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Abstract 
This paper describes the process through which an existing 
serial algorithm that classifies terrain features in a digital el- 
evation model IDEM) is recast into a version that executes in 
a parallel computer environment. The transformation pro- 
cess is guided by a formal analysis of dependency relation- 
ships that exist among the different steps in the algorithm. 
The resulting program is tested using a small parallel com- 
puter system. The results demonstrate that run times are 
reduced, and that the processors are used efficiently. The 
general approach to the development and implementation of 
parallel algorithms that is presented in this paper is extensi- 
ble to a wide range of geographical computing problems. 

Introduction 
Researchers frequently use computer models to improve their 
understanding of spatial processes. Such models often start 
as relatively crude abstractions and are increasingly refined 
through the addition of enhanced procedures that are de- 
signed to capture new details of the processes being studied. 
This quest for realism, however, often comes with a penalty, 
because detailed models that handle numerous intricate in- 
teractions in spatial systems normally cause processing times 
to increase. Thus, the computational burden imposed by 
model improvements, ironically, can preclude interactive, 
exploratory modeling, thereby decreasing the usefulness of 
spatial models in research and decision-making. 

One apparently simple way to overcome this problem is 
to use faster computers. While there is considerable room for 
debate, many researchers (e.g., Stone and Cocke, 1991; Flynn 
and Rudd, 1996) have suggested that the physical limit of 
processing speed for microprocessors is approaching. Conse- 
quently, computer manufacturers and researchers are turning 
to parallel architectures that integrate and harness the power 
of several inexpensive processors to provide computer envi- 
ronments that are designed to handle computationally inten- 
sive problems. 

At present, most spatial data handling algorithms have 
been developed for sequential computing environments. 
Though the application of parallel programming to a prob- 
lem may require the development of new algorithms and 
code, in many cases existing algorithms can be recoded and 
structured in a form that is compatible with the architecture 
of a parallel computer system. The purpose of this paper is 
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to describe this process of translation, using as an illustration 
an existing sequential algorithm that extracts topographic 
features from a digital elevation matrix (Bennett and Arm- 
strong, 1996). The general process of converting this algo- 
rithm to a parallel environment is extensible to a large num- 
ber of models that operate on gridded spatial data. 

The paper is structured as follows: First, basic principles 
of parallel processing and parallel algorithm design are 
briefly discussed. Next, the terrain feature extraction algo- 
rithm is described. The algorithm is implemented in a paral- 
lel processing environment and is evaluated along three 
dimensions that are important to the efficient use of parallel 
computer resources: the organization of the data required by 
each task, the size of the task allocated to each processor, 
and the number of processors used. 

Parallel Processing 
Aleorithms that can be efficientlv im~lemented in ~arallel " " L 

are decomposable into relatively independent code segments 
that are allocated to different Drocessors for execution. Be- 
cause many spatial models treat geographic space as a collec- 
tion of interacting spatial units, there is, a priori, a strong 
indication that they can be decomposed into relatively inde- 
pendent parts. In practice, this is not always easily accom- 
plished, however, because the tasks identified in the problem 
decomposition process may exhibit dependencies that pre- 
clude parallel execution. In the following sections we exam- 
ine several basic principles of parallel algorithm design. The 
discussion focuses on program granularity, problem decom- 
position strategies as developed in different parallel program- 
ming paradigms, - - and the main categories of parallel pro- 
gramrning models. 

Granularity of Parallelism 
Carriero and Gelernter (1990: p. 1) assert that problem solv- 
ing is naturally parallel and that purely sequential problems 
should be considered an "anomalous restriction." Typically, 
however, there is more than one way to decompose a prob- 
lem, and the suitability of a particular strategy often hinges 
on the selection of an appropriate granularity of parallelism. 
Parallel algorithms can be classified into three categories 
with respect to the granularity of individual tasks (Poly- 
chronopoulos, 1988): 

Fine grained algorithms have individual tasks equivalent to 
basic code blocks (single instructions or small loops). 
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Medium grained algorithms have tasks larger than a basic 
code block but smaller than a subroutine. 
Coarse grained algorithms are comprised of large individual 
tasks that are equivalent to one or more subroutines. 

The specification of the granularity of a decomposition 
strategy for a particular problem is often made after consider- 
ing two general principles: 

(1) The granularity of an algorithm must match the target com- 
puter architecture. Parallel computers with single-bit pro- 
cessors are not well-suited to coarse or medium grained 
parallelism, while computers with powerful processors are 
often used inefficiently if a fine or medium grained ap- 
proach is adopted. 

(2) Fine grained decomposition usually achieves more balanced 
distribution of a workload than medium or coarse decompo- 
sition, but it usually incurs a much greater communication 
overhead (Cok, 1991). 

The granularity for a specific problem domain often is deter- 
mined only after evaluating the trade-off between efficient 
workload balancing and communication overhead. 

Parallel Programming Paradigms 
Carriero and Gelernter (1990) introduced the term parallel 
paradigm to describe parallelism in an implementation-inde- 
pendent context. There are three main parallel paradigms: 
event, algorithmic, and geometric parallelism. Carriero and 
Gelernter (1990: p. 13) noted that they " ... aren't provably 
the only ones possible. But empirically they cover all exam- 
ples we have encountered in the research literature." The 
feasibility of applying them depends not only on the prob- 
lem's structure but also on the computer architecture and the 
available programming environment. 

Event parallelism involves the identification of a main 
process (master task) and a set of specialized worker pro- 
cesses. The master task schedules a work plan, distributes 
data to the worker processes, and collects their results. Be- 
cause a new set of data to be processed is sent whenever it is 
determined that a worker process is idle, event parallelism is 
inherently a load balancing method. Problems can arise, 
however, if one worker task requires considerably more com- 
putation than the others. Furthermore, event parallelism in- 
curs a communication overhead penalty as the controller 
must continuously communicate (send and receive data) 
with worker processes. Consequently, it is best-suited to 
problems that require considerable processing but little com- 
munication (Cok, 1991). 

Algorithmic parallelism involves the conceptualization 
of a problem as a network in which each node is a special- 
ized process that operates on data passing through the net- 
work in a "production line" fashion. Although this paradigm 
often may be the most natural way of decomposing an algo- 
rithm, its efficient implementation depends heavily on the 
underlying computer architecture and the configuration of its 
interprocessor communication topology. 

Geometric parallelism involves the decomposition of the 
problem space into subregions within which local operations 
are performed. In this paradigm, data often are evenly dis- 
tributed to all processes, where each process usually is a 
complete program or procedure that performs all the re- 
quired computations for each subset (Cok, 1991: p. 113). 
This is done for two-dimensional geographic data sets by di- 
viding them into N equal parts, where N is the number of 
worker processors (e.g., Healy and Desa, 1989). Carriero and 
Gelernter (19901 noted that this is the most appropriate ap- 
proach fo; decomposing problems that must prod;ce a skies 
of values with ~redictable organization and interdeuenden- 

u 

cies. Thus, while geometric parallelism may be an intuitive 
and easy way to decompose problems, its efficient imple- 
mentation also depends on the characteristics of the particu- 

lar problem. A successful decomposition of a problem 
domain using geometric parallelism maximizes processing 
within a region and minimizes inter-region exchange of in- 
formation, because interprocessor communication is the ma- 
jor factor that determines whether geometric parallelism can 
be efficiently implemented in a particular problem domain. 

Process and Data Dependencies 
Dependencies among program components can impair the 
performance of parallel programs. For example, if a process 
is completed on one processing element (PE) before another 
on which it depends for data, then the PE is forced to remain 
idle. In practice, parallel implementations of algorithms with 
complex process and data dependencies may not only per- 
form poorly, but may even produce incorrect results if the 
correct sequence of execution is not guaranteed. Because of 
these ~roblems. a formal analvsis of deuendencies enables a 
programmer to determine whether a problem can be efficiently 
implemented in parallel, and can be used to suggest appro- 
priate decomposition strategies. 

Williams (1990) identified several different types of de- 
pendency relationships that can exist between two processes 
(P, and P,) : 

Prerequisite: process P, must fetch what it requires before P, 
stores its results. P, must not require results produced by P,, 
as there is no guarantee that P, will finish before P,. 
Consenrative: process P, must send its results to another pro- 
cess P, before P, receives the results of P,. This suggests that 
both processes modify the same data structures and the re- 
sults of process P, are required for subsequent processing by 
P,. This type of relationship allows the unconstrained paral- 
lel execution of the two processes until the time that they re- 
turn their results. 
Commutative: process P, may execute before or after P,, but 
not at the same time. This occurs mainly when both pro- 
cesses modify the same memory locations during their execu- 
tion. 
Contemporary: processes P, and P, are completely unrelated 
and may execute at the same time, without any constraints. 
Consecutive: process P, must send all or part of its results to 
process P,. This implies that the results of P, are used by P,, 
so the execution of the two processes is inherently sequen- 
tial. 

In most of the commercially viable parallel processing 
environments that are now available, a message-passing pro- 
gramming model can be used to ensure that the proper se- 
quence of instructions is maintained. Though data are not 
shared among processes, they are connected through commu- 
nication channels. Thus, whenever a process wants to re- 
ceive data from, or send data to, another process, it uses a 
message. Using this approach, a dependency analysis is used 
to guide the derivation of a parallel message-passing version 
of the terrain feature extraction algorithm that is described in 
the next section. 

Terrain Feature Extraction 
Digital elevation models (DEMS) play an important role in 
many GIs-based analyses. Slope and aspect are often com- 
puted from DEMs, and, in some instances, other representa- 
tions of terrain (e.g., TINS and drainage catchments) are 
derived from them. These derived terrain models help re- 
searchers to deal with the extreme abstraction of gridded 
terrain features by forming structures that more closely ap- 
proximate their models of the world. Subcatchments and hil- 
lslopes, for example, provide an "unambiguous template for 
structuring models in geomorphology, hydrology, landscape 
ecology, and other fields" (Band, 1989a:151) and are used to 
delimit areas with distinct patterns of vegetation, soil, and 
microclimate (Band, 1989b). 

Two basic topographic features are used to derive sub- 

February 1998 PE&RS 



Figure 1. The 3 
by 3 elevation 
window with the 
four symmetric 
bisecting tran- 
sects (after Ben- 
nett and Arm- 
strong, 1996). 

catchments and hillslopes: drainage and divide networks. 
Drainage networks define the main flow patterns of water, 
sediment, nutrients, and pollutants in a watershed. Divide 
networks, on the other hand, define the extent and the shape 
of the runoff contributing area for each channel segment of a 
drainage network and bound relatively independent water- 
shed partitions. 

Drainage and divide networks are traditionally obtained 
by manual interpretation of topographic maps or aerial pho- 
tographs. These tasks are quite tedious and time consuming 
for any but the smallest data sets and have "provided a 
strong restriction on the scale and the complexity of the wa- 
tershed research that is generally attempted" (Band, 1989a: 
151). To overcome this limitation and also deal with the in- 
creasing availability of topographic information in digital 
form, researchers have tried to automate the feature extrac- 
tion process (see, for example, Peucker and Douglas (1975), 
Mark (1983), O'Callaghan and Mark (1984), Jenson (1985), 
Marks et al. (1984), Morris and Heerdegen (1988), and Ben- 
nett and Armstrong (1989; 1996)). These approaches differ in 
their complexity, in the way that they treat difficult or am- 
biguous classification problems, and also in their suitability 
for implementation in parallel processing environments. 

In this research, we selected an approach to terrain fea- 
ture extraction reported recently by Bennett and Armstrong 
(1989; 1996), and converted it to a parallel form. Their 
inductive terrain feature extraction (ITFE) algorithm uses a 
three-step procedure to extract hydrologically significant 
features from digital elevation models. In step one, ITFE (fol- 
lowing Jenson (1985)) records, in a six-element Boolean ar- 

ray, the two-dimensional shape of the four directed, 
symmetrical transects that cross the center cell of a 3 by 3 
elevation window (Figure 1). This information is used to 
classify each transect as ridge, valley, slope break, or flat by 
comparing it with prototypes that have been generated for 
each of the hydrologic categories (Table 1). Transects are 
then placed into the category with which they have the 
greatest similarity. 

This first step has two characteristics that provide the 
user with control over the feature extraction process. Unlike 
most other feature extraction algorithms based on local oper- 
ators, this approach is able to perform well in areas of low 
relief because it allows for "flexible windowing": when the 
elevation of the center cell is not significantly different from 
either end of a transect running through it, the window is re- 
cursively extended in the direction of uncertainty. As tran- 
sects are classified, a topographic significance is 
also used to define "the difference in elevation between the 
central point and a line bounded by two points on opposite 
sides of the window" (Bennett and Armstrong, 1989: p. 62). 
The consideration of topographic significance serves two 
purposes: it accounts for noise in the digital elevation model 
that could cause the erroneous classification of cells, and it 
is used to control the degree of detail represented in the de- 
rived feature networks. 

In the second step, information derived from the shape 
of the four transects is used to classify the center cell of the 
elevation window into one of six hydrologic categories using 
the production rules described in Table 2. After each cell has 
been placed into a hydrologic category, the next step of the 
procedure creates an initial approximation of the basin's 
morphology by establishing preliminary topological relation- 
ships among classified cells. This is accomplished by linking 
adjacent cells that perform similar hydrologic functions (Ta- 
ble 3). The results of this step are stored in the form of an 
undirected graph. For each DEM cell, linkages with its neigh- 
bors are stored in two 8-bit records that describe upslope 
and downslope connectivity (Figure 2). Each element in the 
two records ILikeNeiehbors and activelink) corres~onds to a 
linkage betwken a c z l  and one of its eight'neighbirs. Each 
element in the LikeNeighbors array is used to record whether 
there is a valid link between the center cell and the corre- 
sponding neighbor. If two cells are both topographically sig- 
nificant and classified in the same hydrologic category, then 
the link between the two cells is characterized as active (one 
cell drains to another) and the respective element in the 
activeLink array is set to true. The network is then con- 
structed from the information stored in these records. The 
implementation of ITFE in a parallel environment is de- 
scribed in the following section. 

TABLE 1. TRANSECT CLASSIFICATION RULES (AFTER BENNEIT A N D  ARMSTRONG, 1996). A # I N D I C A T E S  THAT A BIT POSITION I S  NOT CONSIDERED FOR THAT 
CLASSIFICATION 

Bit Mapping: 
1 true if center point is topographically significant 
2 true if first point of transect is higher than mid point 
3 true if last point of transect is higher than mid point 
4 true if the transect is extended in thc direction of the first point 
5 true if the transect is extended in the direction of the last point 
6 true if extension of either line reaches a boundary. 
Line Classification: 
ridge Both bounding points lower than middle #FF##F 
valley Both bounding points higher than middle #TT##F 
slope break One bounding point higher, the other lower than the middle; #TF### or 

#FT### or 
One end of the line extended, one not ###FT# or 

###TF # 
flat Both ends of the line extended ###T'I‘T 
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TABLE 2. CELL CLASS~FICATION RULES (AFTER BENNET AND ARMSTRONG, 1996) 

Class Criteria 
Drainage if transects classed as valleys>=l, peaks=O 
Divide if transects classed as ridges>=l, valleys=O 
Pass if transects classed as valleys> = 1, ridges> = 1 
Pit if transects classed as valleys=$ 
Slope break none of the above: transects classed as slope breaks>=l 
Plain none of the above: transects classed as flat>=l 

TABLE 3. VALID TOPOLOGICAL LINKS (AFTER BENNETT AND ARMSTRONG, 1996) 

1. Drainage points to: 2. Divide points to: 3. Slope breaks to: 
drainage points, divides, slope breaks. 

passes, passes. 
pits, 

plains. 

l:<E - - -  inactive active lin link k 

7 . 6  5a 

Upslope: 

1 2 3 4 5 6 7 8  
LikeNeighbors T T F F F F F F 

activeLiik 

Downslope: 
1 2  3 4 5  6 7  8 

LikeNeighbors F F F F T T F F 

activeLink F F F F T F F F 

Figure 2. Upslope and downslope 
hydrologic connectivity for a DEM cell 
(after Bennett and Armstrong, 1996). 

Problem Decomposition 
When decomposing an algorithm for implementation, de- 
pendencies among processes and the relationships between 
processes and their data requirements must be identified. 
The goal of this analysis is to identify those segments of an 
algorithm that can be executed simultaneously, those that 
must be processed sequentially, and those that must be syn- 
chronized before additional processing can take place. The 
characteristics of the target computer architecture and paral- 
lel programming model are also considered. The result of 
this problem decomposition is a parallel inductive terrain 
feature extraction (PITFE) algorithm. 

Data Dependencies 
The three main steps of PITFE (transect classification, cell 
classification, and feature topology construction) are first 
considered as the basis of the dependency analysis. In the 
first step of the algorithm, each transect that bisects the cen- 
ter cell of a 3 by 3 elevation window is placed into a hydro- 
logic category. Normally, this step requires the analysis of 
only three elevation values. In areas of low relief, however, 
where the determination of a transect's shape may require its 
recursive extension, the length of the transect extension can- 
not be predefined and processing load imbalances may oc- 

cur. Because the number of points that must be considered 
for each transect classification is not known in advance, this 
presents a possible problem if each processor can only ac- 
cess data in its own local memory. 

In the next step of PITFE, each DEM cell is placed into a 
hydrologic category. This is accomplished by examining the 
information produced from the classification of the four tran- 
sects that bisect the cell under consideration. Because this 
information is produced only to classify the center cell of 
each window, data dependencies are not present in the cell 
classification task. 

Finally, PITFE connects adjacent cells that perform simi- 
lar hydrologic functions. This step requires the feature types 
of all nine cells of the DEM window to be known. Conse- 
quently, if we consider two windows A and B, where B is 
the window that is produced if we slide A one position (cell) 
to the right, the feature topology construction step for both 
windows will require access to the feature types of the six 
shared cells. Conventionally, the data set is scanned fiom left 
to right and from top to bottom. Each cell, therefore, is con- 
sidered three times (Figure 3) when the algorithm is applied 
to (a) the preceding cells, (b) the current DEM window, and 
(c) the following cells. 

Process Dependencies 
Process dependencies in PITFE are identified not only be- 
tween different processes, but also with respect to the por- 
tion of the data set to which they are applied. Using the 
classification scheme suggested by Williams (1990), the pro- 
cess dependencies of the algorithm are identified in Table 4. 
Given the consecutive dependencies also shown in Table 4 
(see shaded cells), it is apparent that the three main pro- 
cesses in PITFE must be executed sequentially when applied 
to the same portion of the data set. Different processes ap- 
plied to different portions of the data set, however, are unre- 
lated and can be executed in parallel; they exhibit contempo- 
rary relationships. For example, cell classification within a 
window in the top-left of a data set, and feature topology 
construction in a bottom-left window, can execute in parallel 
without constraint, because information does not need to be 
exchanged. 

The situation, however, is different when considering 
dependencies that are present in the feature topology con- 
struction process. In each window, the construction of the 

current window 

following cells 
I 

Figure 3. Each task is considered when applied 
to the preceding cells, the current window, and 
the following cells. 
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topological links between the center cell and its eight neigh- 
bors requires only the feature types of the window points. 
Therefore, feature topology construction for the three data-set 
subdivisions (preceding cells, the current window, and the 
following cells) is contemporary, because it is independent 
for each of these three instances. This approach is inefficient, 
however, because most topological links will be considered 
twice (Figure 4). Consequently, a more efficient version of 
PITFE (described in the next section) was also implemented 
to reduce the required number of evaluations. 

Implementation 
Because PITFE consists of several steps that exhibit different 
kinds of dependency relationships, several ways of organiz- 
ing it for parallel processing could be devised. One way is to 
decompose it into the three steps described earlier. While the 
use of the algorithmic paradigm seems natural in this case, it 
creates relatively small tasks that generate a large number of 
messages (send data; receive results) and, in message passing 
environments, such communication overhead can degrade 
performance. Because the first two steps, transect and cell 
classification, are closely related, and the results of the first 
are required by the second, they were combined to form a 
single large-grained cell classification task. We refer to this as 
a reduced PITFE model. The remaining step of the algorithm, 
the feature topology construction task, is independent and 
executes after the cell classi£ication task has been completed. 
To coordinate the execution of these two worker tasks, a 

master task was also designed to distribute data to the 
worker tasks, receive their results, and balance their work- 
loads. 

Though geometrical parallelism is a straightforward way 
to achieve performance improvements for many spatial prob- 
lems (e.g., Armstrong and Marciano, 1994), its application to 
the first part of the P I m  algorithm (cell classification) pre- 
sented obstacles to efficient implementation. Because tran- 
sects are extended to determine their shape in flat areas, 

window A window B 

1 1 

2 2 

3 3 

4 4 

5 5 

6 6 

7 7 

Figure 4. The topological links between cells (4,d) and 
(4,e) are established twice: first for window A and then 
for window B. 
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I window A window B I 

Figure 5. The topological link between (4,d) and (4,e) is 
established only once, when window B is considered. 

elevation values in the direction of each extension must be 
made available to the cell classification task. However, be- 
cause the length of a transect's extension cannot be known 
before the program is executed, the size of the elevation win- 
dow required for the classification of a single cell cannot be 
predefined. There are several ways to treat this problem. One 
solution is for the master task to send the whole data set to 
each worker processor. Although this may be feasible for 
small data sets, it would degrade the algorithm's perform- 
ance for large data sets because a large communication over- 
head penalty would be incurred. An alternative strategy was 
developed to reduce communication overhead: whenever a 
transect must be extended, the worker task encountering the 
problem sends all needed information to the master task 
which has access to the entire data set. The master task then 
extends the transect and returns its shape to the worker that 
requested it. 

Geometric parallelism can cause an additional perform- 
ance problem when uneven workloads occur. If a purely geo- 
metric decomposition were used, a worker processor that 
receives data representing a flat area would be required to 
perform many more transect extensions than other worker 
processors and would continue to process data after other 
workers had completed their tasks. Because of such prob- 
lems, the cell classification task was implemented using 
event parallelism. This paradigm inherently balances pro- 
cessing loads and therefore, if one worker is required to do 
more processing than others, it will execute fewer times. 

In the second step of the reduced PITFE algorithm (fea- 
ture topology const-uction), geometric parallelism was used 
because each subset requires the same amount of processing, 
and data are equally distributed among worker tasks. Thus, 
the workload is well-balanced. Simple data dependencies ex- 
ist between the boundaries of the subsets, however. In those 
cases, boundary data between two adjacent subsets are made 
available to both of them and they are treated differently 
from interior cells. This feature topology construction step 
presented yet another problem, however: double-processing 
of topological links. To overcome this problem, the topologi- 
cal links for a cell are constructed by first establishing the 
topological links between the center cell of a window and its 
four upper-left neighbors. Then, the topological links of the 
center cell with the rest of its neighbors are established when 
each is considered as the center cell of a DEM window (Fig- 
ure 5).  In this implementation, feature topology construction 
is conservative, as the record that holds the topological links 
for a cell is updated every time one of its lower-right neigh- 
bors is considered. Each link, however, is considered only 
once. 

Performance Analysis 
The computer used to implement the PITFE algorithm is a mi- 
crocomputer-based M I M ~  machine (Figure 6) consisting of a 
host PC that is serially linked to four fully interconnected 
T800 Transputers (see Ding and Densham, 1994). Because 
each Transputer is a complete computer with 1 megabyte of 
memory, the configuration can be described as a coarse- 
grained architecture. This indicates that the problem domain 
should be decomposed into relatively large tasks. Figure 7 
depicts a schematic mapping of master and worker tasks to 
the Transputer architecture. The software was coded in Par- 
allel Pascal (3L, 1989). This compiler is based on OCCAM, 
and implements a message passing programming model. 

The data set used to examine the performance of the al- 

PC 

t 

+ 
Master . . Worker 

Task Tasks 

Transputer 
I 

Figure 7. The identified tasks 
are mapped onto the target 
architecture. Worker tasks 
include both the cell classi- 
fication and the feature 
topology construction tasks. 
Solid lines represent active and 
dashed lines inactive links for 
interprocessor communication. 
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TABLE 5. EXECUTION TIMING RESULTS USING 3 BY 3 A N 0  3 BY 31 WORKLOAD 
SIZES. ONE TICK IS EQUAL TO 64 MICROSECONDS 

3 by 31 workload size 3 by 3 workload size 

Execution Time in 
Transputer ticks 4498 6259 

gorithm is a 27 by 31 subset of the Mt. Baldy USGS DEM. This 
area includes a small watershed of the San Dimas river in 
southern California which is an area characterized by intense 
relief. The USGS characterized the Mt. Baldy DEM as a level 
one DEM which means that (a) no DEM point has an absolute 
error greater than 50 metres, and (b) the DEM does not pos- 
sess an "array of points which encompass more than 49 con- 
tiguous deviations (an effective 7 by 7 array) wherein the 
relative integrity is not in error by more than 2 1  metres" 
(USGS, 1987: p. 11). The selected data set has a root-mean- 
square error of 5 metres based on a sample of 30 points. 

Comparison of the Original and Reduced Models 
The efficient implementation of a message-passing algorithm 
must use a minimum number of messages that each carries 
only needed information. By doing so, time is saved not only 
from reducing communication, but also from assembline 
smaller recoras. The reduced form of PITFE that was col- 
structed by combining steps in the original algorithm was de- 
signed to operate in a message-parsimonious way and, as a 
consequence, it can be expected to yield increased levels of 
performance. To illustrate this effect, both versions (original 
and reduced) of PITFE were executed using one master and 
three worker processors. The resulting run time was reduced 
from 4498 to 3859 "ticks" (a time measure used in the Trans- 
puter environment, where each tick is equal to 64 microsec- 
onds; Microway, 1990), a 14.2 percent improvement. 

Size of the Workload 
Because the cell classification task is implemented using 
event parallelism, the data set is divided into uniform sub- 
sets (workloads) and distributed to the worker processors. 
Consequently, the specification of the size of the individual 
workload is an important issue. Because the parallel archi- 
tecture used in this research is most efficiently applied to 
problems when the work local to each processor is maxi- 
mized and interprocessor communication is minimized (Cok, 
1991), increasing the workload size should make effective 
use of the available processors. To provide a simple demon- 
stration of the importance of workload size, the cell classifi- 
cation step was run on the same data set with 3 by 3 and 3 
by 31 workload sizes. As shown in Table 5, the decrease of 
communication overhead associated with the 3 by 31 work- 
load yields a 28 percent performance improvement. 

It should be noted, however, that the amount of work re- 
quired for each workload depends not only on the size of the 
data subset sent to it, but also on the relief of the area in 
which the algorithm is applied. In low relief areas, for exam- 
ple, transect classification will require extra processing (tran- 
sect extension) to determine the shapes of transects. Conse- 

TABLE 6. TIMING MEASUREMENTS OF THE PITFE ALGORITHM WHEN 1, 2, AND 3 
WORKER PROCESSORS ARE USED ON THE EXAMPLE DATA SET. UNITS ARE LOW 

PRIORIN TRANSPUTER CLOCK TICKS (1 TICK = 64 ps~c) 

Number of 
Processors Cell Classification Feature Topology 
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quently, by increasing the data subset size, the required work 
could increase disproportionately in low relief areas. Thus, 
the amount of processing required for a given workload is a 
function not only of the data set size, but also of local relief. 
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Increasing the Number of Processors Used 
Because of the improvements demonstrated earlier, the ef- 
fects of increasing the number of processors are reported 
only for the reduced form of PITFE. To evaluate the perform- 
ance improvement of a parallel algorithm over an equivalent 
sequential version of the same algorithm, two measures are 
commonly used: speedup and efficiency. Speedup (S) is de- 
fined as the ratio of sequential run time (T,,,) to parallel run 
time (Tpar): i.e., 

9 
\ . 

\ 

Efficiency (E) is the ratio of the speedup (S) to the number of 
processors (Nj running in parallel: i .e., 

2 o +  
0 1 2 3 

Number of Worker 
4 

Processors - Cell Classification 
---o--. Feature Topology Construction 

Figure 8. Execution times running the application with 1, 
2, and 3 worker processors. 

E = SIN. 

The execution time of PITFE was measured when the ap- 
plication was run with one (sequential version), two, and 
three worker processors as shown in Table 6. It can be ob- 
served that the run time is reduced from 9765 "ticks" when 
one processor was used, to 3859 when three workers are ap- 
plied to the cell classification step. Similar reductions are ob- 
tained for the feature topology step. Figure 8 shows the graph 
of the execution time of the cell classification and feature to- 
pology construction tasks against the number of worker pro- 
cessors used. It should be noted that, when the number of 
worker processors is increased, execution time is (theoreti- 
cally) expected to decrease linearly up to a certain point, but 
will become asymptotically horizontal. This will occur be- 
cause the increase in the communication overhead (caused 
by the increase of the amount of interprocessor communica- 
tion required) will balance against the performance improve- 
ment which is anticipated when additional processors are 
applied to the computation of results. 

The efficiency and speedup of each configuration was 
computed from the run times and are shown in Table 7. It is 
apparent from these results that, by increasing the number of 
worker processors, a considerable speedup of the algorithm 
is achieved and that in each case the processors are being 
used efficiently. Furthermore, for the feature topology con- 
struction step, an almost linear performance improvement 
can be observed, suggesting that this coarse-grained part of 
PITFE is scalable to a larger collection of processors. On the 
other hand, the performance improvement of cell classifica- 



TABLE 7. MEASUREMENTS OF THE SPEEDUP A N 0  EFFICIENCY OF THE PARALLEL 
VERSION OF THE PITFE ALGORITHM OVER ITS SEQUENTIAL COUNTERPART, USING 2 

AND 3 WORKER PROCESSORS 

Cell Classification Feature Topology 
Construction 

Number of 
workers Speedup Efficiency Speedup Efficiency 

2 1.84 0.92 1.57 0.79 
3 2.53 0.84 2.25 0.75 
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