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Abstract 
A method is proposed to estimate the classification accuracy 
of low-resolution images by using high-resolution images in 
place of ground truth information. For that reason, low-reso- 
lution pixels have been simulated by degrading high-resolu- 
tion images using different multi-resolution techniques. We 
carried out a statistical analysis, resulting in two models that 
corn bine the information from the aggregated high-resolution 
Landsat TM Normalized Difference Vegetation Index (NDVI) 
data in order to predict NOAA NDVI data. The method is illus- 
trated by a case study on mapping suqface roughness of dif- 
ferent landscape classes in order to determine the amount of 
deposition of atmospheric pollutants. 

Introduction 
At present, the ground resolution of remote sensing images 
can range from about 5 by 5 m to more than 1 by 1 km. The 
choice of the appropriate resolution depends on the informa- 
tion desired as well as the spatial structure of the scene it- 
self. Most commonly used are spatial resolutions of 20 to 30 
m as available from the SPOT and Landsat Thematic Mapper 
(TM) satellites, respectively. However, data with a coarser 
resolution such as from NOAA (1 by 1 krn) are being used at 
the same time. High-resolution images provide a lot of detail 
information, but at the same time a large amount of data 
needs to be processed. In comparison, a lower resolution 
provides sufficient information for many applications, and 
the amount of data required is much less in quantity. 

Moody et al. (1994) pointed out the necessity for efforts 
devoted to the validation and accuracy assessment of lower 
resolution data sets, which raises the issue of using high-res- 
olution land-cover information from local maps andlor from 
remotely sensed sources. Loveland et al. (1991) stated that 
there were no adequate existing methods to verify 1-km reso- 
lution land-cover classifications conducted over large areas. 

This paper addresses the estimation of classification ac- 
curacy of remote sensing images at a coarse scale using high- 
resolution images. Based on ground truth measurements, an 
evaluation of the classification accuracy of high-resolution 
Landsat TM images is possible. However, this is not feasible 
for lower resolution images, such as NOAA images, because 
of the fact that ground measurements would be laborious 
and cover in practice only a very small part of the pixels in 
these images. The method proposed here is to use classified 
high-resolution images to estimate the accuracy of the classi- 
fication of low-resolution images. In order to do this, the 

Landsat TM images have to be degraded to the lower resolu- 
tion of NOAA images. Once satisfactory degradation results 
are achieved, the Landsat TM images can be evaluated more 
easily and can be used as "ground truth" data for low-resolu- 
tion images. Based on that idea, we performed a study on the 
degradation of high-resolution Landsat TM images (30 by 30 
m) to the resolution of NOAA images (1 by 1 km). The con- 
cepts are illustrated by a case study on the mapping of the 
roughness characteristics of land surfaces. In vegetation, 
these characteristics are determined by the canopy structure 
or roughness of the vegetation. The most acidifying air pol- 
lutants in Europe - SO,, NH,, and NO, - are deposited at 
rates that are affected by these roughness characteristics. 
Roughness length maps created by processing remote sensing 
images have been used as inputs to the deposition model 
DEADM (Erisman, 1992) in order to quantify the deposition of 
pollutants. This model calculated the total potential acid 
deposition at scales of 1 by 1 km or 5 by 5 km. Landsat TM 
images have been used to produce appropriate roughness 
length maps. However, in order to cover the whole of Eu- 
rope, maps at different scales are necessary, coarser than 1 
by 1 km or 5 by 5 km, using lower resolution images such as 
NOAA. For that reason, the objective of this study was to find 
a relation between simulated and originally low-resolution 
images. The degradation methods presented are based on 
multi-resolution techniques. A statistical analysis of the pix- 
els in the low-resolution image in comparison with the 
pixels at the same position in the simulated low-resolution 
images was carried out. This enabled the development of sta- 
tistical models for the simulation of low-resolution pixels 
from high-resolution pixels. It is obvious that these models 
can only be seen as precise for that certain case. They are re- 
stricted, meaning that using other data can result in other 
models. 

The main objective of this paper is to describe the 
method, illustrated by one example. Tests on other sites are 
recommended. However, the study shows that it is possible 
to predict low-resolution data by high-resolution information. 
Our study was carried out using one Landsat TM NDVI image 
and one NOAA NDVI image of the same area in The Nether- 
lands. An important step in view of the further processing of 
images with different resolutions is the geometrical registra- 
tion of the images. 

A method for the automatic registration of images based 
on a multi-resolution decomposition of the images was pre- 
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sented in Djamdji et al. (1993). The method had been ap- 
plied to images obtained with identical sensors, as well as 
with different sensors. They mentioned that the main diffi- 
culty for geometric correction lies in finding ground control 
points (GCP); features located in both the input image and the 
reference image. That is, because the determination of these 
points affects the quality of the registration. 

For our study, the high-resolution image was geometri- 
cally registered to the low-resolution image. After defining a 
set of ground control points, the geometrical registration of 
the images was carried out iteratively. The main questions to 
be answered in this study were: Which are the features in 
the high-resolution image having the most influence when 
simulating a low-resolution pixel? How much information 
will be lost due to a lower resolution? and Can we attain as 
much information from low-resolution images as from high- 
resolution images? 

Background 
The spatial resolution of an image determines which objects 
can be recognized. In an image with a ground resolution of 
80 by 80 m, a suburban area is seen as a region, while its 
components (houses, etc.) are subresolution and cannot be 
seen. A spatial resolution finer than the objects in the scene 
results in radiance values very similar for neighboring pixels. 
With increasing resolution, more objects are found in one 
resolution cell. The role of resolution has been investigated 
for different applications in several studies. 

Woodcock and Strahler (1987) proposed a method to de- 
termine the appropriate spatial resolution based on the meas- 
uring of the local variance as a function of the spatial struc- 
ture in images. By simply averaging a number of cells result- 
ing in one single larger cell, the images have been degraded 
to coarser resolutions. In order to measure local variance at 
multiple resolutions, the standard deviation of the pixels in a 
3 by 3 window was calculated. Each pixel in the image was 
considered the center of the 3 by 3 window, and the mean of 
the standard deviation values has been taken as an indica- 
tion of local variance in the whole image. 

Marceau et al. (1994a, 1994b) addressed the identifica- 
tion of the optimal spatial resolution for the detection and 
discrimination of coniferous classes in a forested environ- 
ment. The most important question was at which scale meas- 
urements should be taken in order to provide a representa- 
tive observation. They showed that, due to the direct link 
between a particular resolution and real object sizes, the 
sampling systems can be adapted to the characteristics of the 
phenomena of interest. The steps of the methodology pro- 
posed in the paper included an a priori definition of the geo- 
graphical entities of interest and the aggregation of the data 
acquired from a fine spatial grid. They pointed out three sit- 
uations that can occur working with remote sensing images: 
a pixel size smaller than, equal to, or larger than the geo- 
graphical entity under investigation. In the first situation, the 
spatial resolution can be aggregated to the size of these geo- 
graphical entities. This approach was also based on the deg- 
radation of the original data to coarser spatial resolution by 
averaging neighboring pixels in an odd-sized window (3 by 
3, 5 by 5, etc.), resulting in a series of images at different res- 
olutions. 

In Cushnie (1987), a study on the effects of spatial reso- 
lution on classification accuracy was presented. The study 
area contained a residential area of high internal variability 
surrounded by large homogeneous fields of low internal vari- 
ability. Images with a high resolution (5 by 5 m, 10 by 20 m) 
were degraded in order to simulate lower resolutions (10 by 
10 m,  20 by 20 m). Within the internally homogeneous clas- 
ses, the classification accuracy was high at all resolutions 
while for the classes with a high internal variability the clas- 

sification accuracy improved as spatial resolution was coars- 
ened. 

An interesting study on methods for the resolution en- 
hancement of multispectral images using higher resolution 
panchromatic images is described in Munechika et al. (1993). 
Irons et al. (1985) examined the effects of the spatial resolu- 
tion on the classification of Landsat TM images. In order to 
simulate the 80-m resolution of the Landsat Multispectral 
Scanner (MSS), high-resolution Landsat-4 'I'M data (30-m reso- 
lution) were degraded, approximating the impacts of the MSS 
sensor characteristics by convolution with a 3 by 3 un- 
weighted average filter. 

Moreno et al. (1992) presented a method that combined 
high-resolution data (SPOT images) with low-resolution data 
(NOAA AVHRR images) based on the assumption that each ele- 
mentary member of a low-resolution NOAA pixel can be con- 
sidered as a high-resolution SPOT pixel. The method was 
described as a practical way of estimating inputs to models 
which require high- as well as low-resolution data inputs. 
An application on surface temperature mapping was pre- 
sented. Therefore, a high-resolution emissivity map derived 
from SPOT data had been combined with NOAA thermal data. 
The transition of (very high spatial resolution) ground-truth 
data into high-resolution data, and from these to low-resolu- 
tion data was pointed out as a practical way of integrating 
ground-truth data into low-resolution data. This idea was the 
starting point of the study presented in this paper. The stud- 
ies mentioned above have in common that all of them con- 
sider one image at different resolutions for different pur- 
poses. Besides the averaging used in these studies, there are 
many methods proposed for multi-resolution techniques ag- 
gregating high-resolution images to lower resolutions. For a 
description of multi-resolution techniques, the reader is re- 
ferred to Tanimoto and Pavlidis (1975) and Rosenfeld (1984). 

Methods 
The study area is located in The Netherlands in the prov- 
inces of Utrecht and Gelderland, consisting of forest and ag- 
ricultural as well as urban areas. The high-resolution image 
was a Landsat TM image from May 1993. For the comparison 
with a low-resolution image, a NOAA scene from June 1993 
was used. Instead of the original pixel values, we used NDVI 
values, which have been shown to be significantly correlated 
with vegetation parameters as leaf area index and crown 
coverage. These values result from the combination of the 
values in different spectral bands of the NOAA and the Land- 
sat TM images, respectively. To simplify the processing, the 
NDVI values of the images have been rescaled to values be- 
tween 0 and 255. High NDVI values are associated with great 
density and greenness of the vegetation, and low values are 
related to bare soil and urban areas. One disadvantage of 
NDVI data is that some land-cover types cannot be correctly 
identified. Through the absence of photosynthetically active 
plant material, water bodies, snow and ice, and barren land 
have similar NDVI characteristics (Loveland et al., 1991). 

For the construction of the multi-resolution presentation, 
the computation of the different resolutions was performed 
in steps by combining a certain number of neighboring pix- 
els using basic operations such as (weighted) averaging and 
searching for the minimum or the maximum. The Landsat 
TM pixel block was processed over a 33 by 33 neighborhood 
to obtain the lower resolution as illustrated in Figure la .  

Out of the numerous conceivable pyramid techniques, 
the following were used for the study: 

Average Pyramid. The "classical" method to construct a pyr- 
amid is the averaging of a non-overlapping 2 by 2 or 3 by 3 
pixel block and storing the result of this process in a cell at 
the next higher level. This process was modified to determine 
the average of a 33- by 33-pixel block. 
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Figure 1. (a) Aggregation process. (b) Gaussian spot - ag- 
gregation by weighted averaging. 

Gauss Pyramid. This technique was based on the weighted 
averaging of the pixel block where the weights show a peak 
in the center of the averaged region and fall off to zero at the 
border similar to a Gaussian spot as illustrated in Figure lb. 
Minimum and Maximum Pyramid. The minimum or the max. 
imum of the values in the pixel block were taken as the 
value for the pixel on the next level. 
Standard Deviation Pyramid. The standard deviation of the 
pixels in the pixel block was calculated and used as the 
value on the next level. The standard deviation can be seen 
as a measure of the local variability in the image and was 
therefore an important characteristic for the statistical analy- 
sis. 

Assuming that every high-resolution pixel within a de- 
fined area contributes to the corresponding low-resolution 
pixel, the loss of information at lower resolution should be 
rather minimal considering the classification of areas of ap- 
proximately 1 by 1 km or bigger. 

As can be seen in Figures 2a through 2d, the main pat- 
terns are preserved in the simulated lower resolution images 
selected. For a better comparison, the legends of these figures 
have been brought in line. Figure 2e illustrates the aggrega- 
tion by using the standard deviation of the pixels in the 
pixel block. 

The most important advantage of the method used, 
when comparing it with resampling procedures available in 
GIS, is the possibility of controlling the resampling process 
and therefore permitting the adaption of the algorithm to the 
characteristics of the image. Because the goal is not to pre- 
serve detailed images but to localize pattern at a scale of 1 
by 1 km, the application of the multi-resolution techniques 
to high-resolution images yields promising results. 
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Results 
A statistical analysis had been undertaken based on 188 pix- 
els extracted from the resulting pyramid images and the 
NOAA image. These pixels were selected systematically by 
overlaying the NOAA image as well as the degraded Landsat 
TM images with a virtual regular grid and sampling the pix- 
els at the intersection points of the grid. 

Simple Linear Regression 
Because we were interested in the relationship of two varia- 
bles, namely, each pyramid variable and the NOAA variable, 
a simple linear regression was performed with NOAA as the 
dependent variable and each of the pyramids as the indepen- 
dent variable. The first analysis was descriptive and was de- 
voted to understanding the behavior of the different kinds of 
aggregation methods and compare them with NOAA data. Ta- 
ble 1 contains the values of the main statistical parameters: 
mean, standard deviation, standard error, minimum, and 
maximum. 

Apparently, the parameters of the average pyramid were 
the most similar to the NOAA ones, although the distribution 
of the average values was a little shifted and more concen- 
trated observing the minimum and maximum values. Maxi- 
mum and minimum pyramids had quite different parameters 
from the NOAA parameters. Because the standard deviation is 
a measure of dispersion, the significant difference between 
standard deviation pyramid values and NOAA values is obvi- 
ous. The reason why it was taken into account was that it 
could help another degradation method to predict NOAA data 
in a multivariate analysis. It gave information about the dis- 
persion of NDVI values of TM pixels corresponding to each 
NOAA pixel. The correlation matrix of the different pyramid 
images seen in Table 2 was very useful to get an idea of 
what kind of model could be built. 

The correlation index varied between -1 and +1 and 
expressed the level of linear link between two variables. All 
degraded images had a positive correlation with NOAA. For 
most of the images, the correlation was so low (values near 
zero) that a hypothesis of a linear link between NOAA and 
those images was not reliable. However, the linear correla- 
tion coefficient for NOAA and the average image was relevant 
(R = 0.540) and the test for significance of the difference of 
the correlation from zero gave a very low error probability (p 
< 0.0001). Thus, the average was useful to try to explain the 
behavior of NOAA data. The linear determination index (R 
squared) seen in Table 3 was not high enough to presume a 
linear link between NOAA and the pyramid images. 

However, the linear determination index for the average 
values (0.292) is not significant but higher than the others 
and indicates that approximately 30 percent of the variance 
of the NOAA variable can be explained by the average vari- 
able. Figure 3 shows the graph of the average values versus 
NOAA values. 

For the other pyramid variables, these percentages were 
very low, meaning that they cannot be used alone to predict 
the NOAA values. Therefore, the model we attempted was 
based on multiple regression. 

Multiple Linear Regression 
With the help of multiple linear regression, we analyzed the 
link between some of the above-mentioned pyramid variables 
and NOAA. The correlation matrix (Table 2) shows that some 
of the pyramid variables were loosely correlated with NOAA. 
That is why we did not select them to explain the NoAA var- 
iable in a simple regression model. On the other hand, some 
degradation methods showed a noticeable correlation be- 
tween them, as for instance between the Gauss and the maxi- 
mum method (0.555), between the maximum and the stan- 
dard deviation method (0.523), between the Gauss and the 
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Standard- 
Maximum Minimum deviation Average Gauss 

NOAA pyramid pyramid pyramid pyramid pyramid 

Mean 183.686 206.774 130.362 17.578 172.455 173.198 
Std.Dev 16.166 8.083 16.115 6.303 15.509 14.766 
Std.Error 1.179 0.590 1.175 0.460 1.131 1.077 
Minimum 97.000 170.351 0.786 3.928 96.265 104.935 
Maximum 208.000 214.772 165.906 38.661 199.642 196.674 

TABLE 2. CORRELATION MATRIX (R) 

Standard- 
NOAA Maximum Minimum deviation Average Gauss 

NOAA 1.000 
Maximum 0.162 1.000 
Minimum 0.031 0.069 LO00 
Std.Dev. 0.086 0.523 -0.489 1.000 
Average 0.540 0.172 0.051 -0.140 1.000 
Gauss 0.028 0.555 0.462 -0.140 0.157 1 

TABLE 3. LINEAR REGRESSION WITH NOAA AS DEPENDENT VARIABLE 

linear determination 
index (R squared) 

NOAA vs. Average 
NOAA vs. Gauss 
NOAA vs. Minimum 
NOAA vs. Maximum 
NOAA vs. Standard deviation 
NOAA vs. 5 independents 
NOAA vs. 2 independents (Model 1) 
NOAA vs. 3 independents (Model 2) 

cepted only if its contribution was relevant. On the other 
hand, the elimination of one variable was only done if the 
evidence of its importance in the model was not very big. 
The result was a model with the independent variables aver- 
age and standard deviation, which was 

Model 1: NOAA 
= A + B * average + C * standard deviation, 

with, in our particular case, A = 74.968, B = 0.587, and C = 
0.424. 

Using a higher probability level, another independent 
variable, the minimum, was included and the model was 

Model 2: NOAA = D + E * average 
+ F * standard deviation + G * minimum, 

with D = 57.86, E = 0.589, F = 0.562, and G = 0.11 in our 
study. 

Analyzing this model, the regression coefficient of the 
minimum variable was very low (O.11), meaning that the in- 
fluence of the minimum was not significant. Besides, the cor- 1 relation between the minimum and the standard deviation 
variable was rather high. This can cause instability of the 
model. The percentage of variance of the dependent variable 
explained by both models was similar, 32.8 percent for 
Model 2 and 31.9 percent for Model 1. See Table 3 for the 
linear determination index for both models as well as the 
first test with all five pyramid variables. 

The value for Model 1 was not much lower than that for 
Model 2, but it was more robust. It showed 85 negative and 
103 positive residuals (errors). The values and the pattern of 
the residuals were very important. They are the difference 
between the dependent variable values and the ones pre- 
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Figure 3. Average pyramid vs. NOAA. 

dicted by the models. Most of them were in the range of -20 
to 20. Some very high absolute values of the residuals - the 
highest was (-)52 - indicated that there were some N ~ A A  
values that the model was not able to predict. This was the 
case for both models. Some residuals were very small, rang- 
ing from -1 to 1 .  These values gave an idea of the possible 
errors that can occur using estimates instead of NOAA data. 
For about 150 NOAA pixels, the NDVI value can be estimated 
with a relative residual in the range of -10 to 10. In the 
graph with residuals versus NoAA NDVI in Figure 4, it is evi- 
dent that the models were not able to predict very low NOAA 
values. In fact, NOAA values from about 98 to 140 were con- 
siderably overestimated. Furthermore, the models tended to 
overestimate less significantly N ~ A A  data from about 140 to 
170 and to underestimate data from 195 to 210. In the range 
of 170 to 195, the data were predicted very well. Because 
about 60 percent of the NOAA values in our study occurred 
in this range, the simulation of low resolution data was 
promising with both models. NDVI values in this range be- 
long to forest land-cover types. 

The values simulated with the models versus the origi- 
nal NOAA values are illustrated in Figures 5 and 6, respec- 
tively. 

Conclusions and Recommendations 
The method used in the study was based on the use of a set 
of high-resolution data (Landsat TM) in order to predict low- 
resolution data (NOAA). Naturally, the high-resolution Land- 
sat TM image contained more information than did the NOAA 
image. However, the lower resolution of NOAA is more ap- 
propriate for roughness length mapping on a large scale. 

Two models were found in this experiment, both ap- 
proximating NOAA NDVI values. The values simulated by the 
models are similar. Both models tended to predict NOAA 
NDVI values in the range of 195 to 210 very well, which was 
the range where 60 percent of the values occurred. The study 
showed that the use of Landsat TM data as a substitute for 
required ground truth information is a possible way to esti- 
mate the accuracy of coarse scale classification. If these mod- 
els are shown to be valid, they can be used to determine the 
influence of high-resolution elements within low-resolution 
pixels. Both models consider the average over the 33- by 33- 
pixel block and the standard deviation as having the most 
influence when simulating the low-resolution NOAA pixel. 
The standard deviation expresses the local variability in the 
pixel block and the average represents the occurance of a 
certain vegetation pattern. Therefore, it was concluded that 
this method is applicable in regions with local variability 
and vegetation patterns similar to those of the study area. Be- 
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Figure 5. Model 1 vs. NOAA. 
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cause other areas in Europe show this similarity, it is as- 
sumed that comparable results can be achieved. The overall 
objective of this paper was to illustrate the suitability of 
high-resolution data to predict low-resolution information in 
a single experiment. For that objective, the experiment was 
successful. 

Further research on this subject is highly recommended. 
It should include tests of the applicability of the method in 
regions where no Landsat TM images are available. Another 
aspect of future work should be the search for a nonlinear 
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Figure 6. Model 2 vs. NOAA. 

i 

- -  
I 
i 

I 

- 
I 

- I 
@ 

mmb 
I 

4 w 
w 

-- 
u Model I 1 + , I  Model 2 

W 

I -- - 1 1 -1- - 1  1 -1-L -1 --I 1 A - I I 

model that might result in even better simulation values. The 
applicability of the methodology has yet to be proven for im- 
ages other than N D ~ I  images. 
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Figure 4. Residuals of Model 1 and Model 2 vs. NOAA. 
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