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Abstract

A method is proposed to estimate the classification accuracy
of low-resolution images by using high-resolution images in
place of ground truth information. For that reason, low-reso-
lution pixels have been simulated by degrading high-resolu-
tion images using different multi-resolution techniques. We
carried out a statistical analysis, resulting in two models that
combine the information from the aggregated high-resolution
Landsat T™™ Normalized Difference Vegetation Index (NDvI)
data in order to predict NOAA NDVI data. The method is illus-
trated by a case study on mapping surface roughness of dif-
ferent landscape classes in order to determine the amount of
deposition of atmospheric pollutants.

Introduction
At present, the ground resolution of remote sensing images
can range from about 5 by 5 m to more than 1 by 1 k. The
choice of the appropriate resolution depends on the informa-
tion desired as well as the spatial structure of the scene it-
self. Most commonly used are spatial resolutions of 20 to 30
m as available from the SPOT and Landsat Thematic Mapper
(TM) satellites, respectively. However, dala with a coarser
resolution such as from NOAA (1 by 1 km) are being used at
the same time. lligh-resolution images provide a lot of detail
information, but at the same time a large amount of data
needs to be processed. In comparison, a lower resolution
provides sulficient information for many applications, and
the amount of data required is much less in quantity.
Moody et al. (1994) pointed out the necessity for efforts
devoted to the validation and accuracy assessment of lower
resolution data sets, which raises the issue of using high-res-
olution land-cover information from local maps and/or from
remotely sensed sources. Loveland et al. (1991) stated that
there were no adequate existing methods to verify 1-km reso-
lution land-cover classifications conducted over large areas.
This paper addresses the estimation of classification ac-
curacy of remote sensing images at a coarse scale using high-
resolution images. Based on ground truth measurements, an
evaluation of the classification accuracy of high-resolution
Landsat T images is possible. However, this is not feasible
for lower resolution images, such as NOAA images, because
of the fact that ground measurements would be laborious
and cover in practice only a very small part of the pixels in
these images. The method proposed here is to use classified
high-resolution images to estimate the accuracy of the classi-
fication of low-resolution images. In order lo do this, the
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Landsat T™ images have to be degraded to the lower resolu-
tion of NOAA images. Once satisfactory degradation results
are achieved, the Landsal T™™ images can be evaluated more
easily and can be used as “ground truth” data for low-resolu-
tion images. Based on that idea, we performed a study on the
degradation of high-resolution Landsat T™ images (30 by 30
m) to the resolution of NOAA images (1 by 1 km). The con-
cepts are illustrated by a case study on the mapping of the
roughness characteristics of land surfaces. In vegetation,
these characteristics are determined by the canopy structure
or roughness of the vegetation. The most acidifying air pol-
lutants in Europe — SO, NH,, and NO, — are deposiled at
rates that are affected by these roughness characteristics,
Roughness length maps created by processing remote sensing
images have been used as inputs to the deposition model
DEADM (Erisman, 1992) in order to quantify the deposition of
pollutants. This model calculated the total potential acid
deposition at scales of 1 hy 1 km or 5 by 5 km. Landsat TM
images have been used to produce appropriate roughness
length maps. However, in order to cover the whole of Eu-
rope, maps at different scales are necessary, coarser than 1
by 1 km or 5 by 5 km, using lower resolution images such as
NOAA. For that reason, the objective of this study was to find
a relation between simulated and originally low-resolution
images. The degradation methods presented are based on
multi-resolution techniques. A statistical analysis of the pix-
els in the low-resolution image in comparison with the
pixels at the same position in the simulated low-resolution
images was carried out. This enabled the development of sta-
tistical models for the simulation of low-resolution pixels
from high-resolution pixels. It is obvious that these models
can only be seen as precise for that certain case. They are re-
stricted, meaning that using other data can result in other
models.

The main objective of this paper is to describe the
method, illustrated by ane example. Tests on other sites are
recommended. However, the study shows that it is possible
to predict low-resolution data by high-resolution information.
Our study was carried oul using one Landsal T™M NDVI image
and one NOAA NDVI image of the same area in The Nether-
lands. An important step in view of the (urther processing of
images with different resolutions is the geometrical registra-
tion of the images.

A method for the automatic registration of images based
on a multi-resolution decomposition of the images was pre-
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sented in Djamdji et al. (1993). The method had been ap-
plied to images obtained with identical sensors, as well as
with different sensors. They mentioned that the main diffi-
culty for geometric correction lies in finding ground control
points (GCP); features located in both the input image and the
reference image. That is, because the determination of these
points affects the quality of the registration.

For our study, the high-resolution image was geomelri-
cally registered to the low-resolution image. After defining a
sel of ground control points, the geometrical registration of
the images was carried out iteratively. The main questions to
be answered in this study were: Which are the features in
the high-resolution image having the most influence when
simulating a low-resolution pixel? How much information
will be lost due to a lower resolution? and Can we attain as
much information from low-resolution images as [rom high-
resolution images?

Background

The spatial resolution of an image determines which objects
can he recognized. In an image with a ground resolution of
80 by 80 m, a suburban area is seen as a region, while ils
components (houses, elc.) are subresolution and cannot be
seen. A spalial resolution [iner than the objects in the scene
results in radiance values very similar for neighboring pixels.
Wilth increasing resolution, more objects are found in one
resolution cell, The role of resolution has been investigated
for dilferenl applicalions in several studies.

Woodeock and Strahler (1987) proposed a method to de-
termine the appropriate spatial resolution based on the meas-
uring of the local variance as a function of the spatial struc-
ture in images. By simply averaging a number of cells result-
ing in one single larger cell, the images have been degraded
to coarser resolutions. In order to measure local variance at
multiple resolutions, the standard deviation of the pixels in a
3 by 3 window was calculated. Ilach pixel in the image was
considered the center of the 3 by 3 window, and the mean of
the standard deviation values has been taken as an indica-
tion of local variance in the whole image.

Marceau et al. (1994a, 1994b) addressed the identifica-
tion of the optimal spatial resolution for the detection and
discrimination of coniferous classes in a forested environ-
ment. The most important question was at which scale meas-
urements should be taken in order to provide a representa-
tive observation. They showed that, due to the direct link
between a particular resolution and real object sizes, the
sampling systems can be adapted to the characteristics of the
phenomena of interest. The steps of the methodology pro-
posed in the paper included an a priori definition of the geo-
graphical entities of interest and the aggregation of the data
acquired from a fine spatial grid. They pointed out three sit-
uations that can occur working with remote sensing images:
a pixel size smaller than, equal to, or larger than the geo-
graphical entity under investigation. In the first situation, the
spatial resolution can be aggregated to the size of these geo-
graphical enlilies. This approach was also based on the deg-
radation of the original data to coarser spatial resolution by
averaging neighboring pixels in an odd-sized window (3 by
3, 5 by 5, etc.), resulting in a series of images at different res-
olutions.

In Cushnie (1987), a study on the effects of spatial reso-
Iution on classification accuracy was presented. The study
area contained a residential area of high internal variability
surrounded by large homogeneous fields of low internal vari-
ability. Images with a high resolution (5 by 5 m, 10 by 10 m)
were degraded in order to simulate lower resolutions (10 by
10 m, 20 by 20 m). Within the internally homogeneous clas-
ses, the classification accuracy was high at all resolutions
while for the classes with a high internal variability the clas-
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sification accuracy improved as spatial resolution was coars-
ened.

An interesting study on methods for the resolution en-
hancement of multispectral images using higher resolution
panchromatic images is described in Munechika et al. (1993).
Irons et al. (1985) examined the effects of the spatial resolu-
tion on the classification of Landsat T™ images. In order to
simulate the 80-m resolution of the Landsat Multispectral
Scanner (MSS), high-resolution Landsat-4 T™M data (30-m reso-
lution) were degraded, approximating the impacts of the MSs
sensor characteristics by convolution with a 3 by 3 un-
weighted average filter.

Mareno et al. (1992) presented a method that combined
high-resolution data (SPOT images) with low-resolution data
(NOAA AVHRR images) based on the assumption that each ele-
mentary member of a low-resolution NOAA pixel can be con-
sidered as a high-resolution SPOT pixel. The method was
described as a practical way ol estimating inpuls to models
which require high- as well as low-resolution data inputs.
An application on surface lemperalure mapping was pre-
sented, Therefore, a high-resolution emissivity map derived
from spPOT data had been combined with NOAA thermal data.
The transition of (very high spatial resolution) ground-truth
data into high-resolution data, and from these to low-resalu-
tion data was pointed out as a practical way of integrating
ground-truth data into low-resolution data. This idea was the
starting point of the study presented in this paper. The stud-
ies mentioned above have in common that all of them con-
sider one image at different resolutions for different pur-
poses. Besides the averaging used in these studies, there are
many methods proposed for multi-resolution techniques ag-
gregating high-resolution images to lower resolutions. For a
description of multi-resolution techniques, the reader is re-
ferred to Tanimoto and Pavlidis (1975) and Rosenfeld (1984).

Methods

The study area is located in The Netherlands in the prov-
inces of Utrecht and Gelderland, consisting of forest and ag-
ricultural as well as urban areas. The high-resolution image
was a Landsat T™ image from May 1993. For the comparison
with a low-resolution image, a NOAA scene from June 1993
was used. Instead of the original pixel values, we used NDVI
values, which have been shown to be significantly correlated
with vegetation parameters as leaf area index and crown
coverage. These values result from the combination of the
values in different spectral bands of the NOAA and the Land-
sat T™ images, respectively. To simplify the processing, the
NDVI values of the images have been rescaled to values be-
tween 0 and 255, Iligh NDVI values are associated with great
density and greenness of the vegetation, and low values are
related to bare soil and urban areas. One disadvantage of
NDVI data is that some land-cover types cannot be correctly
identified, Through the absence of photosynthetically active
plant material, water bodies, snow and ice, and barren land
have similar NDVI characteristics (Loveland et al., 1991).

For the construction of the multi-resolution presentation,
the computation of the different resolutions was performed
in steps by combining a certain number of neighboring pix-
els using basic operations such as (weighted) averaging and
searching for the minimum or the maximum. The Landsat
™ pixel block was processed over a 33 by 33 neighborhood
to obtain the lower resolution as illustrated in Figure 1a.

Out of the numerous conceivable pyramid techniques,
the following were used for the study:

® Average Pyramid. The “classical” method to construct a pyr-
amid is the averaging of a non-overlapping 2 by 2 or 3 by 3
pixel block and storing the result of this process in a cell at
the next higher level. This process was modilied to determine
the average of a 33- by 33-pixel block.
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Figure 1. (a) Aggregation process. (b) Gaussian spot - ag-
gregation by weighted averaging.

® Gauss Pyramid. This technique was based on the weighted
averaging of the pixel block where the weights show a peak
in the center of the averaged region and fall off to zero at the
border similar to a Gaussian spot as illustrated in Figure 1b.

® Minimum and Maximum Pyramid. The minimum or the max-
imum of the values in the pixel block were taken as the
value for the pixel on the next level.

® Standard Deviation Pyramid. The standard deviation of the

pixels in the pixel block was calculated and used as the
value on the next level. The standard deviation can be seen
as a measure of the local variability in the image and was
therefore an important characteristic for the statistical analy-
518,

Assuming that every high-resolution pixel within a de-
fined area contributes to the corresponding low-resolulion
pixel, the loss of information at lower resolution should be
rather minimal considering the classification of areas of ap-
proximately 1 by 1 km or bigger.

As can be seen in Figures 2a through 2d, the main pat-
terns are preserved in the simulated lower resolution images
selected. For a better comparison, the legends of these figures
have been brought in line. Figure 2e illustrates the aggrega-
tion by using the standard deviation of the pixels in the
pixel block,

The most important advantage of the method used,
when comparing it with resampling procedures available in
GIS, is the possibility of controlling the resampling process
and therefore permitting the adaption of the algorithm lo the
characteristics of the image. Because the goal is not to pre-
serve detailed images but to localize pattern at a scale of 1
by 1 km, the application of the multi-resolution techniques
to high-resolution images yields promising results.

PE&RS ['ebruary 1998

Results

A statistical analysis had been undertaken based on 188 pix-
els extracted from the resulting pyramid images and the
NOAA image. These pixels were selected systematically by
overlaying the NOAA image as well as the degraded Landsat
T™ images with a virtual regular grid and sampling the pix-
els at the intersection points of the grid.

Simple Linear Regression

Because we were interested in the relationship of two varia-
bles, namely, each pyramid variable and the NOAA variable,
a simple linear regression was performed with NOAA as the
dependent variable and each of the pyramids as the indepen-
dent variable. The first analysis was descriptive and was de-
voted to understanding the behavior of the different kinds of
aggregation methods and compare them with NOAA data. Ta-
ble 1 contains the values of the main statistical parameters:
mean, standard deviation, standard error, minimum, and
maximuim,

Apparently, the parameters of the average pyramid were
the most similar to the NOAA ones, although the distribution
of the average values was a little shifted and more concen-
trated observing the minimum and maximum values. Maxi-
mum and minimum pyramids had quite different parameters
from the NOAA parameters. Because the standard deviation is
a measure of dispersion, the signilicant difference between
standard deviation pyramid values and NOAA values is obvi-
ous. The reason why it was taken into account was thal it
could help another degradation method to predict NOAA data
in a multivariate analysis. It gave information about the dis-
persion of NDVI values of T™ pixels corresponding to each
NOAA pixel. The correlation matrix of the different pyramid
images seen in Table 2 was very useful to get an idea of
what kind of model could be built.

The correlation index varied between —1 and +1 and
expressed the level of linear link between twa variables. All
degraded images had a positive correlation with NOAA. For
most of the images, the correlation was so low (values near
zero) that a hypothesis of a linear link between NOAA and
those images was not reliable. However, the linear correla-
tion coefficient for NOAA and the average image was relevant
(R = 0.540) and the test for significance of the difference of
the correlation from zero gave a very low error probability (p
< 0.0001). Thus, the average was useful to try to explain the
hehavior of NOAA data. The linear determination index (R
squared) seen in Table 3 was not high enough to presume a
linear link between NOAA and the pyramid images.

However, the linear determination index for the average
values (0.292) is not significant but higher than the others
and indicates that approximately 30 percent of the variance
of the NOAA variable can be explained by the average vari-
able. Figure 3 shows the graph of the average values versus
NOAA values.

I'or the other pyramid variables, these percentages were
very low, meaning that they cannot be used alone to predict
the NOAA values. Therefore, the model we attempted was
based on mulliple regression.

Multiple Linear Regression

With the help of multiple linear regression, we analyzed the
link between some of the above-mentioned pyramid variables
and NOAA. The correlation matrix (Table 2) shows that some
of the pyramid variables were loosely correlated with NOAA.
That is why we did not select them to explain the NOAA var-
iable in a simple regression model. On the other hand, some
degradation methods showed a noticeable correlation be-
tween them, as for instance between the Gauss and the maxi-
mum method (0.555), between the maximum and the stan-
dard deviation method (0.523), between the Gauss and the
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TagLe 1.  DESCRIPTIVE STATISTICS

Standard-
Maximum Minimum deviation Average

Gauss

NOAA pyramid pyramid pyramid pyramid pyramid
Mean 183.686 206.774 130.362 17.578 172.455 173.198
Std.Dev 16.166 B8.083 16.115 6.303 15.509 14,766
Std.Error 1.179 0.590 1.175 0.460 1.131 1.077
Minimum 97.000 170.351 0.786 3.928 96.2656 104.935
Maximum 208.000 214,772  165.906 38.661 199.642 196.674
Tagte 2. CorreLaTion MATRIX (R)
Standard-

NOAA Maximum Minimum deviation Average Gauss

NOAA 1.000

Maximum 0.162 1.000

Minimum 0.031 0.069 1.000

Std.Dev, 0.086 0.523 0.459 1.000

Average 0.540 172 0.051 —0.140 1.000

Gauss 0.028 0.555 0.462 —0.140 0.157 1.000

TaBLE 3. LINEAR REGRESSION WiTH NOAA AS DEPENDENT VARIABLE
linear determination
index (R squared)

NOAA vs. Average 0.292

NOAA vs. Gauss 0.001

NOAA vs. Minimum 0.001

NOAA vs. Maximum 0.026

NOAA vs. Standard deviation 0.007

NOAA vs. 5 independents 0.337

NOAA vs, 2 independents (Model 1) 0.319

NOAA vs. 3 independents (Model 2) 0.328

cepled only il its contribution was relevant. On the other
hand, the elimination of one variable was only done if the
evidence of its importance in the model was not very big.
The result was a model with the independent variables aver-
age and standard deviation, which was

Model 1: NOAA
= A + B * average + C * standard deviation,

with, in our particular case, A = 74,968, B = 0.587, and € =
0.424.

Using a higher probability level, another independent
variable, the minimum, was included and the model was

Model 2: NOAA = D + E * average
+ F * standard deviation + G * minimum,

with 1) = 57.86, Il = 0.589, F = 0.562, and G = 0.11 in our
study.

Analyzing this model, the regression coefficient of the
minimum variable was very low (0.11), meaning that the in-
fluence of the minimum was not significant. Besides, the cor-
relation between the minimum and the standard deviation
variable was rather high. This can cause instability of the
model. The percentage of variance of the dependent variable
explained by both models was similar, 32.8 percent for
Model 2 and 31.9 percent for Model 1. See Table 3 for the
linear determination index for both models as well as the
first test with all five pyramid variables.

The value for Model 1 was not much lower than that for
Model 2, but it was more robust. It showed 85 negative and
103 positive residuals (errors). The values and the pattern of
the residuals were very important. They are the difference
between the dependent variable values and the ones pre-
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Figure 3. Average pyramid vs. NOAA.

dicted by the models. Mosl of them were in the range of —20
to 20. Some very high absolute values of the residuals — the
highest was (—)52 — indicated that there were some NOAA
values that the model was not able to predict. This was the
case for both models. Some residuals were very small, rang-
ing from —1 to 1. These values gave an idea of the possible
errors that can occur using estimates instead of NOAA data.
For about 150 NOAA pixels, the NDVI value can be estimated
with a relative residual in the range of —10 to 10. In the
graph with residuals versus NOAA NDVI in Figure 4, it is evi-
dent that the models were not able to predict very low NDAA
values. In fact, NOAA values from about 98 to 140 were con-
siderably overestimated. Furthermore, the models tended to
overestimate less significantly NOAA data from about 140 to
170 and to underestimate data from 195 to 210. In the range
of 170 to 195, the data were predicted very well. Because
about 60 percent of the NOAA values in our study occurred
in this range, the simulation of low resolution data was
promising with both models. NDVI values in this range be-
long to forest land-cover types.

The values simulated with the models versus the origi-
nal NOAA values are illustrated in Figures 5 and 6, respec-
tively.

Conclusions and Recommendations
The method used in the study was based on the use of a set
of high-resolution data (Landsal T™) in order to predict low-
resolution data (NOAA). Naturally, the high-resolution Land-
sal TM image contained more information than did the NOAA
image. However, the lower resolution of NOAA is more ap-
propriale for roughness length mapping on a large scale.
Two models were found in this experiment, both ap-
proximaling NOAA NDVI values. The values simulated by the
models are similar. Both models tended to predict NOAA
NDVI values in the range of 195 to 210 very well, which was
the range where 60 percent of the values occurred. The study
showed that the use of Landsat TM data as a substitute for
required ground truth information is a possible way to esti-
mate the accuracy of coarse scale classification. If these mod-
els are shown o be valid, they can be used to determine the
influence of high-resolution elements within low-resolution
pixels. Both models consider the average over the 33- by 33-
pixel block and the standard deviation as having the most
influence when simulating the low-resolution NOAA pixel.
The standard deviation expresses the local variability in the
pixel block and the average represents the occurance of a
certain vegetation pattern, Therefore, it was concluded that
this method is applicable in regions with local variability
and vegetation patterns similar to those of the study area. Be-
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cause other areas in Europe show this similarity, it is as-
sumed that comparable results can he achieved. The overall
objective of this paper was to illustrate the suitability of
high-resolution data to predict low-resolution information in
a single experiment. For that objective, the experiment was
successful.,

Further research on this subject is highly recommended.

It should include tests of the applicability of the method in
regions where no Landsat TM images are available. Another
aspect of future work should be the search for a nonlinear
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model that might result in even better simulation values. The
applicability of the methodology has yet to be proven for im-
ages other than NDvI images.

References

Cushnie, ].L., 1987. The interactive effect of spatial resolution and
degree of internal variability within land-cover types on classifi-
cation accuracies, Int. J. Remole Sensing, 8(1):15-29.

Djamdji, J.-P., A. Bijaoui, and R. Maniere, 1993. Geometrical registra-

February 1998 PE&RS




tion of images: The multiresolution approach, Photogrammetric
Engineering & Remole Sensing, 59(5):645-653.

Erisman, |.W., 1992. Atmospheric Deposition of Acidifying Com-
pounds in The Netherlands, Ph.D. Dissertation, Rijksuniversiteil
Utrecht, Utrecht, The Netherlands.

Irons, J.R., R.S. Latty, B.L. Markham, R.F. Nelson, M.L. Stauffer, D.L.
Toll, and D.L. Williams, 1985. The effects of spatial resolution
on the classification of Thematic Mapper data, Int. . Remote
Sensing, 6(8):1385-1403.

Loveland, T.R., ].W. Merchant, D.O. Ohlene, and J.F. Brown, 1991.
Development of a land-cover characteristics database for the
conterminous U.S., Photogrammetric Engineering & Hemole
Sensing, 57(11):1453-1463.

Marceau, 1.D., D.J. Gratton, and P.J. Howarth, 1994a. Remote sensing
and the measurement of geographical entities in a forested envi-
ronment. 1. The scale and spatial aggregation problem, Remole
Sensing Environ., 49:93-104,

Marceau, J.D., R.A. Fornier, J.-P. Fortin, and D.]. Grallon, 1994b, Re-
mote sensing and the measurement of geographical entities in a
forested environment. 2. The optimal spatial resolution, Remote
Sensing Environ., 49:105-117.

»»>» FORTHCOMING

Michel Arnaud and Albert I'lori, Bias and Precision of
Different Sampling Methods for GPS Positions.

Stéphane Chalifoux, Frangois Cavayas, and James T. Gray,
Map-Guided Approach for the Automatic Detection on
Landsat TM Images of Forest Stands Damaged by the
Spruce Budworm.

Warren B. Cohen, Maria Fiorella, John Gray, and Karen
Anderson, An Efficient and Accurate Method for Map-
ping Forest Clearcuts in the Pacific Northwest Using
Landsat Imagery.

F. Deppe, Forest Area Estimation Using Sample Surveys
and Landsat MSS and TM Data.

Sheldon D. Drobot and David G. Barber, Towards Devel-
opment of a Snow Water Equivalence (SWE) Algorithm
Using Microwave Radiometry over Snow Covered
Firsl-Year Sea Ice.

Hamid Ebadi and Michael A. Chapman, GPS Controlled
Strip ‘Iriangulation Using Geometric Constraints of
Man-Made Structures.

Jay Gao and Matthew B, Lythe, Effectiveness of the MCC
Method in Detecting Oceanic Circulation Patterns at a
Local Scale from Sequential AVHRR Images.

J.R. Harris, A.N. Rencz, B. Ballantyne, and C. Sheridon,
Mapping Altered Rocks Using Landsat TM and
Lithogeochemical Data: Sulphurets-Brucejack Lake
District, British Columbia, Canada.

Stanley R. Herwitz, Robert E. Slye, and Stephen M. Turton,
Co-Registered Aerial Stereopairs from Low-Flying Air-
craft for the Analysis of Long-Term Tropical Rainforest
Canopy Dynamics.

Fabio Maselli, Ljiljana Petkov, and Giampiero Maracchi,
Extension of Climate Parameters Over the Land Surface
by the Use of NOAA-AVHRR and Ancillary Dala.

Robb D. Macleod and Russell G. Congalton, A quantita-
tive Comparison of Change Detection Algorithms for
Monitoring Eelgrass from Remotely Sensed Data.

Kenneth C. McGwire, Mosaicking Airborne Scanner Data
with the Multiquadric Rectification Technique.

PE&RS February 1998

Moody, A., and C.E. Woodcock, 1994, Scale-dependent errors in the
estimation of land-caver proportions: Implications for global
land-cover datasets, Photogrammetric Engineering & Remote
Sensing, 60(5):585-594.

Moreno, [.F., J. Melia, and G. Soledad, 1992. Geometric integration
of NOAA AVHRR and Spot Data: Low resolution effective
parameters from high resolution data, IEEE Transactions on Geo-
seience and Remote Sensing, 30(5):1006-1014.

Munechika, C.K., ].S. Warnick, C. Salvaggio, and J.R. Schott, 1993.
Resolution enhancement of multispectral image data to improve
classification accuracy, Photogrammetric Engineering & Remote
Sensing, 59(1):67-72.

Rosenfeld, A., 1984. Multiresolution Image Processing and Analysis,
Springer-Verlag, Berlin.

Tanimoto, S.L., and T. Pavlidis, 1975. A hierarchical data structure
for picture processing, Compulter Graphies and Image Process-
ing, 4(2):104-119.

Woodcock, C.E., and A.H. Strahler, 1987. The factor of scale in re-
mote sensing, Remote Sensing Environ., 21:311-332.

Received 10 June 1995; revised & accepted 14 April 1997; revised 18

June 1947)

A RTICLES > >» » » »

Kenneth C. McGwire, Improving Landsat Scene Selection
Systems.

Victor Mesev, The Use of Census Data in Urban Image
Classification.

Jeffrey T. Morisette and Siamak Khorram, Exact Binomial
Confidence Interval for Proportions.

S.V. Muller, S.A. Walker, F.E. Nelson, N.A. Auerbach, ].G.
Bockheim, S. Guyer, and D. Sherba, Accuracy Assess-
ment of a Land-Cover Map of the Kuparuk River Basin
Alaska: Considerations for Remote Sensing.

Ram M. Narayanan and Brian D. Guenther, Effects of Emer-
gent (GGrass on Mid-Infrared Laser Reflectance of Soil.

Elijah W. Ramsey III, Dal K. Chappell, Dennis Jacobs, Sijan
K. Sapkota, and Dan G. Baldwin, Resource Manage-
ment of Forested Wetlands: Hurricane Impact and
Recovery Mapped by Combining Landsat TM and
NOAA AVHRR Data.

Juliang Shao and Clive S. Fraser, Scale-Space Methods
for Image Fealure Modeling in Vision Meltrology.

K.M.5. Sharma and A. Sarkar, A Modified Contextual
Classification Technique for Remote Sensing Data.

Yongwei Sheng, Yafang Su, and Qianguang Xiao, Chal-
lenging the Cloud-Contamination Problem in Flood
Monitoring with NOAA/AAVHRR Imagery.

Andrew K. Skidmore, Nonparametric Classifier for GIS
Data Appliedto Kangaroo Distribution Mapping.

E. Terrence Slonecker, Denice M. Shaw, and Thomas M.
Lillesand, Emerging Legal and Elhical Issues in Ad-
vanced Remote Sensing Technology.

Randolph H. Wynne, Thomas M. Lillesand, Murray K.

Clayton, and John J. Magnuson, Satellite Monitoring
ol Lake Ice Breakup on the Laurentian Shield (1980-1994).

David A. Yocky and Benjamin F. Johnson, Repeal-Pass
Dual-Antenna Synthetic Aperture Radar Interferometric
Change Detection Post-Processing.

133



