., 
the so-called "cascade algorithm" (Daubechies and Lagarias, 
1991: Daubechies, 1994), Strang's method (Strang, 1989; Chui, 
1992), the inverse Fourier Transform (Daubechies, 1994; Kai- 
ser, 1994), and the method of cumulants (Kaiser, 1994). In 
fact, Strang's method is the best one because it is simple, 
quick, and accurate (Chui, 1992). 

For example, Table 1 shows the elements Dm with N = 3 (12)  
and m = -8 (1) 9 or m = -9 (1) 8 for odd or even index i, 
respectively. It is evidently a new symmetrical gradient opera- 
tor. Each of its elements has the same values in both cases 
(odd or even index i). On the other hand, there are only eight 
non-zero elements in this gradient operator. The other ele- 
ments are equal to zero because of the characteristics of 
Daubechies-wavelets and their filter coefficients h,, e.g., 
z h ,  h,+2, = 6 ,,,, where So,, is the so-called Kronecker delta. 
rn 

i is odd i is even 
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dG dG of 
Similarly, one can get the derivative functions - - ax' dY 

the two-dimensional S-D-model G(X, Y) by differentiating 
Equation 11 for X and Y, respectively. Then, one gets the gra- 
dients on grid points (X,, y,), Vi,l E N: i.e., 

- ZN-1 ZN-I 

Ax, , " p=o q=o 

(hmhp + (-l)m+ph[ZN-l]-mh[ZN-l)-p) ' GZj+p-l.Zk+q-l 

The characteristic C h, h,+,, = 6,,, results in many ele- 
m 

ments in Equation 1 7  being equal to zero. Therefore, Equation 
17 reduces to 

1 dG 1 (g) = , Tc,+n.l ' pn and = = XG,,,+. . p,, (18) AY, n 

The above-mentioned S-D-model is a wavelets-based new 
interpolation model among all given grid points (G, or G,,). It 
yields a new family of symmetrical gradient operators and 
thus provides an alternative for interpolation and gradient 
computation. In the following, we present another available 
model for FAST Vision that is a new approximation model 
among all given grid points. It is called the S-model. 

A N e w  Approximation Model: The S M o d e l  
One assumes that some grid point data G,, Vi E N are given. 
They represent a discrete approximation of a real continuous 
signal function G(X) with a certain resolution, e.g., in a reso- 
lution space V1+,. The approximation in Vj+, can be simply 
represented by its smooth component in Vl if its detail compo- 
nent function in 0, is close or equal to zero. The basic idea of 
the S-model was drawn thereupon. 

The S-model G(X) describes a best approximation AjG(X) 
of G(X) in space Vj, where the "best" is defined by a quadratic 
minimal norm. For the detailed derivation, please see Tsay 
(1996, pp. 85-86). The final formula for the one-dimensional 
S-model is defined as follows: 

where S,, Vk E N are computed by Equation 7 using the 
given grid point data G,, Vi E N; 4 is the Daubechies scaling 
function with the support [O, 2N - 11; XI is the coordinate of 
the first grid point G,; AX, is the interval of the given grid 

1 2N-1 
points G,, Vi E N; T = - C h, . n; and h, = MAX(h,, Vn), 

,I2 n=o 

e.g., J = 1 for N = 3 or N = 4. 
The two-dimensional S-model G(X,Y) is defined by the 

product of two one-dimensional S-models G(X) and G(Y): 
i.e., 

C C sjk 4(1. (- + 1) - j + -) 
I k 2 AX, 2 

The scaling function 4 is C1-continuous only when its 
order N is larger than 2. One chooses N = 3 to keep the 
computation costs as small as possible and also to have a C1- 

continuous function G(X) or G(X,Y). Both models (Equations 
19 and 20) with N = 3 have a support that contains 5 or 5 
by 5 S-grid point data S, or Sjk, respectively. However, their 
discrete models with X = X, and Y = Y,, that are used in 
surface determination by means of the indirect method of 
FAST Vision, only need 3 or 3 by 3 S-grid point data, because 
the function values 4((r  + n)/2) are exactly equal to zero for 
n > 5,  i.e., for n = 6 (1) 9. Therefore, the cost to compute 
the function values G(Xi) or G(Xi, Y,) becomes minimal. 

N e w  Asymmetrical Gradient Operators 
The necessary gradient function for FAST Vision is deter- 
mined by differentiating Equation 19 for X. In the case of N 
= 3, its function value on a grid point X = X, is equal to 

where 

m = -1 (2) 7 if i is an odd number; 
rn = 0 (2) 8 if i is an even number; and 

a,= = 1 4 ~ ' ( ~  + + l) (see Table 2). 
2 

Similarly, the gradient functions dGldX and dGldY of the 
two-dimensional S-model are determined, and their function 
values at a grid point with X = Xi and Y = Y, are computed 
using Equation 22 for the case of N = 3: i.e., 

d2 (g) = - AX, c (a.h,+, ' S z  h) and 
2 ' 2  

,IT ( = - c x (h,+,a. S* k)  
dY AY, p n 2 ' 2 

where 

m = -1 (2) 7 and p = -1 (2) 3 if i i s o d d ;  
m = 0 (2) 8 and p = 0 (2) 4 if i is even; 
n =  - 1 ( 2 ) 7  and q =  - 1 ( 2 ) 3  if 1 i sodd;and  
n = 0 (2) 8 and q  = 0 (2) 4 if 1 is even. 

In the S-model, all S-values S, or Sjk are discrete grid point 
data, where their grid size is two times that of the grid size of 
their original grid point data G, or G,. That means that each S- 
grid contains 2 or 2 by 2 G-grids (G-SURFELS), respectively. 

Furthermore, the S-D- or S-model is used here to de- 
scribe an object ortho image function in the indirect method 
of FAST vision, where all observations of image gray values 
are located on predefined grid points. In this case, all pararn- 
eters of the S-D- or S-model, i.e., (S,, D, or Sjk, 4, D,Y,, w) 
or (S, or Sjk), Vj, k E N, are orthogonal to each other, so that 
the solution and/or inversion of a very large system of nor- 
mal equations becomes simpler than the one in any non- 
orthogonal model, e.g., bilinear interpolation. 

Normal Equations 
The normal equations in FAST Vision are derived by the well- 
known least-squares adjustment (Mikhail and Ackermann, 
1976) and are defined by 

where X, are unknown corrections of the approximate values 
of object gray-value model parameters; Xz are unknown cor- 
rections of the approximate values of object height model 
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Tnerr 2. A New GRnorenr OpeRnroR DERrvro rRov rsE S-MooEl wrs ft=3

i is odd I ls even

the computations of FAST vision at the upper pFamid levels.
Instead of that, a group adjustment is very suitable because it
needs less core memory and computation time. With that, a
sufficiently accurate initial nrlr,l for object surface determina-
tion at the lower ppamid levels can be determined as quickly
as oossible.

At the Iowest pyramid level, the approximate values of
all parameters of pASt vision can be corrected in the initial
iteritions by a group adjustment. These parameters can then
be exactly determined by a rigorous adjustment, if a rigorous
comoutation of the covariance matrix for all narameters is
reouired.- 

This algorithm is outlined in Figure 5.

Algorithm
A minimal number of grid points is necessary, because the
determination of border points in a window is worse than
the determination of inner points. On the other hand, the
window size cannot be too large, because it would create a
very large system of normal equations and would result in
high computation costs. Therefore, suitable algorithms are in-
dispensable from the beginning, e.g., the so-called scan tech-
nique, for object surface determination in a large project
area.

For the present, different scan techniques are applicable,
e.g., the one proposed in Kaiser et al. (1,992b). One wants to
use here the relatively simple and practically suitable scan
technique proposed by Kempa (1995). In that method, a con-
stant number of grid points per scan window is applied
which is equal to the number of grid points used in a win-
dow in the bottom level of the image pyramid. The overlap
between any two neighboring windows is so defined that the
computed heights on all grid points of a certain number of
grid lines on the border of a window is not used as a part of

Define the project area and the number ofimage pyramid levels.

Compute the image pyramid data.

Define approximation of DTM: horizontal plane or better data if available.

Compute a better DTM in project area by the image pyramid method:

From the top to the bottom level:

Define each window as large as possible.

For the upper levels:

Group adjustment.

For the bottom level:

Group adjustment in the beginning iterations.

Strict adjustment in the following iterations.

Output the computed DTM and ortho image

Figure 5. A new algorithm for object surface determina-
tion in a large project area using the method of FAST
vis ion.
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- 'L
1
3
5
7

0.70894
-  1 .08080

o.53443
o."16220

-  0 .00036

0.76885
-  1 .01089

o.21.525
o.02679
0.00000
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4
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parameters; X" are unknown corrections of the approximate
values of muliiplication and addition parameters d{,, dg)" of
the linear transformation function (see Equation 4); and Ncc,
NGr, Ncs,. . . , are sub-matrices of the normal equation matrix
N.
s The characteristic of Daubechies filter coeffrcients h-, i.e.,
L h^. h,n*rn : 50,,, results in the simplest form of sub-matrix

ili".' i.".,
Ncc :  , \  'E (24)

wnere

€
I : ! t/@:.")"ofor the S-D-model or I : sL il(g,")?tor

the S-model;
B is the number of the used (stereo) images, B e N,

b e  N ;

klo),, is the approximate value of the parameter gi for the
b-th image; and

E is a unit matrix.

Compared with a band matrix N." established by any
non-orthogonal (e.g., bilinear) object gray-value model, this
sub-matrix N"., needs the very least core memory to store the
unique element ,\. Therefore, the economized core memory is
available for surface determination in a larger window. That
is a wonderful property for pasr vision.

A New Algorithm for Object Surface Detemination Using the
Method of FAST Vision
Basic ldea
In general, there exist many local image regions with homo-
geneous gray values in real images, e.g., large-scale aerial
images. This kind of real image is, of course, not ideal for
image matching or object surface determination. Object sur-
face determination using these kinds of real images should
be done in a possibly larger window in order to enlarge the
chance to find in that window the sufficient and necessary
image information for a successful and accurate matching.
Therefore, the orthogonal S- and S-D-model are presented to
enable FAST Vision to do an obiect surface determination in a
possibly larger window.

Furthermore, a sufficiently accurate initial nrv plays an
important role for a quick FAST vision. In principle, the im-
age pyramid method is the simplest one to get a good initial
DTM. At each image pyramid level, the window size should
be chosen as large as possible. This gives two advantages: (t)
each computed ltnt at the upper pyramid level could be
used as the initial DTM for obiect surface determination in
more windows at the lower level, so that the total computa-
tion cost/time for a very large area can become cheaper/
shorter; and (2) FAST vision can be more reliable and accurate
at every pyramid level, because more image features with
Iarge gradients of image gray values would generally appear
in a larger window.

In addition, a rigorous adjustment is not necessary for

1 1 8 4  D e c e m b e r  I  9 9 8 PI{OTOGRAMMETR IC ENGI NEERII{G & REMOTE SEtrlSlt{G



the find entire DTM in a given project area. Only the other 
computed heights are available. Mean values of available 
heights on the common points, which are located in two 
neighboring windows, are used as final results. 

The whole project area is then computed by moving the 
scan window of a constant size. First of all, the project area 
and the number of image pyramid levels are defined. The 
image pyramid data are then computed by way of image fil- 
tering using the low-pass filter proposed in Meer et al. 
(1987). The regularization (Tsay, 1996, pp. 105-108) must be 
done to solve the ill-posed problem in object surface deter- 
mination using real, generally non-ideal images. 

In the above-mentioned algorithm, the indirect method 
of FAST Vision is used, where the S-D- or S-model with N 
= 3 is utilized as the C1-continuous and orthogonal object 
gray-value model and the parametric cubic convolution func- 
tion is applied as the weighting function of a C1-continuous 
object height model (Tsay, 1996, pp. 21-30). 

In this paper, two models are presented (S- and S-D), but 
they were not compared in our experiments. The experimen- 
tal comparison may be done later. To verify the superior ap- 
plicability of wavelets for object surface determination using 
this algorithm, only the S-model was tested and its test results 
are shown and analyzed briefly in the following section. 

Test Results Using Large-Scale Aerial Images 
The chosen test area (Figure 6) is located in a rural region 
in Walddorf-Haeslach in the southwest of Germany. It has a 
natural Earth surface with vegetation. The aerial photos used 
in the test had a mean scale of 1:4000 and were taken with 
a Zeiss RMK A 15/23 camera (15cm focal length, 23cm by 
23cm photo format). Altogether, four photos were selected as 
test data. They were taken from two cross flight lines. The 
overlap between the two stereo photos in each flight line was 
about 60 percent. These four photos were digitized with a 
Zeiss PSI photo scanner using a pixel size of 15 by 15 pm 
and 8 bits in gray scale. All four digitized images show that 
they really have weaker contrast than their original analog 
photos. Some images do have very weak texture, e.g., the im- 
age of window C shown in Figure 6. 

Three test windows were chosen in that test area: win- 
dow A with relatively good texture, window B with a me- 
dium quality of texture in a scarp region of a highway, and 
window C with weak texture. Thus, object surface determi- 
nation in different kinds of windows could be tested and 
analyzed. The Earth's surface in the windows is covered es- 
sentially with grass before spring. Some individual small 
bushes exist in window B. In addition, the height differences 
in A and C windows and the B window are 0.8 m and 2.5 
m, respectively. Compared with other small-scale (aerial) im- 
ages or images in other regions, the digitized images of the 
selected test area do have relatively very weak texture and, 
therefore, give a proper touchstone for automatic surface de- 
termination using aerial images. 

The image pyramid algorithm is utilized in all tests to 
get sufficiently accurate initial DTMs, where a horizontal 
plane is used as an initial DTM for each top level. The com- 
puted DTM on each level is then transferred to the next lower 
level. Generally speaking, the convergence radius of the Fv 
(FAST vision) method depends on the wavelength of the im- 
age signal and is equivalent to the pixel size, if the image 
signal is sampled at the Nyquist rate (Weisensee, 1992). 
Therefore, in order to get a successful and fast surface deter- 
mination, four or five image pyramid levels were chosen for 
the A and C windows and the B window, respectively, 
which have a precision of initial heights of 1.5 pixels and 
1.1 pixels for the fourth or fifth pyramid levels, respectively. 
This results in a precision of initial heights of 2%0 (1.2m) or 
3%0 (1.8m) of the flight height. 

Figure 6. The test area (800 by 800 pixels, left) and win- 
dow C (168 by 168 pixels, right) extracted from two digi- 
tized images with a 15- by 15-ym pixel size. 

To check the accuracy of the DTM computed by FV, the 
DTM in each window with a height grid size of 0.5m by 0.5m 
was measured by an operator on a Wild AC3 analytical 
stereo plotter. The standard deviations a,,, of those height 
measurements show clearly that window C does have the 
worst image texture among all three windows. The a,,, val- 
ues of the measured DTM in window C have a mean and 
maximum of 0.08m and 0.16m, respectively. In the follow- 
ing, only the analysis of the test results for window C are 
presented because the analyses for windows A and B (Tsay, 
1996, pp. 122-133) are essentially the same as for window C 

The data below are given in Tables 3, 4, 5, and 6 to 
show the precision of every Z-value computed by ~ v ,  de- 
noted by Z,,, which are compared with the Z-values mea- 
sured by an operator, denoted by Z,,. In those tables, ir, is 
the standard deviation of unit weight (units: gray value); Sz,',, 
and Cz,,,,,, are the mean and maximum of the standard de- 
viations of the 2-values which are computed by FV; s,,/s,, is 
the a posteriori standard deviation for the Z-value (Z,), com- 
puted by FV and for the mean (Z,,), of the Z-values measured 
by operator on each grid point i, i = 1 (1) k, respectively, 
where k is the number of grid points; AZfs, is-the constant 
height difference between both DTM (Z,,), and (Z,,),, i = 1 
(1) k, and its standard deviation; and I dZ, I ,, is the maxi- 
mum absolute value of the cleared height differences (dZ,),, i 
= 1 (1) k, with (dZ,), = (Z,,), - (Z,,), - A Z. 

Table 3 shows the test results using two images, where 
each G- and Z-facet contains 2 by 2 and 4 by 4 pixels, re- 
spectively, denoted by P:G:Z = 1:22:42. It shows that all com- 
putations converge in two or three iterations. From the upper 
to the lower level, the standard deviation &,, becomes larger. 
The reason is obvious because the noise of image gray values 
is damped by the low-pass filter from the lower to the upper 
level. In addition, the computed standard deviations of 
heights by FV become smaller on lower levels with finer res- 
olution. The a posteriori standard deviation s,, of the Z-val- 
ues computed by FV is smaller than or equal to 3 cm on 
the bottom level, which corresponds to 0.05%0 of the flight 
height or 0.3 pixel in image space. In those cases, each con- 
stant height difference A Z is not significant, i.e., A Z-0. The 
maximum absolute value of the height differences I d2, I ,, 
on the bottom level is equal to 13cm. Furthermore, 82.3 per- 
cent of the cleared height differences are located in the inter- 
val +_6 cm of the flight height or 0.6 pixel). Figure 7 
shows their distribution histogram. 

Table 4 shows the test results using four images. Com- 
paring it with Table 3 for two images, the precision using 
four images is better than the one using two images with re- 
gard to &, and the a posteriori standard deviation s,, of the 
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TABLE 3. TEST RESULTS WITH THE FV METHOD USING TWO I M A G E S ,  WINDOW C (WEAK TEXTURE) 
Number of Pixels per Facet: P:G:Z = 1:22:42 

Facet size in first level of image pyramid: A X(P): AX(G): A X(Z) = 0.0625m : 0.125m : 0.25m 

6 0  - 
level of number of [gray flzrv f l z , ~ v , ~ ~ ~  SFV/SOP 1 dzr 1 ,"ax AZ f s,, 

image pyramid iterations value] [ml [ml [ml [ml [ml 

Z-values computed by FV. On the first level, all a posteriori 
standard deviations s,, are smaller than 3cm (0.05%0 of the 
flight height or 0.3 pixel in image space), where the constant 
height difference A Z is not significant. 

Tables 5 and 6 show the test results using the very fine 
resolution of 2 by 2 pixels per Z-facet and Z-facet = G-facet, 
denoted by P:G:Z = 1:22:22, that is the finest resolution if the 
S-model is used as the object gray-value model. They show 
evidently that the finest resolution of 2 by 2 pixels per Z- 
facet is available for FV using the presented algorithm. In 
that case, all computations converge in two or three itera- 
tions. The standard deviation ir, becomes larger from the up- 
per to the lower level. That is the same as the case with the 
coarser resolution of 4 by 4 pixels per Z-facet. 

In the case of four images, the a posteriori standard devi- 
ation s,, of the Z-values computed by Fv on the first level is 
equal to 3 to 4cm, which corresponds to 0.05 to 0.07%0 of the 
flight height or 0.3 to 0.4 pix51 in image space. This is 
smaller than the mean value Cz,,, (8 to 9cm) of the standard 
deviations of the Z-values computed from the covariance ma- 
trix of FV. This indicates that the Z-values can be more pre- 
cisely determined than their precision indicator CZ,,,. This is 
an expected, so-called bridging effect of the regularization. 

The related constant height difference A Z between FV 
and the operator is not significant, i.e., A Z-0. The root- 
me_an-square value RMS (dZ) of the height difference dZ (Z,, 
- Z,,) is 4 to 6cm, which corresponds to 0.07 to 0.1%0 of the 
flight height or 0.4 to 0.6 pixel in image space. This preci- 
sion is limited by the following two factors: (1) the accuracy 
of the interior and exterior orientation of the images used in 
these tests is 0.2 to 0.3 pixel and (2) the roughness of the 
Earth's surface in the test area is obviously in the same order 
as the height precision of less than 10cm. 

These tests show that FV is capable of a precise object 
surface determination using large-scale aerial images. In ad- 
dition, the presented algorithm can do an object surface de- 
termination using the finest resolution of 2 by 2 pixels per 
Z-facet (0.12 by 0.12 m in these tests). That is much finer 
than the resolution that is used or available in other meth- 
ods, e.g., 30 by 30 pixels per Z-facet in Krzystek (1991), 20 
by 20 pixels per Z-facet in Heipke (1990) and Holm (1994), 
16 by 16 pixels per Z-facet in Diehl and Heipke (1992), and 
5 by 5 pixels per Z-facet in Diehl (1994). 

Conclusion and Outlook 
FAST Vision is a method for object surface determination us- 
ing digital stereo images. In fact, it can integrate different 
kinds of information or data to perform simultaneously and 
automatically image matching, digital terrain reconstruction, 
and ortho image computation. At present, only the geomet- 
rical and radiometrical information has been taken into ac- 
count. The potential application of semantic information for 
surface determination has not yet been exhausted. 
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In order to do a fast and accurate surface determination 
in a large window, this paper presents an algorithm and two 
families of wavelets-based orthogonal and C1-continuous ob- 
ject gray-value models (S- and S-Dl. Test results using real 
aerial images with a large image scale of 1:4000 show that 
the S-model makes a finest resolution of 2 by 2 pixels per 
height facet available, corresponding to 0.12 by 0.12 m in ob- 
ject space. This resolution is much finer than the one used or 
available in other methods. Thus, an accurate surface repre- 
sentation is possible. In addition, the S-D-model enables FV 
to have a new potential to use a resolution of 1 by 1 pixel 
per height facet, but the related aspects have not yet been 
studied. 

Moreover, the test results show that the presented algo- 
rithm can perform a fast, highly resolved, reliable, and accu- 
rate object surface determination in a rather large window. 
The precision of object surface determination is 0.2 to 0.6 
pixels, which has been estimated by comparing the DTM 
computed by FV with the DTM measured by an operator on a 
Wild AC3 analytical stereo plotter. This precision is limited 
by the residual errors in the orientation data of the used im- 
ages and from the roughness of the natural Earth surface in 
the test area. Therefore, FV can be utilized in many practical 
applications about surface and/or volume determination, e.g., 
computer vision, topography, land management, Earth vol- 
ume computation, route design, and so on. 

FV also can estimate the variances and covariances of the 
related surface parameters. It is a general defect of the other 
methods proposed in the area of computer vision (e.g., see 
Fua and Leclerc (1995)) that don't have this capability. Fur- 
thermore, FV can do surface determination using multi-im- 
ages. The test results show that the precision of surface 
determination can be better if more stereo images are used. 

Number 

Figure 7. Histogram of the height 
differences dZ, (= (Z,), - (Z,,), = 
(Z,), - A Z) on the bottom level in 
window C (weak texture) using two 
images and the facet size of P:G:Z 
= 1:22:42. 
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TABLE 4. TEST RESULTS WITH THE FV METHOD USING FOUR IMAGES, WINDOW C (WEAK TEXTURE) 
Number of Pixels per Facet: P:G:Z = 1:22:42 

Facet size in first level of image pyramid: A X(P): AX(G): A X(Z) = 0.0625m : 0.125m : 0.25m 

60 - 
level of number of [gray %FV U Z , F V , ~ ,  SFV/SOP 1 dzr 1 ,"ax AZ + s, 

image pyramid iterations value] [ml [ml [ml [ml [ml 

TABLE 5. TEST RESULTS WITH THE FV METHOD USING TWO IMAGES, WINDOW C (WEAK TEXTURE) AND A HIGH RESOLUTION 
Number of Pixels per Facet: P:G:Z = 1:22:22 

Facet size in first level of image pyramid: A X(P): AX(G): A X(Z) = 0.0625m : 0.125m : 0.125m 

60 - 
level of number of [gray , *z,Fv,max S F V / S O P  1 dz, 1 ,, AZ t s,, ~ ~ s ( d Z l  I d z  I ,,,, 

image pyramid iterations value] [ml [ml [ml [ml [ml [ml [ml 

TABLE 6. TEST RESULTS WITH THE FV METHOD USING FOUR IMAGES, WINDOW C (WEAK TEXTURE) A N D  A HIGH RESOLUTION 
Number of Pixels per Facet: P:G:Z = 1:22:22 

Facet size in first level of image pyramid: A X(P): AX(G): A X(Z) = 0.0625m : 0.125m : 0.125m 

60 - 
level of number of [gray , &z,Fv,,, SFV/SOP 1 dZr 1 max AZ +- s ,  RMS(~Z) I dZ I ,,, 

image pyramid iterations value] [m] [ml [ml [ml [ml [ml [ml 

There exists of course room for Fv to be further im- 
proved, e.g., with appropriate algorithms/models to process1 
represent discontinuous surfaces, an optimal regularization, a 
strict reflectance model to describe more accurately the rela- 
tionship between object and image gray values, geometric 
and radiometric calibration of the photo scanner or CCD cam- 
era, etc. One can expect that the precision of object surface 
determination can then be further improved after the above- 
mentioned improvements are carried out. On the other hand, 
the reconstruction of the Earth's surface is needed for topo- 
graphic cartography. One should propose some solutions to 
extract the desired Earth surface from the reconstructed ob- 
ject surface that always includes anomalous surfaces, e.g., 
buildings and vegetation. 

Appendix 
An Algorithm to Compute the k-th Order Derivative @& of the Scaling Function 
If the k-th order derivative function +m exists, one can use 

2N-1 

the dilation equation +(x) = fi h, . +(2x - n)  to derive a 
n=n .. - 

general condition equation for qk1 as follows: 
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On the other hand, there exists +[kl(x)=O, Vx E R, x 5 0 or x t 
2N - 1. One can get 2N - 2 linear equations using Equation 
A1 with x = 1 (1)  2N - 2. They describe the conditions 
among the 2N - 2 unknowns @kl(l) ,  . . . , + I k ]  ( 2N - 2).  The 
rank of this system of linear equations is 2N - 3 ,  so that an 
additional independent condition among the unknowns 
4 ( k l ( l ) ,  . . . , +(kl [2N - 2) must be found. For that, one can 
find the following condition from Dahmen and Micchelli 
(1990): 

with 

Kronecker delta 

and I !  = l(1 - 1)(1 - 2). ..:3.2.1. 

0 , r # l  



For example, wi th  r = 1 a n d  1 = 1, one c a n  get 

Therefore, the  unknowns +("(I), . . . , 4Ck'(2N - 2 )  c a n  then 
b e  determined b y  solving Equations A2 a n d  A l ,  e.g., w i t h  x 
= 1 (1)  2N - 3. In  the  case of k = 1, one can  get the  deriva- 
tive function values @(I) ,  . . . , #(2N - 2) after solving Equa- 
tions A3 a n d  A l ,  e.g., wi th  x = 1 (1)  2N - 3. Afts: that, one 
c a n  compute all  function values 4(k)(x) o n  the  so-called dila- 

n 
t ion points x = -, Vn,j E Z using Equation A l .  If the  resolu- 

2j - 

t ion index j i s  large enough (e.g., j > 9), one  c a n  accurately 
compute 4Ck)(x) b y  linear interpolation between the  corre- 
sponding two neighboring computation points. 
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