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Abstract 
An automatic approach to road centerline reconstruction 
from stereo image sequences acquired by  a mobile mapping 
system is  introduced. The road centerline reconstruction is  
treated as an inverse problem and solved b y  global optimiza- 
tion techniques. The centerlines are described by  a physical 
curve model, which is  composed of an abstract material and 
deforms according to external and internal forces applied. 
The external forces, generated from the centerline informa- 
tion extracted from the image sequences, controls the local 
characteristics of the model. The internal forces, arising from 
a priori knowledge of the road shape, contribute to the global 
shape of the model. Unique constraints that exist only in  
mobile mapping image sequences are utilized. The devel- 
oped system has been used for processing a large number of 
mobile mapping image sequences. Road centerlines of the 
images under different conditions have been reconstructed 
successfully. The research results also make a contribution 
to the general field of structure from motion and stereo. 

Introduction 
Transportation related applications such as road surface in- 
spection and maintenance, fleet management, and automatic 
vehicle navigation require high quality and up-to-date road 
network databases. Road centerline information is a funda- 
mental component of the databases. Based on the road cen- 
terlines, important indicators of road maintenance, such as 
dynamic segments, longitudinal profiles, and road surface 
deformation parameters, can be defined and managed. The 
acquisition of up-to-date road centerlines using conventional 
field surveying methods is a time consuming and costly task. 
Since 1992, a mobile mapping system, V I S A T ~ ~ ,  has been un- 
der development by The University of Calgary and GEOFIT 
Inc., Laval, Quebec for rapid highway spatial data collection 
(Schwarz et a]., 1993; Li et al., 1994). In this system, CCIJ 
(charge coupled device) cameras mounted on the top of a 
moving van collect stereoscopic image sequences of objects 
along the road. The image sequences are georeferenced using 
data from integrated GPS (Global Positioning System) and INS 
(inertial navigation system) sensors. That implies that orien- 
tation parameters of the images are available. The informa- 
tion about road centerlines is extracted from the image se- 
quences by a post-mission processing. Their in the 
scene domain can be calculated by photogrammetric triangu- 
lation. A challenging issue in this processing procedure is 
the automation of centerline extraction from the vast amount 
of the cautured imaee data. " 

Research on automatic extraction of road centerline in- 
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formation from imagery for autonomous vehicle navigation 
has been conducted by Dickmann and Zapp (1986), Thorpe 
et al. (1988), Dickinson and Davis (1990), and Schneiderman 
and Nashman (1994). The outcome of the research indicated 
that the automatic extraction of road centerline information 
using imagery alone seems to give a partial solution due to 
the limited information from images and the complexity of 
road conditions. Examples of situations where the automa- 
tion process can be affected include (I) centerlines with 
missing, intermittent, or faded markings; (2) variation of 
making types, especially those of lane makings, and distur- 
bance by other marking categories such as stop lines and di- 
rection arrows; (3) lighting conditions (for example, sun- 
shine, rain, cloudiness, or shadowing by trees, buildings, and 
other objects); (4) road surface materials such as concrete or 
asphalt and road conditions such as snow covered or wet; 
and (5) road shapes, for example, straight or curved road seg- 
ments, and intersections. Because of the perspective nature 
of the images, there are great scale variations within the im- 
ages. Furthermore, occlusions, for example, by moving vehi- 
cles might occur. Figure 1 illustrates three examples of 
images captured by the mobile mapping system. Methods for 
object identification from image sequences (Geiselmann and 
Hahn, 1994a; Geiselmann and Hahn, 1994b) are not specifi- 
cally dealt with. To simplify the description in the following 
sections without losing generality, road centers and lane sep- 
arating lines are all referred to as centerlines. 

He and Novak (1992) initiated automatic centerline in- 
formation extraction using mobile mapping data. In the pres- 
ent research, the reconstruction of 3D objects from mobile 
mapping data is treated as an ill-posed vision problem (Jo- 
lion, 1994) and solved by adding constraints derived from 
integrated sensors of the mobile mapping system such as 
GPS, INS, and ccD cameras. These constraints are unique, and 
prove to be efficient for road information extraction and re- 
construction. 

This paper introduces an integrated approach to auto- 
matic road centerline reconstruction from mobile mapping 
image sequences. An approximate 3D road centerline profile 
model is set at the beginning (Figure 2). Because the naviga- 
tion data provide the transformation between the approximate 
model and the stereoscopic image sequences, approximate 2D 
centerlines in the images can be predicted. Differences be- 
tween the approximate centerlines and detected centerlines 
in the image sequences are used to update and refine the 
model in the scene domain. This procedure is described by 
an inverse problem and solved using global dynamic energy 

Photogrammetric Engineering & Remote Sensing, 
Vol. 64, NO. 7 ,  July 1998, pp. 709-716. 

0099-1112/98/6407-709$3.00/0 
O 1998 American Society for Photogrammetry 

and Remote Sensing 

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING l u l y  1998  709 



Figure 1. Examples of road centerlines from the image sequences: (a) pedestrian crossing creating a large 
gap along a lane separating line, (b) shadow of a building changing image contrast and a car blocking a por- 
tion of the line, and (c) curved lines at a T-intersection. 

minimization. A detailed diagram of this approach is illus- 
trated in Figure 3. 

First, a 3D approximate road centerline model with one 
line on each side of the vehicle is calculated by means of a 
B-spline function using the vehicle trajectory derived from 
kinematic GPSIINS data. This approximate model assumes 
that the vehicle is usually driven close to the middle of a 
lane that has a constant known lane width. Second, this 3D 
model is projected back onto the stereoscopic image se- 
quences through known orientation parameters of the cam- 
eras. The specific line on one side of the vehicle to be 
extracted is identified by a mouse-click on the image screen. 
In the image domain, a geometric and photometric model of 
the road centerlines is established. This image domain model 
is used to guide the extraction of road centerline feature 
points in the images, considering the projected road center- 
lines. Third, a stereo matching algorithm determines a set of 
stereo pairs of matched centerline feature points considering 
stereo and image sequence constraints. After a photogram- 
metric triangulation, the matched feature points are trans- 
formed to 3D feature points of the road centerlines in the 
scene domain. Next, the centerline model is defined as an 
active deformable 3D curve ( 3 ~  snake) with a physical defor- 

Stereospcopic image sequences 
n 

Refined road center- 
line profile model 

Figure 2. Concept of the approach to road centerline 
reconstruction. 

mation model. This model deforms progressively, driven by 
internal and external energies. The internal energy arises 
from constraints representing natural characteristics of the 
centerline shape, such as smoothness. It enforces the esti- 
mated centerline to maintain the shape defined by a priori 
knowledge about the centerline shape. The matched 3D fea- 
ture points act as the external energy and lead the model to 
deform towards their positions. The interaction between the 
internal and external forces balances the model, which is de- 
formed incrementally towards the final state. An iterative 
procedure is needed to update the approximate model by us- 
ing successive image pairs. Finally, after the iterations are 
complete, the deformation curve is treated as an optimal 3D 
road centerline model. 

The following sections describe the details of the ap- 
proach, including generation of the approximate 3D center- 
line model, extraction of centerline information from image 
sequences, and dynamic refinement of the 3D physical cen- 
terline model. Results of implementation and evaluation of 
the approach are also presented. 

Generation of an Approximate Road Centerline Model 
Generation of an approximate 3D centerline is a key step to 
start the overall procedure. The 3D vehicle trajectory is deter- 
mined by GPSIINS components (Schwarz et a]., 1993) and is 
used to derive the approximate model. A 3D cubic B-spline 
function defines the shape of a centerline as a vector state of 
points along the curve: i.e., 

where B, is the ith basis function of the B-spline, 
V,=(X,,Y,,Z,) are the coordinates of the ith control vertex of 
the curve, n is the number of sampling points along the 
curve, and m is the number of control vertices. The B-spline 
is chosen to represent the centerline model based on its fol- 
lowing charac&ristics: 

Compactness: the curve can be parameterized very compactly 
by its control vertices V,; 
Locality: only the corresponding portions of the curve need 
to be modified if certain control vertices are changed; 
Flexibility: corners and straight line segments of the curve 
can be imposed if appropriate control vertices are used; and 
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Figure 3. A schematic flow chart of the reconstruction approach. 

Invariance: the control vertices are invariant to affine and 
projective transformations (Cohen et al., 1995). 

Furthermore, the B-spline representation can be extended to 
a deformation curve model (B-snake), which is a key compo- 
nent of this research. Using vehicle trajectory data, the ap- 
proximate centerline model is ,generate'd using a least-sq;ares 
adiustment. The detailed mathematical descri~tion of B- 
spiine approximation based on discrete data c'an be found in 
Bartels et al. (1987). 

Extraction of Road Centerlines from Image Sequences 
Highly accurate methods (El-Sheimy and Schwarz, 1993) 
have been developed to calibrate the mobile mapping system 
and to calculate parameters of geometric transformations be- 
tween the vehicle coordinate system and various sensor sys- 
tems, such as GPS, INS, and cameras. As a result, the image 
sequences are georeferenced in a global coordinate system. 
This makes the transformation from image-to-scene and 
scene-to-image possible. 

A two-stage process is applied to extract road centerline 
information from the image sequences: extraction of feature 
points of the road centerlines and matching of the extracted 
feature points along the image sequences. 

ModeCDriven Feature Extraction 
The approximate positions of the road centerlines on the im- 
ages can be predicted by backward projection (scene-to-im- 
age transformation) of the approximate road model in the 
scene domain derived from the dynamic GPS observations. 
The feature extraction is performed within a constrained 
search window in the scene domain in order to reduce the 
searching range along the road. This searching is determined 
considering the vanishing line condition (Figure 4) and the 
lane width in the scene domain (Tao et al., 1996). Features 
of the road centerline model are represented by two edges in 
the imagery. Taking the characteristics of terrestrial images 
and the system configuration into consideration, a set of 
rules are established to extract reliable features in the imple- 
mentation (Table 1). 

In mobile mapping images, the major index of centerline 

edges is edge-gradient orientation rather than gradient arnpli- 
tude. The amplitude does not provide sufficient information 
for classifying an edge to be a centerline edge, because the 
edge may be affected by factors such as severe noise, shad- 
ows, road surface materials, and marking quality. However, 
the gradient of a centerline edge is almost perpendicular to 
the predicted centerline (Figure 4), and independent of its 
amplitude. Furthermore, as illustrated in Figure 5, if an edge 
is oriented at 4s0, a non-oriented edge detector may find a 
gradual slope in the edge profile. On the other hand, an ori- 
ented edge detector defines a sharp edge and locates the edge 
more efficiently. Because the window size of edge detectors 
is limited, for example, 3 pixels by 3 pixels, actual gradients 
calculated by non-oriented and oriented edge detectors are 
also different. The latter usually supplies higher quality gra- 
dients. 

Calculation of gradients of large image sequences is a 
very time consuming process. A great deal of time can be 
saved if this operation can be restricted to a set of specific 
image points. The oriented edge-detection algorithm is im- 
plemented with three steps. First, to avoid the gradient cal- 
culation at all image points, four directional Prewitt masks 
(Pratt, 1991) defining directions of north-south, northeast- 
southwest, east-west, and southeast-northwest are used to 

Figure 4. Predicted and actual road 
centerlines in the image domain. 
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TABLE 1. A SET OF RULES FOR CENTERLINE FEATURE EXTRACTION 

Rule # Rule Name Rule Description 

Rule 1 Amplitude The amplitude of the edge should surpass a 
certain threshold. 

Rule 2 Direction1 The direction of the edge should be parallel 
to the predicted centerline with a tolerance 
+ 20". 

Rule 3 Direction2 The gradient directions of the two edges of 
a centerline must be opposite to each other 
with a tolerance of + 15'. 

Rule 4 Distance The distance between the two edges of a 
centerline should be within a few pixels (2-5 
pixels). 

Rule 5 Gray value The average gray value within the centerline 
area must surpass a threshold and be 
brighter than its immediate lateral neighbor- 
ing areas. 

Rule 6 Continuity Distances (defined in Rule 4) for adjacent 
segments should not be significantly differ- 
ent and the difference should be within a 
threshold. 

Rule 7 Smoothness The centerline should be a relatively smooth 
line. 

convolute the images. At each point, responses of the four 
Prewitt masks are compared. The direction code whose cor- 
responding response is maximum at the point is assigned to 
the point. According to Rule 1 in Table 1, image points with 
high gradient amplitudes are considered and a further edge 
thinning process (Nevatia and Babu, 1980) is applied. For 
this reduced set of edge points, the Sobel gradient operator 
that is oriented according to the direction codes is executed. 
Examining the calculated edge gradients, Rule 2 can be im- 
plemented. The number of remaining edges is thus greatly 
reduced. 

Road centerlines are usually painted in white or yellow 
and are of a certain width. They appear as dual edges with 
one edge on each side of the line in the images. Conse- 
quently, a dual edge-detection algorithm is designed to refine 
the result of the candidate edges. Suppose that an edge is on 
one side of the actual centerline. A corresponding edge on 
the other side should exist. The gradient directions of the 
edges are opposite (Rule 3). The distance between them must 
satisfy Rule 4. In addition, the average gray value between 
them should surpass a threshold and be brighter than its im- 
mediate lateral neighboring areas (Rule 5). This process 
greatly eliminates undesired edges and results in detected 
dual edges as short line segments. 

Rule 6 and 7 are implemented using a so-called majority 
voting method. An advantage of this method is that a distri- 
bution of majority dual edges along a smooth line can be de- 
termined. Meanwhile, blunders that are edges not on the line 
can be eliminated. Similar to a histogram, a parameter space 
is defined (Figure 6b), with the horizontal axis as the dis- 
tance between the centroid of a dual edge and the predicted 
centerline, and the ordinate axis as the number of dual edges 
with the corresponding distance. Because the dual edges are 
preprocessed using Rules 1 to 5, those of the centerline rep- 
resent the majority of all candidate edges. They should form 
a peak at point Do, which is the average distance between the 
predicted and actual centerlines. Edges outside of the tolera- 
ble range of Do + 1.5 pixels are treated as blunders and 
eliminated. 

Stereo-Matching Using Sequential Images 
The potential centerline features extracted exist in individual 
images. They should be matched between stereoscopic image 
sequences to produce 3D feature points in the scene domain. 

Non-oriented detector Oriented detector 

Images 

,ss 1 ,  1 1 ,  
Figure 5. Oriented and non-oriented 
edge detectors. 

The matching algorithm takes full advantages of the geomet- 
ric strength of the mobile mapping data. 

A key task in the matching process is to find corre- 
sponding centerline edges within a searching range. The reli- 
ability and efficiency of the algorithm greatly depend on the 
range defined. This range should be as small as possible, yet 
produce reliable results, implying that the corresponding 
edge must be inside this range. As illustrated in Figure 7a, a 
centerline point (marked as a cross) on image A is projected 
onto image B as the approximate location of its correspond- 
ing point. This is realized under two conditions: (1) exterior- 
orientation parameters are known (derived from GPS and INS 
data), and (2) the road surface is assumed to be a plane 
whose parameters are estimated from both the known camera 
height with respect to the ground and the vehicle frame ori- 
entation (Tao et al., 1996). Along with the epipolar line (dot- 
ted lines in Figure 7a) constraint, the one-dimensional 
searching range on image B can be restricted to a relatively 
small area. 

Although the searching range is reduced, mismatches or 
matching failures may sometimes occur because of the large 
difference between centerline orientations in the two image 
windows caused by camera-object geometry (Figure 7a). To 
overcome this difficulty, the two image windows are pro- 
jected onto a plane that is parallel to the assumed ground 
plane by a plane-to-plane transformation (Figure 7b). Image 
features on the road surface after the transformation are 

Predicted centerline 
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(number of edges 1 
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,..i I 

..,.: ....................... ! ................. ....... 
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Figure 6. Majority voting method for identi- 
fication of centerline edges. 
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Figure 7. Ground-plane based distortion correc- 
tion and matching. 

much better suited for comparison. The matching process is 
performed using these transformed windows. 

A centerline segment in the scene domain has usually 
several appearances in the image sequences, for example, im- 
ages A,, and B,, taken at time epoch T,, and A,,,, and B,,,,, 
taken at time epoch T,,, (Figure 8). Three pairs of epipolar 
lines (dotted lines) can be calculated between the master im- 
age A,, and searching images B,,, A,,,,, and B,,,,. For a cen- 
terline point Po on the master image A,,, the SSD (sum of 
squared difference) algorithm (Kanade et al., 1992), because 
of its simple structure and high performance, is applied to 
find corresponding points (marked with *) in the other three 
images, using the restricted searching ranges and transformed 
windows. The boxes along the epipolar lines in Figure 8 de- 
pict the searching ranges. To check the consistency of the 
multi-image matching result in image B,,,,, the corresponding 
points for the matched point P, of image A,,,, and P1 of im- 
age B,, are found by the same matching algorithm and 
marked with A and x, respectively. Ideally, all three corre- 
sponding points marked with *, A, and x should be at the 
same point. In practice, if any two of them are close and the 
distance between them is smaller than 1.5 pixels, the corre- 
sponding image pair is chosen and the feature points are 
used to calculate the centerline points in the scene domain 
by a photogrammetric intersection. In the example of Figure 
8, Po and P, may be considered as a matched point pair be- 
cause in image B,,,, the distance between points A and . is 
less than 1.5 pixels and it is the shortest one among all dis- 
tance combinations of the three points. However, depending 
on the position of the point in the scene domain with re- 
spect to the baseline (A,, and A,,,,), an effective baseline that 
is much smaller in this case can also be used to reject this 
point pair because the short effective baseline may cause low 
3D accuracies. Po and PI are checked using the same criteria 
and may be accepted. If no matched point pair is found, Po 
will be rejected. It should be noted that any image of the se- 
quence with a feature point could be selected as a master im- 
age. 

Refinement of 3D Road Centerlines by a Dynamic Physical 
Model 
The points obtained by the aforementioned matching algo- 
rithm and photogrammetric intersections are 3D discrete 
points along the road centerline in the scene domain. A 3D 
model whose parameters are determined by the matched 
points then describes the centerline. The quality of these 
points can also be checked and improved by an iterative 
refinement procedure. 

Deformation models have been researched and applied 
in edge detection, stereo matching, and object modeling 

(Kass et al., 1988; Terzopoulos et a]., 1988; Fua, 1991; Pent- 
land and Sclaroff, 1991; Trinder and Li, 1995; Gruen and Li, 
1996). The main advantage of deformation models is that 
both geometric and physical constraints can be incorporated. 
In comparison, conventional models consider only geometric 
constraints. In this research, a 3D physical deformable curve 
model is employed to combine multiple information sources 
for reconstruction of the 3D road centerlines. 

Physical Deformation Mechanism 
The 3D parametric curve model described by the B-spline 
Q(u) in Equation 1 can be treated as a deformable and elastic 
model, or a 3D B-snake (Menet et al., 1990). Physically, it is 
assumed to be composed of an abstract material. The model 
evolves from its initial shape towards the desired one driven 
by external forces applied and internal forces generated. In 
accordance with the least-action principle, also called Hamil- 
ton's principle (Courant and Hilbert, 1953), the dynamics of 
the deformation model are described by 

E = el Ei,,(Q(u)) + e, E,,,(Q(u)) 4 minimum 

where E,,, represents the external energy applied on the 
model, and E,,, is the internal energy that resists the defor- 
mation kom its natural state, el and e, are constants for 
weighting the contributions of the two energy terms. The 
minimization of the total energy E of the motion equation 
governs the behavior of the deformation model. 

E,,, is further described as the smoothness energy con- 
sisting of two terms: 

1 1 

El., = a ($ O I Qlul I '  du) + 8 ($ O I Q1(u) I du). (3) 

The first derivative Q(u) is a measure of the distance 
discontinuities (stretching effectiveness), while the second 
derivative Q"(u) is a measure of the orientation discontinui- 
ties (bending effectiveness). Adjusting the weights a and 
controls the relative balance of the stretching and bending 
forces. E,,, is responsible for maintaining the local continuity 
and connectivity of the curve model. It also ensures that the 
curve will not be torn apart, fold onto itself, or exhibit a high 
curvature. In general, the internal energy controls the global 
shape of the model. 

The external energy drives the model into the desired 
shape (Figure 9). The extracted 3D feature points P, act as ex- 
ternal forces and enforce the model Q(u) to deform accord- 
ingly. In order to quantify the forces, a gravity-type field is 

Image &I+, 

Ti+ 1 

. , line 

...._._ 4:. - . . . . . . . . . .mx. .. range 
Ti ....p;i 

PI 

Image ATI Image BT~ 

Figure 8. Stereo matching using image se- 
quences. 
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Figure 9. Deformation behavior of the 
model driven by the external energy. 

used. Thus, the closer a feature point to the curve, the 
greater the force. The external energy is defined as 

xz/2, D p < r ,  
x ,  r 1 D p r  and 

DP > rz (4) 
x = Dplr,, 

where D is the distance between the curve Q(u) and point 
P,. r, an$ r, define the influence ranges of the feature points. 
They are chosen as r, = 0.1 (metre) and r,lr, = 4. Within the 
range of (0, r,], the feature point is close to the curve and the 
function f (x) acts like a spring. Points outside this range, 
D >r,, do not have any influence on the model deformation. 
~ R i s  characteristic practically eliminates or minimizes the ef- 
fect of blunders because they are usually distant from the 
curve. In addition, the function prevents itself from being 
singular for points exactly along or very close to the curve. 
The corresponding external force can be derived from the 
external energy: 

Considering the temporal effect of the external force dur- 
ing the period of [Ti+,, TI+,], the total force F,,, becomes 

where a,, w,, and w, are weights. 

Solution for Energy Minimization 
Observing Equations 1, 3, and 5, the discrete version of the 
motion function in Equation 2 can be written as 

The total energy E is a function of the set of control ver- 
tices that influence the shape of the curve model. The mini- 
mization of the energy results in the final state of the control 
vertices. 

The minimization of E in Equation 7 requires that 

The resultant equations can be derived and solved by using a 
Lagrangian dynamic motion equation. Implementation details 
of the minimization algorithm can be found in (Tao, 1996). 

Results and Evaluation 
Computational Considerations 
A number of parameters must be set before the whole proce- 
dure can be started. A trade-off between the internal energy 
and external energy should be made in order to balance the 
global and local characteristics of the deformation model. 
Considering the configuration of the mobile mapping system 
used and the images acquired in this research, el = 0.3 and e, 
= 0.7 (= 1 - el) are applied in Equation 2. The smoothness 
coefficients in Equation 3 are empirically determined as a = 
0.7 and P = 0.5 to maintain the road shape. The weights in 
Equation 6 are chosen as w, = 0.5, o, = 1.0, and w, = 0.8. 

Two major high computational demands are (1) feature 
point extraction and subsequent matching and (2) inversion 
of matrices involved in the minimization process. The con- 
strained feature extraction method and the restricted search- 
ing window in the matching process greatly reduce the 
computational load. The inversion problem was solved by 
introducing a decomposition of the entire model into de- 
formable model segments. The detailed description of the 
implementation of the algorithm can be found in Tao (1996). 

Figure 10. Road centerlines extracted in various situa- 
tions described in Figure 1. 
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Figure 11. Extracted road centerlines overlaid on a digital map. 

The software system based on this approach has been de- 
veloped within an automatic mobile mapping data processing 
package called ImagExpert. The package is developed in a 
UNIX workstation environment. A high level object-oriented X- 
Window development toolkit, WNDX, was used to design the 
graphic user interface (GUI). The package has also an interface 
with AU~OCAD for displaying processed and existing vector in- 
formation. This built-in interface in the package creates an ef- 
ficient environment for both automatic and interactive 
operations in image and scene domains (Li et al., 1994). 

Evaluation of the Test Results 
The introduced approach has been tested using image se- 
quences from two data sets. Data Set I and I1 were acquired 
in Laval and Quebec City, Quebec, respectively. The vehicle 
speed was 50 to 60 km per hour and the imaging rate was 
set as 0.4 second per image. Each data set contains several 
image sequence; covering different areas of a city. At each 
exposure station, a pair of forward-looking stereo images and 
a right-looking image were taken. Data Set I was collected af- 
ter 4:00 PM in winter and the lighting condition was rela- 
tively poor. The images covering streets in city of Laval have 
low brightness and low contrast. This causes some loss of 
image details. For examining the robustness of the approach, 
the data set was used without image preprocessing. Data Set 
I1 was taken mainly along highways of Quebec City during 
daytime. It has better image quality. 

Before starting the automatic procedure of centerline ex- 
traction, it is required that the operator give two initial im- 
age points indicating the direction and approximate location 
of the centerline to be extracted. The rest of the procedure is 
fully automatic and can be executed in a batch mode. The 
resulting centerline segments in the scene domain can be 
back-projected onto the images, allowing one to monitor the 

processing progress and quality. It also allows the operator to 
interrupt the process and perform on-line corrections. Among 
the image sequences processed, the longest one is a highway 
image sequence of Data Set I1 in Quebec city, which contains 
1665 images. Various difficult situations were dealt with by 
the approach. Figure 10 illustrates some examples of the cen- 
terlines successfully extracted (represented by black lines). 
The pedestrian crossing lines create a large gap along the 
lane separating line (Figure 10a). Furthermore, the shadow of 
a building changes the image contrast along the line and a 
moving car blocks a portion of the line (Figure lob). The 
curved centerline at a T-intersection was extracted (Figure 
1 0 ~ ) .  Figure 11 shows the overlay of the extracted and recon- 
structed centerlines on a digital map (1:1,000 map scale) of 
Laval. The coordinates of the centerlines in the WGS-84 refer- 
ence system that was used for DGPS calculation were con- 
verted to those in the UTM system used by the digital map 
before performing the overlay. Note that the centerlines fit 
the map well. 

The evaluation of the testing results is carried out in two 
steps. First, the extracted centerlines in the scene domain are 
back-projected onto images to check if the projections match 
the corresponding image edges. This provides a measure of 
the relative accuracy. Second, the absolute accuracy is 
checked by overlaying the extracted centerlines on the exist- 
ing digital road maps in the map display environment of 
Overview (Li et al., 1994). The implemented system was ca- 
pable of dealing with scenes with various marking patterns, 
road classes, and difficult road conditions. It found blunders 
occurring in places where the vehicle approached big gaps or 
sharp turns. It was able to filter them out after new center- 
line segments beyond the places were extracted. A tolerance 
of 5 pixels was set, which matches the corresponding camera 
orientation errors. No differences between the back-projected 
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centerlines and the  corresponding image edges exceeded the  
tolerance. A comparison wi th  selected control points indi-  
cated that the  positional accuracy of t h e  centerlines could 
reach 30 cm. 

Concluding Remarks 
A n  integrated approach to automatic reconstruction of road 
centerlines from mobile mapping image sequences is intro- 
duced. The  reconstruction problem is  treated as  an inverse 
problem and solved b y  global optimization techniques. This  
approach utilizes unique constraints that  exist only i n  mo- 
bile mapping image sequences. The  research results also 
make  a contribution to the  general field of structure from 
motion and stereo. Based on this research, t h e  following con- 
clusions can  b e  drawn:  

The introduced approach uses a closely coupled bottom-up 
and top-down centerline reconstruction scheme. The recon- 
struction process is designed based on a 3~ shape model and 
image sequences. This leads to a robust result because both 
local and global shapes are controlled by the adjustment of 
the combined internal energy (model) and external energy 
(images). 
The synthesis of multiple constraints was implemented by 
the least-action principle. One of its advantages is that the 
constraints from both the model assumptions and the image 
sequences can be incorporated into a mathematical model. 
The model with the combined constraints can be solved by 
using a Lagrangian motion equation. 
The information derived from multiple sensors, such as GPS 
and INS, provides not only the camera orientation parameters, 
but also other significant information and constraints, such as 
the approximate 3D centerline model and the road surface 
plane. 
The centerline image edges are modeled by a set of rules. 
Guided by the rules, a hierarchical edge-detection algorithm, 
including oriented edge detection, dual-edge detection, and 
edge filtering, is developed. The majority voting method ef- 
fectively determines image centerline edges by using informa- 
tion from the scene domain. 
A robust matching method is achieved by integration of con- 
straints derived from the navigation data and image se- 
quences, such as the multiple epipolar line constraint, 
ground plane constraint, and temporal image sequence con- 
straint. 
Both geometric characteristics and numeric advantages of the 
B-Soline based 3D snake remesentation are utilized for im- 
proving the system efficiency. It is particularly significant in  
reduction of unknown numbers in the piece-wise solution of 
the minimization problem. 
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