
Experiments in the Identification of
Terrain Features Using a

PC-Based Parallel Computer
Demetrius-Kleanthis D. Rokos and Marc P. Armstrong

Abstract
This paper describes the process through which an existing
serial algorithm that classifies terrain features in a digital el-
evation model IDEM) is recast into a version that executes in
a parallel computer environment. The transformation pro-
cess is guided by a formal analysis of dependency relation-
ships that exist among the different steps in the algorithm.
The resulting program is tested using a small parallel com-
puter system. The results demonstrate that run times are
reduced, and that the processors are used efficiently. The
general approach to the development and implementation of
parallel algorithms that is presented in this paper is extensi-
ble to a wide range of geographical computing problems.

Introduction
Researchers frequently use computer models to improve their
understanding of spatial processes. Such models often start
as relatively crude abstractions and are increasingly refined
through the addition of enhanced procedures that are de-
signed to capture new details of the processes being studied.
This quest for realism, however, often comes with a penalty,
because detailed models that handle numerous intricate in-
teractions in spatial systems normally cause processing times
to increase. Thus, the computational burden imposed by
model improvements, ironically, can preclude interactive,
exploratory modeling, thereby decreasing the usefulness of
spatial models in research and decision-making.

One apparently simple way to overcome this problem is
to use faster computers. While there is considerable room for
debate, many researchers (e.g., Stone and Cocke, 1991; Flynn
and Rudd, 1996) have suggested that the physical limit of
processing speed for microprocessors is approaching. Conse-
quently, computer manufacturers and researchers are turning
to parallel architectures that integrate and harness the power
of several inexpensive processors to provide computer envi-
ronments that are designed to handle computationally inten-
sive problems.

At present, most spatial data handling algorithms have
been developed for sequential computing environments.
Though the application of parallel programming to a prob-
lem may require the development of new algorithms and
code, in many cases existing algorithms can be recoded and
structured in a form that is compatible with the architecture
of a parallel computer system. The purpose of this paper is

Department of Geography and Program in Applied Mathe-
matical and Computational Sciences, The University of Iowa,
316 Jessup Hall, Iowa City, IA 52242 (marc-armstrong8
uiowa.edu).

D.-K.D. Rokos is currently with the Hellenic Mapping Con-
sortium (HEMCO), Tim. Vassou 11-13, 11521, Athens,
Greece.

to describe this process of translation, using as an illustration
an existing sequential algorithm that extracts topographic
features from a digital elevation matrix (Bennett and Arm-
strong, 1996). The general process of converting this algo-
rithm to a parallel environment is extensible to a large num-
ber of models that operate on gridded spatial data.

The paper is structured as follows: First, basic principles
of parallel processing and parallel algorithm design are
briefly discussed. Next, the terrain feature extraction algo-
rithm is described. The algorithm is implemented in a paral-
lel processing environment and is evaluated along three
dimensions that are important to the efficient use of parallel
computer resources: the organization of the data required by
each task, the size of the task allocated to each processor,
and the number of processors used.

Parallel Processing
Aleorithms that can be efficientlv im~lemented in ~arallel " " L

are decomposable into relatively independent code segments
that are allocated to different Drocessors for execution. Be-
cause many spatial models treat geographic space as a collec-
tion of interacting spatial units, there is, a priori, a strong
indication that they can be decomposed into relatively inde-
pendent parts. In practice, this is not always easily accom-
plished, however, because the tasks identified in the problem
decomposition process may exhibit dependencies that pre-
clude parallel execution. In the following sections we exam-
ine several basic principles of parallel algorithm design. The
discussion focuses on program granularity, problem decom-
position strategies as developed in different parallel program-
ming paradigms, - - and the main categories of parallel pro-
gramrning models.

Granularity of Parallelism
Carriero and Gelernter (1990: p. 1) assert that problem solv-
ing is naturally parallel and that purely sequential problems
should be considered an "anomalous restriction." Typically,
however, there is more than one way to decompose a prob-
lem, and the suitability of a particular strategy often hinges
on the selection of an appropriate granularity of parallelism.
Parallel algorithms can be classified into three categories
with respect to the granularity of individual tasks (Poly-
chronopoulos, 1988):

Fine grained algorithms have individual tasks equivalent to
basic code blocks (single instructions or small loops).

Photogrammetric Engineering & Remote Sensing,
Vol. 64, No. 2, February 1998, pp. 135-142.

0099-1112/98/6402-135$3.00/0
O 1998 American Society for Photogrammetry

and Remote Sensing

PE&RS February 1998

Medium grained algorithms have tasks larger than a basic
code block but smaller than a subroutine.
Coarse grained algorithms are comprised of large individual
tasks that are equivalent to one or more subroutines.

The specification of the granularity of a decomposition
strategy for a particular problem is often made after consider-
ing two general principles:

(1) The granularity of an algorithm must match the target com-
puter architecture. Parallel computers with single-bit pro-
cessors are not well-suited to coarse or medium grained
parallelism, while computers with powerful processors are
often used inefficiently if a fine or medium grained ap-
proach is adopted.

(2) Fine grained decomposition usually achieves more balanced
distribution of a workload than medium or coarse decompo-
sition, but it usually incurs a much greater communication
overhead (Cok, 1991).

The granularity for a specific problem domain often is deter-
mined only after evaluating the trade-off between efficient
workload balancing and communication overhead.

Parallel Programming Paradigms
Carriero and Gelernter (1990) introduced the term parallel
paradigm to describe parallelism in an implementation-inde-
pendent context. There are three main parallel paradigms:
event, algorithmic, and geometric parallelism. Carriero and
Gelernter (1990: p. 13) noted that they " ... aren't provably
the only ones possible. But empirically they cover all exam-
ples we have encountered in the research literature." The
feasibility of applying them depends not only on the prob-
lem's structure but also on the computer architecture and the
available programming environment.

Event parallelism involves the identification of a main
process (master task) and a set of specialized worker pro-
cesses. The master task schedules a work plan, distributes
data to the worker processes, and collects their results. Be-
cause a new set of data to be processed is sent whenever it is
determined that a worker process is idle, event parallelism is
inherently a load balancing method. Problems can arise,
however, if one worker task requires considerably more com-
putation than the others. Furthermore, event parallelism in-
curs a communication overhead penalty as the controller
must continuously communicate (send and receive data)
with worker processes. Consequently, it is best-suited to
problems that require considerable processing but little com-
munication (Cok, 1991).

Algorithmic parallelism involves the conceptualization
of a problem as a network in which each node is a special-
ized process that operates on data passing through the net-
work in a "production line" fashion. Although this paradigm
often may be the most natural way of decomposing an algo-
rithm, its efficient implementation depends heavily on the
underlying computer architecture and the configuration of its
interprocessor communication topology.

Geometric parallelism involves the decomposition of the
problem space into subregions within which local operations
are performed. In this paradigm, data often are evenly dis-
tributed to all processes, where each process usually is a
complete program or procedure that performs all the re-
quired computations for each subset (Cok, 1991: p. 113).
This is done for two-dimensional geographic data sets by di-
viding them into N equal parts, where N is the number of
worker processors (e.g., Healy and Desa, 1989). Carriero and
Gelernter (19901 noted that this is the most appropriate ap-
proach fo; decomposing problems that must prod;ce a skies
of values with ~redictable organization and interdeuenden-

u

cies. Thus, while geometric parallelism may be an intuitive
and easy way to decompose problems, its efficient imple-
mentation also depends on the characteristics of the particu-

lar problem. A successful decomposition of a problem
domain using geometric parallelism maximizes processing
within a region and minimizes inter-region exchange of in-
formation, because interprocessor communication is the ma-
jor factor that determines whether geometric parallelism can
be efficiently implemented in a particular problem domain.

Process and Data Dependencies
Dependencies among program components can impair the
performance of parallel programs. For example, if a process
is completed on one processing element (PE) before another
on which it depends for data, then the PE is forced to remain
idle. In practice, parallel implementations of algorithms with
complex process and data dependencies may not only per-
form poorly, but may even produce incorrect results if the
correct sequence of execution is not guaranteed. Because of
these ~roblems. a formal analvsis of deuendencies enables a
programmer to determine whether a problem can be efficiently
implemented in parallel, and can be used to suggest appro-
priate decomposition strategies.

Williams (1990) identified several different types of de-
pendency relationships that can exist between two processes
(P, and P,) :

Prerequisite: process P, must fetch what it requires before P,
stores its results. P, must not require results produced by P,,
as there is no guarantee that P, will finish before P,.
Consenrative: process P, must send its results to another pro-
cess P, before P, receives the results of P,. This suggests that
both processes modify the same data structures and the re-
sults of process P, are required for subsequent processing by
P,. This type of relationship allows the unconstrained paral-
lel execution of the two processes until the time that they re-
turn their results.
Commutative: process P, may execute before or after P,, but
not at the same time. This occurs mainly when both pro-
cesses modify the same memory locations during their execu-
tion.
Contemporary: processes P, and P, are completely unrelated
and may execute at the same time, without any constraints.
Consecutive: process P, must send all or part of its results to
process P,. This implies that the results of P, are used by P,,
so the execution of the two processes is inherently sequen-
tial.

In most of the commercially viable parallel processing
environments that are now available, a message-passing pro-
gramming model can be used to ensure that the proper se-
quence of instructions is maintained. Though data are not
shared among processes, they are connected through commu-
nication channels. Thus, whenever a process wants to re-
ceive data from, or send data to, another process, it uses a
message. Using this approach, a dependency analysis is used
to guide the derivation of a parallel message-passing version
of the terrain feature extraction algorithm that is described in
the next section.

Terrain Feature Extraction
Digital elevation models (DEMS) play an important role in
many GIs-based analyses. Slope and aspect are often com-
puted from DEMs, and, in some instances, other representa-
tions of terrain (e.g., TINS and drainage catchments) are
derived from them. These derived terrain models help re-
searchers to deal with the extreme abstraction of gridded
terrain features by forming structures that more closely ap-
proximate their models of the world. Subcatchments and hil-
lslopes, for example, provide an "unambiguous template for
structuring models in geomorphology, hydrology, landscape
ecology, and other fields" (Band, 1989a:151) and are used to
delimit areas with distinct patterns of vegetation, soil, and
microclimate (Band, 1989b).

Two basic topographic features are used to derive sub-

February 1998 PE&RS

Figure 1. The 3
by 3 elevation
window with the
four symmetric
bisecting tran-
sects (after Ben-
nett and Arm-
strong, 1996).

catchments and hillslopes: drainage and divide networks.
Drainage networks define the main flow patterns of water,
sediment, nutrients, and pollutants in a watershed. Divide
networks, on the other hand, define the extent and the shape
of the runoff contributing area for each channel segment of a
drainage network and bound relatively independent water-
shed partitions.

Drainage and divide networks are traditionally obtained
by manual interpretation of topographic maps or aerial pho-
tographs. These tasks are quite tedious and time consuming
for any but the smallest data sets and have "provided a
strong restriction on the scale and the complexity of the wa-
tershed research that is generally attempted" (Band, 1989a:
151). To overcome this limitation and also deal with the in-
creasing availability of topographic information in digital
form, researchers have tried to automate the feature extrac-
tion process (see, for example, Peucker and Douglas (1975),
Mark (1983), O'Callaghan and Mark (1984), Jenson (1985),
Marks et al. (1984), Morris and Heerdegen (1988), and Ben-
nett and Armstrong (1989; 1996)). These approaches differ in
their complexity, in the way that they treat difficult or am-
biguous classification problems, and also in their suitability
for implementation in parallel processing environments.

In this research, we selected an approach to terrain fea-
ture extraction reported recently by Bennett and Armstrong
(1989; 1996), and converted it to a parallel form. Their
inductive terrain feature extraction (ITFE) algorithm uses a
three-step procedure to extract hydrologically significant
features from digital elevation models. In step one, ITFE (fol-
lowing Jenson (1985)) records, in a six-element Boolean ar-

ray, the two-dimensional shape of the four directed,
symmetrical transects that cross the center cell of a 3 by 3
elevation window (Figure 1). This information is used to
classify each transect as ridge, valley, slope break, or flat by
comparing it with prototypes that have been generated for
each of the hydrologic categories (Table 1). Transects are
then placed into the category with which they have the
greatest similarity.

This first step has two characteristics that provide the
user with control over the feature extraction process. Unlike
most other feature extraction algorithms based on local oper-
ators, this approach is able to perform well in areas of low
relief because it allows for "flexible windowing": when the
elevation of the center cell is not significantly different from
either end of a transect running through it, the window is re-
cursively extended in the direction of uncertainty. As tran-
sects are classified, a topographic significance is
also used to define "the difference in elevation between the
central point and a line bounded by two points on opposite
sides of the window" (Bennett and Armstrong, 1989: p. 62).
The consideration of topographic significance serves two
purposes: it accounts for noise in the digital elevation model
that could cause the erroneous classification of cells, and it
is used to control the degree of detail represented in the de-
rived feature networks.

In the second step, information derived from the shape
of the four transects is used to classify the center cell of the
elevation window into one of six hydrologic categories using
the production rules described in Table 2. After each cell has
been placed into a hydrologic category, the next step of the
procedure creates an initial approximation of the basin's
morphology by establishing preliminary topological relation-
ships among classified cells. This is accomplished by linking
adjacent cells that perform similar hydrologic functions (Ta-
ble 3). The results of this step are stored in the form of an
undirected graph. For each DEM cell, linkages with its neigh-
bors are stored in two 8-bit records that describe upslope
and downslope connectivity (Figure 2). Each element in the
two records ILikeNeiehbors and activelink) corres~onds to a
linkage betwken a c z l and one of its eight'neighbirs. Each
element in the LikeNeighbors array is used to record whether
there is a valid link between the center cell and the corre-
sponding neighbor. If two cells are both topographically sig-
nificant and classified in the same hydrologic category, then
the link between the two cells is characterized as active (one
cell drains to another) and the respective element in the
activeLink array is set to true. The network is then con-
structed from the information stored in these records. The
implementation of ITFE in a parallel environment is de-
scribed in the following section.

TABLE 1. TRANSECT CLASSIFICATION RULES (AFTER BENNEIT A N D ARMSTRONG, 1996). A # I N D I C A T E S THAT A BIT POSITION I S NOT CONSIDERED FOR THAT
CLASSIFICATION

Bit Mapping:
1 true if center point is topographically significant
2 true if first point of transect is higher than mid point
3 true if last point of transect is higher than mid point
4 true if the transect is extended in thc direction of the first point
5 true if the transect is extended in the direction of the last point
6 true if extension of either line reaches a boundary.
Line Classification:
ridge Both bounding points lower than middle #FF##F
valley Both bounding points higher than middle #TT##F
slope break One bounding point higher, the other lower than the middle; #TF### or

#FT### or
One end of the line extended, one not ###FT# or

###TF #
flat Both ends of the line extended ###T'I‘T

PE&RS February 1998

TABLE 2. CELL CLASS~FICATION RULES (AFTER BENNET AND ARMSTRONG, 1996)

Class Criteria
Drainage if transects classed as valleys>=l, peaks=O
Divide if transects classed as ridges>=l, valleys=O
Pass if transects classed as valleys> = 1, ridges> = 1
Pit if transects classed as valleys=$
Slope break none of the above: transects classed as slope breaks>=l
Plain none of the above: transects classed as flat>=l

TABLE 3. VALID TOPOLOGICAL LINKS (AFTER BENNETT AND ARMSTRONG, 1996)

1. Drainage points to: 2. Divide points to: 3. Slope breaks to:
drainage points, divides, slope breaks.

passes, passes.
pits,

plains.

l:<E - - - inactive active lin link k

7 . 6 5a

Upslope:

1 2 3 4 5 6 7 8
LikeNeighbors T T F F F F F F

activeLiik

Downslope:
1 2 3 4 5 6 7 8

LikeNeighbors F F F F T T F F

activeLink F F F F T F F F

Figure 2. Upslope and downslope
hydrologic connectivity for a DEM cell
(after Bennett and Armstrong, 1996).

Problem Decomposition
When decomposing an algorithm for implementation, de-
pendencies among processes and the relationships between
processes and their data requirements must be identified.
The goal of this analysis is to identify those segments of an
algorithm that can be executed simultaneously, those that
must be processed sequentially, and those that must be syn-
chronized before additional processing can take place. The
characteristics of the target computer architecture and paral-
lel programming model are also considered. The result of
this problem decomposition is a parallel inductive terrain
feature extraction (PITFE) algorithm.

Data Dependencies
The three main steps of PITFE (transect classification, cell
classification, and feature topology construction) are first
considered as the basis of the dependency analysis. In the
first step of the algorithm, each transect that bisects the cen-
ter cell of a 3 by 3 elevation window is placed into a hydro-
logic category. Normally, this step requires the analysis of
only three elevation values. In areas of low relief, however,
where the determination of a transect's shape may require its
recursive extension, the length of the transect extension can-
not be predefined and processing load imbalances may oc-

cur. Because the number of points that must be considered
for each transect classification is not known in advance, this
presents a possible problem if each processor can only ac-
cess data in its own local memory.

In the next step of PITFE, each DEM cell is placed into a
hydrologic category. This is accomplished by examining the
information produced from the classification of the four tran-
sects that bisect the cell under consideration. Because this
information is produced only to classify the center cell of
each window, data dependencies are not present in the cell
classification task.

Finally, PITFE connects adjacent cells that perform simi-
lar hydrologic functions. This step requires the feature types
of all nine cells of the DEM window to be known. Conse-
quently, if we consider two windows A and B, where B is
the window that is produced if we slide A one position (cell)
to the right, the feature topology construction step for both
windows will require access to the feature types of the six
shared cells. Conventionally, the data set is scanned fiom left
to right and from top to bottom. Each cell, therefore, is con-
sidered three times (Figure 3) when the algorithm is applied
to (a) the preceding cells, (b) the current DEM window, and
(c) the following cells.

Process Dependencies
Process dependencies in PITFE are identified not only be-
tween different processes, but also with respect to the por-
tion of the data set to which they are applied. Using the
classification scheme suggested by Williams (1990), the pro-
cess dependencies of the algorithm are identified in Table 4.
Given the consecutive dependencies also shown in Table 4
(see shaded cells), it is apparent that the three main pro-
cesses in PITFE must be executed sequentially when applied
to the same portion of the data set. Different processes ap-
plied to different portions of the data set, however, are unre-
lated and can be executed in parallel; they exhibit contempo-
rary relationships. For example, cell classification within a
window in the top-left of a data set, and feature topology
construction in a bottom-left window, can execute in parallel
without constraint, because information does not need to be
exchanged.

The situation, however, is different when considering
dependencies that are present in the feature topology con-
struction process. In each window, the construction of the

current window

following cells
I

Figure 3. Each task is considered when applied
to the preceding cells, the current window, and
the following cells.

February 1998 PE&RS

topological links between the center cell and its eight neigh-
bors requires only the feature types of the window points.
Therefore, feature topology construction for the three data-set
subdivisions (preceding cells, the current window, and the
following cells) is contemporary, because it is independent
for each of these three instances. This approach is inefficient,
however, because most topological links will be considered
twice (Figure 4). Consequently, a more efficient version of
PITFE (described in the next section) was also implemented
to reduce the required number of evaluations.

Implementation
Because PITFE consists of several steps that exhibit different
kinds of dependency relationships, several ways of organiz-
ing it for parallel processing could be devised. One way is to
decompose it into the three steps described earlier. While the
use of the algorithmic paradigm seems natural in this case, it
creates relatively small tasks that generate a large number of
messages (send data; receive results) and, in message passing
environments, such communication overhead can degrade
performance. Because the first two steps, transect and cell
classification, are closely related, and the results of the first
are required by the second, they were combined to form a
single large-grained cell classification task. We refer to this as
a reduced PITFE model. The remaining step of the algorithm,
the feature topology construction task, is independent and
executes after the cell classi£ication task has been completed.
To coordinate the execution of these two worker tasks, a

master task was also designed to distribute data to the
worker tasks, receive their results, and balance their work-
loads.

Though geometrical parallelism is a straightforward way
to achieve performance improvements for many spatial prob-
lems (e.g., Armstrong and Marciano, 1994), its application to
the first part of the P I m algorithm (cell classification) pre-
sented obstacles to efficient implementation. Because tran-
sects are extended to determine their shape in flat areas,

window A window B

1 1

2 2

3 3

4 4

5 5

6 6

7 7

Figure 4. The topological links between cells (4,d) and
(4,e) are established twice: first for window A and then
for window B.

PE&RS February 1998

I window A window B I

Figure 5. The topological link between (4,d) and (4,e) is
established only once, when window B is considered.

elevation values in the direction of each extension must be
made available to the cell classification task. However, be-
cause the length of a transect's extension cannot be known
before the program is executed, the size of the elevation win-
dow required for the classification of a single cell cannot be
predefined. There are several ways to treat this problem. One
solution is for the master task to send the whole data set to
each worker processor. Although this may be feasible for
small data sets, it would degrade the algorithm's perform-
ance for large data sets because a large communication over-
head penalty would be incurred. An alternative strategy was
developed to reduce communication overhead: whenever a
transect must be extended, the worker task encountering the
problem sends all needed information to the master task
which has access to the entire data set. The master task then
extends the transect and returns its shape to the worker that
requested it.

Geometric parallelism can cause an additional perform-
ance problem when uneven workloads occur. If a purely geo-
metric decomposition were used, a worker processor that
receives data representing a flat area would be required to
perform many more transect extensions than other worker
processors and would continue to process data after other
workers had completed their tasks. Because of such prob-
lems, the cell classification task was implemented using
event parallelism. This paradigm inherently balances pro-
cessing loads and therefore, if one worker is required to do
more processing than others, it will execute fewer times.

In the second step of the reduced PITFE algorithm (fea-
ture topology const-uction), geometric parallelism was used
because each subset requires the same amount of processing,
and data are equally distributed among worker tasks. Thus,
the workload is well-balanced. Simple data dependencies ex-
ist between the boundaries of the subsets, however. In those
cases, boundary data between two adjacent subsets are made
available to both of them and they are treated differently
from interior cells. This feature topology construction step
presented yet another problem, however: double-processing
of topological links. To overcome this problem, the topologi-
cal links for a cell are constructed by first establishing the
topological links between the center cell of a window and its
four upper-left neighbors. Then, the topological links of the
center cell with the rest of its neighbors are established when
each is considered as the center cell of a DEM window (Fig-
ure 5). In this implementation, feature topology construction
is conservative, as the record that holds the topological links
for a cell is updated every time one of its lower-right neigh-
bors is considered. Each link, however, is considered only
once.

Performance Analysis
The computer used to implement the PITFE algorithm is a mi-
crocomputer-based M I M ~ machine (Figure 6) consisting of a
host PC that is serially linked to four fully interconnected
T800 Transputers (see Ding and Densham, 1994). Because
each Transputer is a complete computer with 1 megabyte of
memory, the configuration can be described as a coarse-
grained architecture. This indicates that the problem domain
should be decomposed into relatively large tasks. Figure 7
depicts a schematic mapping of master and worker tasks to
the Transputer architecture. The software was coded in Par-
allel Pascal (3L, 1989). This compiler is based on OCCAM,
and implements a message passing programming model.

The data set used to examine the performance of the al-

PC

t

+
Master . . Worker

Task Tasks

Transputer
I

Figure 7. The identified tasks
are mapped onto the target
architecture. Worker tasks
include both the cell classi-
fication and the feature
topology construction tasks.
Solid lines represent active and
dashed lines inactive links for
interprocessor communication.

February 1998 PE&RS

, Transputer
2 tx i

Transputer
3

Transputer
4

Figure 6. A schematic descrip
tion of the target architecture.

C

TABLE 5. EXECUTION TIMING RESULTS USING 3 BY 3 A N 0 3 BY 31 WORKLOAD
SIZES. ONE TICK IS EQUAL TO 64 MICROSECONDS

3 by 31 workload size 3 by 3 workload size

Execution Time in
Transputer ticks 4498 6259

gorithm is a 27 by 31 subset of the Mt. Baldy USGS DEM. This
area includes a small watershed of the San Dimas river in
southern California which is an area characterized by intense
relief. The USGS characterized the Mt. Baldy DEM as a level
one DEM which means that (a) no DEM point has an absolute
error greater than 50 metres, and (b) the DEM does not pos-
sess an "array of points which encompass more than 49 con-
tiguous deviations (an effective 7 by 7 array) wherein the
relative integrity is not in error by more than 2 1 metres"
(USGS, 1987: p. 11). The selected data set has a root-mean-
square error of 5 metres based on a sample of 30 points.

Comparison of the Original and Reduced Models
The efficient implementation of a message-passing algorithm
must use a minimum number of messages that each carries
only needed information. By doing so, time is saved not only
from reducing communication, but also from assembline
smaller recoras. The reduced form of PITFE that was col-
structed by combining steps in the original algorithm was de-
signed to operate in a message-parsimonious way and, as a
consequence, it can be expected to yield increased levels of
performance. To illustrate this effect, both versions (original
and reduced) of PITFE were executed using one master and
three worker processors. The resulting run time was reduced
from 4498 to 3859 "ticks" (a time measure used in the Trans-
puter environment, where each tick is equal to 64 microsec-
onds; Microway, 1990), a 14.2 percent improvement.

Size of the Workload
Because the cell classification task is implemented using
event parallelism, the data set is divided into uniform sub-
sets (workloads) and distributed to the worker processors.
Consequently, the specification of the size of the individual
workload is an important issue. Because the parallel archi-
tecture used in this research is most efficiently applied to
problems when the work local to each processor is maxi-
mized and interprocessor communication is minimized (Cok,
1991), increasing the workload size should make effective
use of the available processors. To provide a simple demon-
stration of the importance of workload size, the cell classifi-
cation step was run on the same data set with 3 by 3 and 3
by 31 workload sizes. As shown in Table 5, the decrease of
communication overhead associated with the 3 by 31 work-
load yields a 28 percent performance improvement.

It should be noted, however, that the amount of work re-
quired for each workload depends not only on the size of the
data subset sent to it, but also on the relief of the area in
which the algorithm is applied. In low relief areas, for exam-
ple, transect classification will require extra processing (tran-
sect extension) to determine the shapes of transects. Conse-

TABLE 6. TIMING MEASUREMENTS OF THE PITFE ALGORITHM WHEN 1, 2, AND 3
WORKER PROCESSORS ARE USED ON THE EXAMPLE DATA SET. UNITS ARE LOW

PRIORIN TRANSPUTER CLOCK TICKS (1 TICK = 64 ps~c)

Number of
Processors Cell Classification Feature Topology

PE&RS February 1998

quently, by increasing the data subset size, the required work
could increase disproportionately in low relief areas. Thus,
the amount of processing required for a given workload is a
function not only of the data set size, but also of local relief.

10000-
$

8000
3 z
3 6000-
g .z
2 I- 4000-
k

4.2

g 2000-
a

Increasing the Number of Processors Used
Because of the improvements demonstrated earlier, the ef-
fects of increasing the number of processors are reported
only for the reduced form of PITFE. To evaluate the perform-
ance improvement of a parallel algorithm over an equivalent
sequential version of the same algorithm, two measures are
commonly used: speedup and efficiency. Speedup (S) is de-
fined as the ratio of sequential run time (T,,,) to parallel run
time (Tpar): i.e.,

9
\ .

\

Efficiency (E) is the ratio of the speedup (S) to the number of
processors (Nj running in parallel: i .e.,

2 o +
0 1 2 3

Number of Worker
4

Processors - Cell Classification
---o--. Feature Topology Construction

Figure 8. Execution times running the application with 1,
2, and 3 worker processors.

E = SIN.

The execution time of PITFE was measured when the ap-
plication was run with one (sequential version), two, and
three worker processors as shown in Table 6. It can be ob-
served that the run time is reduced from 9765 "ticks" when
one processor was used, to 3859 when three workers are ap-
plied to the cell classification step. Similar reductions are ob-
tained for the feature topology step. Figure 8 shows the graph
of the execution time of the cell classification and feature to-
pology construction tasks against the number of worker pro-
cessors used. It should be noted that, when the number of
worker processors is increased, execution time is (theoreti-
cally) expected to decrease linearly up to a certain point, but
will become asymptotically horizontal. This will occur be-
cause the increase in the communication overhead (caused
by the increase of the amount of interprocessor communica-
tion required) will balance against the performance improve-
ment which is anticipated when additional processors are
applied to the computation of results.

The efficiency and speedup of each configuration was
computed from the run times and are shown in Table 7. It is
apparent from these results that, by increasing the number of
worker processors, a considerable speedup of the algorithm
is achieved and that in each case the processors are being
used efficiently. Furthermore, for the feature topology con-
struction step, an almost linear performance improvement
can be observed, suggesting that this coarse-grained part of
PITFE is scalable to a larger collection of processors. On the
other hand, the performance improvement of cell classifica-

TABLE 7. MEASUREMENTS OF THE SPEEDUP A N 0 EFFICIENCY OF THE PARALLEL
VERSION OF THE PITFE ALGORITHM OVER ITS SEQUENTIAL COUNTERPART, USING 2

AND 3 WORKER PROCESSORS

Cell Classification Feature Topology
Construction

Number of
workers Speedup Efficiency Speedup Efficiency

2 1.84 0.92 1.57 0.79
3 2.53 0.84 2.25 0.75

References

Armstrong, M.P., and R. Marciano, 1994. inverse distance weighted
spatial interpolation using parallel supercomputers, Photogram-
metric Engineering & Remote Sensing, 60(9):1097-1103.

Band, L.E., 1989a. A terrain-based watershed information system,
Hydrological Processes, 3:151-162.

, 1989b. Spatial aggregation of complex terrain, Geographical
Analysis, 21(4):279-294.

tion exhibits less Linearity as the number of worker proces-
sors is increased. When the number of the processors in-
volved is increased, additional interprocessor communication
is required, and this overhead influences the timing results.

Summary and Conclusion
We have described several principles of parallel processing
that were applied to the implementation of a parallel induc-
tive terrain feature extraction algorithm. The P I P E algorithm
resolves contradictions and inconsistencies in DEM terrain
representations and derives feature networks even in low re-
lief areas. Following the work of Williams (1990) and Carri-
ero and Gelernter (1990), this application demonstrates how
the terrain feature extraction problem can be decomposed
into relatively independent tasks.

The importance of task size was demonstrated by run-
ning the cell classification task using 3- by 3- and 3- by 31-
cell workloads. As expected, given that the Transputer
architecture tends to perform best when allocated coarse-
grained tasks, the application that used the larger workload
size was 28 percent faster than the smaller. It should be
noted, however, that the amount of processing required for
performing cell classification with a given workload depends
on the relief of the area represented. Consequently, a work-
load size that optimizes the performance of cell classification
for a given data set, may be suboptimal not only for a differ-
ent data set, but also for the same data set if a different de-
composition strategy is used (e.g., dividing a data set into
horizontal strips versus vertical strips).

The results illustrate the performance benefits of the
parallel implementation over the traditional sequential ap-
proach. By using three worker processors running in parallel,
the execution of PITFX was speeded up by 2.53 times with re-
spect to an equivalent sequential version of the algorithm
(one worker processor). Future research, however, must be
conducted using a larger complement of processors to deter-
mine if there are practical limits to the scalability of PITFE.

This paper has illustrated how parallel processing prin-
ciples can be applied to a geographical problem that contains
considerable complexity in its data and process interdepen-
dencies. Based on these results, we expect that other geo-
graphical problems, which treat space in a similar way, can
also be implemented efficiently in parallel environments by
following the general approach described in this paper. The
processing power provided by parallel environments enables
researchers to develop more realistic process models, be-
cause they will be able to include more accurate and de-
tailed representations of physical systems and more complex
element interactions, while at the same time they retain their
ability to interact with, and explore, the nature of geographi-

Bennett, D.A., and M.P. Armstrong, 1989. An inductive bit-mapped
classification scheme for terrain feature extraction, Proceedings
GIS/LIS '89, Orlando, Florida.

, 1996. An inductive knowledge-based approach to topo-
graphic feature extraction, Cartography and Geographic Informa-
tion Systems, 23(1):3-19.

Carriero, N., and D. Gelernter, 1990. How to Write Parallel Programs:
A First Course, The MlT Press, Cambridge, Massachusetts.

Cok, R.S., 1991. Parallel Programs for the Transputer, Prentice Hall
Inc., Englewood Cliffs, New Jersey. -

Ding, Y., and P.J. Densham, 1994. A loosely synchronous, parallel al-
gorithm for hill shading digital elevation models, Cartography
and Geographic Information Systems, 21(1):5-14.

Flynn, M.J., and K.W. Rudd, 1996. Parallel architectures, ACM Com-
puting Surveys, 28(1):67-70.

Healy, R.G., and G.B. Desa, 1989. Transputer based parallel process-
ing for GIs analysis: Problems and potentialities, Proceedings of
the Ninth International Symposium on Computer-Assisted Car-
tography, AUTO-CART0 9, Bethesda, Maryland, American Con-
gress on Surveying and Mapping, pp. 90-99.

Jenson, S.K., 1985. Automated derivation of hydrologic basin charac-
teristics from digital elevation model data, Proceedings of Auto-
Carto 7, pp. 301-310.

Mark, D.M., 1983. Automated detection of drainage networks from
digital elevation models, Proceedings of Auto-Carto 6, Ottawa,
Canada, pp. 288-298.

Marks, D., J. Dozier, and J. Frew, 1984. Automated basin delineation
from digital elevation data, Geoprocessing, 2299-311.

Microway Inc., 1990. Quadputer Owner's Manual, Microway Inc,
Kingston, Massachusetts.

Morris, D.G., and R.G. Heerdegen, 1988. Automatically derived
catchment boundaries and channel networks and their hydrolog-
ical applications, Geomorphology, Volume 1, Elsevier Science
Publishers B.V., Amsterdam, pp. 131-141.

O'Callaghan, J.F., and D.M. Mark, 1984. The extraction of drainage
networks from digital elevation data, Computer Vision, Graph-
ics, and Image Processing, 28:323-344.

Peucker, T.K., and D.H. Douglas, 1975. Detection of surface-specific
points by local parallel processing of discrete terrain elevation
data, Computer Graphics and Image Processing, 4:375-387.

Polychronopoulos, C.D., 1988. Parallel Programming and Compilers,
Kluwer Academic, Boston.

Stone, H.S., and J. Cocke, 1991. Computer architectures in the 199Os,
IEEE Computer, 24:30-38.

3L Ltd, 1989. Parallel Pascal User Guide, 3L Ltd.
USGS, 1987. Digital Elevation Models- Data Users Guide, The United

States Department of Interior, U.S. Geological Survey, Reston,
Virginia.

Williams, S.A., 1990. Programming Models for Parallel Systems,
John Wiley & Sons, Chichester, England.

[Received 26 August 1996; accepted 25 January 1997; revised 09
April 1997) cal problems.

February 1998 PE&RS

