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Abstract 
A new sub-pixel target detection algorithm is  developed that 
integrates a linear mixing model (LMM) with the p o w e f i l  
"RX" anomaly detector of Reed and Y u  (1990). RX i s  applied 
to mixing model errors instead of to measured radiances, be- 
cause they are more nearly multivariate Gaussian. The inte- 
grated method consistently outperforms spectral anomaly 
detectors that are based on either RX or an LMM alone. A 
novel method of image-based endmember selection is  also 
presented, and a simple method of computing the fully con- 
strained LMM residuals is described. 

Introduction 
It has long been recognized that use of multispectral imagery 
can enhance the detectability of targets that are poorly re- 
solved spatially (Margalit et al., 1985; Hoff et al., 1992; 
Schmalz and Ritter, 1994). Reed and Yu have shown that use 
of multiple spectral bands can dramatically improve detection 
for targets with known spatial shape and either known (Yu et 
al., 1993) or unknown (Reed and Yu, 1990) spectral character- 
istics. In these papers the spatial distribution of targets played 
an incidental role, and backgrounds were assumed to be spa- 
tially uncorrelated. Furthermore, performance modeling as- 
sumed a multivarate Gaussian description of background 
spectral channels. In this paper, we examine the consequences 
for point-target detection of describing the background with 
simple phenomenology, in the form of a linear mixing model 
(LMM) (Gillespie et al., 1990). The errors in this description 
are modeled as Gaussian distributed noise, suitable for appli- 
cation of the anomaly detector of Reed and Yu (the RX algo- 
rithm). 

The linear mixing model has frequently been used in 
conjunction with multispectral remote sensing devices in the 
automated analysis of scene composition (Gillespie et al., 
1990). The approach taken here, however, is to make use of 
an LMM to model and remove background clutter without re- 
gard to its specific composition. We then use the RX algo- 
rithm, which in the case of sub-pixel targets reduces to spectral 
decorrelation filtering followed by energy detection, to detect 
targets in the resultant residual images. Because we are not 
overly concerned with obtaining realistic estimates of abun- 
dances of particular endmembers, we are able to use the 
computationally simple inscribed simplex LMM, as described 
by Craig (1990), with a novel and fully automated technique 
for endmember selection that makes use of a training se- 
quence of typical background data. 

Clutter reduction techniques using the LMM commonly 
take two forms: continuum analysis, in which the target 
spectrum is known and is included as an endmember in the 
LMM, and residual analysis, in which only the background is 
modeled, and pixels which are not well modeled are consid- 
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ered to be potential targets (Sabol et al., 1992). Our algorithm 
makes use of the second (residual) analysis, as described in 
Schaum and Stocker (1994, Schaum and Stocker (1995), and 
Michalowicz and Schaum (1994). This type of analysis is 
more robust than continuum analysis, in that it assumes that 
the target spectrum can be mimicked by mixtures of the 
background elements in all but a few bands. Its essence is 
that the spectral vector at each pixel is replaced by the resid- 
ual vector from the "best" modeled pixel estimate to the ac- 
tual pixel. Note that the best estimate may take on different 
meanings, depending upon the strictness of the constraints 
that are placed upon the model. This topic will be addressed 
in detail in the following section. The residual vector is 
small in magnitude for well modeled pixels (background) 
and large for poorly modeled pixels (targets). Therefore, tar- 
get detection can be achieved by simple thresholding of the 
vector magnitudes. However, we have found that, with cer- 
tain statistical assumptions and careful consideration of the 
dimensionality of the residual vector space, it is possible in 
many cases to use the RX algorithm to increase target detect- 
ability in the residuals. 

The endmember selection technique described in this 
paper was tested on both simulated data with known end- 
members, and actual multispectral data for which endmem- 
bers have been manually selected by independent expert 
observers. The target detection algorithms were tested on in- 
frared multispectral background images into which targets 
were artificially (but realistically) implanted, and on visible 
spectrum image cubes containing rural backgrounds that 
were processed similarly. Implanted target spectra were 
taken from actual spectral measurements of military vehicles. 
As a final validation, the algorithms were also tested on IR 
imagery, taken under realistic conditions, of regions contain- 
ing actual military vehicles. The combined algorithm ap- 
proach was tested against both RX and residual analysis 
alone, and proved in each case to provide significant im- 
provement in target detectability over either algorithm. 

Modeling 

Linear Mixing 
The core assumption of the linear mixing model is that a 
scene consists of a small (fewer than the number of spectral 
bands) number of distinct elements or endmembers, i.e., veg- 
etation, sand, water, soil, etc. Each pixel in the scene must 
contain some combination of these endmembers, for exam- 
ple, 60 percent soil and 40 percent vegetation. The measured 
spectrum at that pixel should then be given by a weighted 

Photogrammetric Engineering & Remote Sensing, 
Vol. 64, No. 7, July 1998, pp. 723-731. 

0099-1112/98/6407-723$3.00/0 
0 1998 American Society for Photogrammetry 

and Remote Sensing 

J u l y  1998  723 



sum of the endmember spectra. Mathematically, if y, is the 
measured spectrum at a given pixel location i, N is the num- 
ber of endmembers present in the scene, and the vector set 
en gives the spectra of the endmembers, the best estimate x, 
of pixel y, is given by 

where w,,, is the relative fraction of endmember n at pixel 
location i. 

Two useful pieces of information come out of this equa- 
tion: the weighting fractions w,,, , which have frequently been 
used to determine the relative proportions of different ele- 
ments in a scene, as in (Gillespie et al., 19901, and the resid- 
ual vector which can be obtained by subtracting the modeled 
estimate from the observed spectral data. The weighting frac- 
tions can be used for target detection using the continuum 
analysis technique (Sabol et al., 1992), which assumes that 
the target is one of the endmembers and can be detected by 
thresholding the appropriate fraction plane. However, more 
interesting in our case is the residual vector r, which is given 
by 

If, as we hope, the LMM has accurately modeled the 
background, but is not an accurate model for the target, the 
vector magnitude of r at a target pixel should be larger than 
the expected background magnitude. Additionally, the direc- 
tion of r in vector space may be different for target and back- 
ground. It is this difference that we hope to exploit using the 
RX algorithm. 

It should be noted at this point that the LMM is applica- 
ble only to cases of macroscopic mixing - those in which 
surface components are large and opaque enough to allow 
photons to interact with only one component (Adams et al., 
1986). Intimate mixing requires nonlinear modeling, which 
renders the equations given previously invalid. 

Calculation of Weighting Fractions 
Given a set of endmembers, the only information required to 
calculate x, is the set of weighting fractions w,,;. The problem 
of estimating these fractions given raw data and an endmem- 
ber set has a unique, closed-form solution which can be cal- 
culated by inverting Equation 1 using a least-squares regres- 
sion, while subjecting w,,, to the constraint, 

More precisely, if s is a matrix whose columns are the N 
endmember vectors en, yi is a column vector whose values 
give the measured spectrum of the pixel at location i, and s# 
is the pseudoinverse of s, given by 

then the weighting fraction w,,; is given by 

The inverse in Equation 4 and, consequently, the pseu- 
doinverse, exists if and only if en form a linearly indepen- 
dent set, a condition that we always assume to hold. The 
first term in Equation 5 represents a projection of y, into the 
subspace spanned by en. The second term further restricts 
the solution to the affine subspace consistent with Equation 

3. Once w, is calculated through Equation 5, Equations 1 and 
2 can be used to calculate the residual vector r,. 

It is useful to consider the geometric implications of 
Equation 3. Because the LMM supposes that the spectrum of 
each pixel in a scene results from a summation of several 
pure endmember spectra, the pixel spectra must lie within a 
simplex in spectral space whose vertices are the endmember 
spectra. For example, three endmembers define a triangular 
simplex. A physically possible combination of the vertex 
spectra subject to Equation 3 must lie within that triangle. 
However, these equations are not sufficient to guarantee a 
physically possible solution. Equation 5 permits negative 
fractional weightings. In spectral space this corresponds to 
points that are outside the simplex defined by the endmem- 
bers, but are within their dimensional space, i.e., outside the 
triangle, but within the plane that the three endmembers de- 
fine. For the remainder of this paper this residual, which 
provides the vector from the endmember space to the pixel 
vector and therefore does not fully implement the endmem- 
ber model, will be referred to as the first residual. 

In order to fully implement the model, it is necessary to 
impose a second constraint on the weighting fractions: i.e., 

0 < w,,; < I, for alln, i .  (6) 

Unfortunately, under this constraint the problem no 
longer has a closed form solution, and must be solved by a 
directed search of the solution space. This can be accom- 
plished by first solving Equation 5 for all n, i. If all n frac- 
tions in the vector w, are positive, then the projection of 
pixel y, into the space defined by the endmembers does fall 
within the simplex. If there are negative fractions, then the 
true projection to the surface of the simplex must lie along 
an edge or at a vertex (assuming our simple three endmem- 
ber model), i.e., one or more of the endmembers should have 
a weighting fraction of w,,, = 0. This situation is illustrated 
for the two-band case in Figure 1. 

The correct estimate x, will be obtained if Equation 5 is 
re-calculated using a new endmember set which does not 
contain the endmembers which should have w,,, = 0. The 
difficulty in this case lies in determining how many and 

Band 1 ...,,L 
Y2 

apace defined by 
endmembers 

1 
Band 2 

Figure 1. A two-band case with two endmembers E M 1  
and EM2, and two data pixels y l  and y2. Points xla 
and x2 give the estimates of y l  and y2 as calculated 
by Equation 5. x2 lies within the simplex. xla does 
not. A realistic projection, given by xlb, will only be 
obtained by giving Equation 5 a new endmember 
model which does not contain EM2. 
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Figure 2. A scatterplot of three-band data in which each 
pixel is a linear combination of three endmembers. Equa- 
tion 5 will calculate negative weighting fractions for both 
EM 1 and EM 2 for any pixel in the cross-hatched region, 
including p. However, the correct projection of p to the 
simplex, given by p', should contain EM 1. A negative 
weighting fraction is not a reliable indicator that an end- 
member should be eliminated. Exhaustive search meth- 
ods are therefore necessary. 

which endmembers should be null. A simple example, given 
in Figure 2, shows that it is not necessarily true that the frac- 
tions which are negative in the initial calculation of w, are 
the ones that should be zero. One way to ensure optimality 
is to conduct an exhaustive search of all possible N1 = N - 
1 endmembers. If this yields no solutions, then a search 
must be made of all possible N, = N - 2 endmbembers, and 
so on until NN-, = 1, at which point, of course, all fractional 
weightings will be 1. If more than one viable solution is 
found at a given value of N, then the solution for which r, 
has the lowest vector magnitude is the correct one. This pro- 
cess is computationally expensive, but can be carried out in 
a reasonable amount of time if the number of endmembers is 
relatively small. The resulting residual, which provides the 
vector from the nearest point on the surface of the simplex to 
the pixel vector, will be referred to in this paper as the total 
residual. 

Each of the previously described residuals has both ad- 
vantages and drawbacks. If true endmembers are known, the 
total residual will provide optimal detection. However, be- 
cause we make use of the inscribed simplex (a simplex 
whose endmembers are taken directly from available data), 
we are unlikely to find pure endmembers. Still, the total re- 
sidual will prove superior for cases in which the target is 
similar in spectral shape to the background. The first resid- 
ual requires much less time to compute. Also, it frequently 
provides superior detection when the target is spectrally dis- 
tinct from the background. Another very large advantage to 
the first residual is that, for reasons which will be elaborated 
in a following section, the total residual is not statistically 
amenable to the RX algorithm. Primarily for this reasan, the 
first residual is our preferred method. 

Endmember Selection 
The key to our automated endmember-selection algorithm is 
an understanding of the geometrical implications of the 
model. That is, the knowledge that an endmember model 
must result in a data distribution in spectral space that re- 
sembles a simplex, not the commonly assumed multivariate 
Gaussian distribution. An example of this is given in Figure 
2,  which shows a scatterplot of artificially produced three- 
band data representing a uniform mixture of three endmem- 
bers. Note that the data points fall into a triangular region, 
with the endmembers at the vertices. The endmembers, 
therefore, represent spectral extrema. This fact allows their 
identification. Our algorithm for endmember identification 
has five basic steps, and is based upon the "pixel purity in- 
dex" developed by Dr. Joseph Boardman: 

(1) Cull data to eliminate near-duplicate spectra. 
(2) De-mean surviving spectra. 
(3) Project spectra onto many lines through the origin - score 1 

point to each extreme projection. 
(4) Select the spectra with the most points as endmembers. 
(5) Check for representation - eliminate anomalous spectra. 

This algorithm exploits the convex property of a sim- 
plex; if all points within a simplex are projected onto any 
line, the extremal points correspond to two of the vertices. 
For the case shown in Figure 2,  where pure endmembers are 
present in the data and there is no noise, this algorithm is 
guaranteed to identify the correct endmembers. Unfortu- 
nately, neither of these assumptions is generally true. A lack 
of pure elements in the data, combined with system noise, 
generally causes the data to take on a rounded shape, like a 
teardrop in 2D or a round-topped cone in 3D, with some 
anomalous pixels widely separated from the bulk of the data. 
These anomalous pixels are eliminated in Step 5 ,  which cal- 
culates the w, vector set and eliminates any selected end- 
members which do not have at least 20 percent 
representation in at least 10 percent of the available data. 
These eliminated endmembers are then replaced by new 
ones, which are again tested until all endmembers have suffi- 
cient representation. 

This selection algorithm was first tested on simulated 
data generated by selecting three four-band endmembers and 
combining them in random proportions to produce an image 
cube. Each endmember was represented in pure form at least 
once. The range of pixel values was 0 to 255, and the resul- 
tant data cube was corrupted by spatially invariant white 
Gaussian noise with a = 0 .10~ .  The endmembers were se- 
lected correctly, within the limits of the noise. Data enclo- 
sure for this case was 93 percent. 

When this algorithm is applied to measured data, which 
generally is not only noise corrupted, but also rarely con- 
tains pure endmembers, it produces endmembers that define 
the largest possible inscribed simplex within the data cloud. 
Because only a fraction of the data is enclosed by the sim- 
plex - approximately 41 percent for the four endmember 
case (see Craig, 1990) - this technique is not well suited to 
scene analysis. However, because most of the excluded data 
are close to the surface of the simplex, while a target pre- 
sumably is not, this algorithm is useful for our purposes. 
Comparison to manually selected endmembers for two data 
sets which will be described in the following section shows 
that in both cases our selection algorithm selects endmem- 
bers which are very close to the manually selected ones. An 
analysis of performance in target detection using both pure 
residual analysis and residual analysis followed by RX 
showed one case where the two endmember sets had nearly 
equivalent performance and three cases in which the algo- 
rithmically selected endmembers out-performed the manually 
selected ones. No cases were found in which the manually se- 
lected endmembers showed superior target discrimination. 
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TABLE 1. CHARACTERISTICS OF THE TIMS SENSOR 

Band Center (pm) Bandwidth (pm) 

The RX Algorithm 
The Rx algorithm is intended for the detection of targets with 
known shape in the spatial domain but unknown spectral 
distribution. It combines a spatial matched filter with a spec- 
tral anomaly detector, and has been shown to provide supe- 
rior detection over either technique alone. We are interested 
in gains achievable through spectral analysis, and consider 
only targets that are unresolved and backgrounds that have 
been spatially whitened (Soni et al., 1992) by local mean re- 
moval. In this case, the spatial filter kernel reduces to an im- 
pulse function. In short, the data vector yi is replaced by a 
scalar zi, whose magnitude provides a measure of the abnor- 
mality of the pixel at location i. This scalar is given by 

where R is the local spectral correlation matrix. The resul- 
tant image matrix z can then be thresholded to provide 
anomaly detection. Should y be multivariate Gaussian dis- 
tributed, this procedure is equivalent to thresholding the 
background probability density function. 

The only significant implementation question concerning 
this algorithm is related to the adaptive estimation of the 
correlation matrix R at each pixel, using only a window of 
surrounding pixels with a set width W. Our experiments in- 
dicate that near-optimal results can be achieved with win- 
dow sizes ranging from 16 to 64 pixels. Clearly, calculating a 
new R at each pixel is a huge computational burden, particu- 
larlv as the window size becomes larger. We avoid this urob- 
l e i  by calculating R at a grid of poi& in the image, w h  
grid points spaced every W/2 pixels. The intervening values 
for R are then calculated through bilinear interpolation, in 
the manner outlined by ~ a ~ ~ a i ( l 9 9 2 ) .  This produces a sig- 
nificant reduction in the computational burden, while sacri- 
ficing little in terms of performance. 

Experimental Procedure 
The algorithms described above were tested on targets artifi- 
cially but realistically implanted into data from the Thermal 
Infrared Multispectral Scanner (TIMS), and on similarly pro- 
cessed data from the Naval Research Lab's Portable Hyper- 
spectral Imaging Low Light Sensor (PHILLS). The target spec- 
tra were obtained from spectral measurements of portions of 
military vehicles. These spectra were then scaled to mini- 
mize thermal contrast with the background. 

The TIMS data consists of six bands of longwave IR col- 
lected from an airborne platform. Two cubes of TIMS data 
were used, one taken over an airstrip in Kona, Hawaii, and 
the other over a region of the White Mountains in California. 
These data were acquired from SETS Technologies under a 
contract with the Naval Research Lab (NRL). SETS also pro- 
vided a group of manually selected endmembers with each 
data set. These served as a point of comparison for our auto- 
mated endmember-selection algorithm. The spectral charac- 
teristics of the TIMS sensor are given in Table 1. 

NRL's PHILLS sensor provides spectrally simultaneous im- 
aging of 1024 bands with a spectral range of 250 nm to 1208 
nm. The volume of this data was reduced to manageable lev- 
els by excluding the noisy spectral extrema and decimating 

the remainder to 25 distinct spectral bands, then selecting a 
six-band subset of these 25 that provided acceptable contrast 
between the target and background. The data were taken 
from a ground-based platform at the Hogback Overlook near 
Luray, Virginia, and consisted primarily of forested regions. 

Full-pixel targets were implanted into each of the image 
cubes, and the results were then blended with the original 
background cubes using linear interpolation to produce new 
cubes with target pixel-fill factors ranging from 0 percent to 
100 percent in 2 percent increments. Each of these cubes 
was processed using our combined algorithm, the RX algo- 
rithm alone, spectral unmixing alone, and a spectral matched 
filter. The results were then thresholded at the highest level 
such that all targets were detected, and the resultant number 
of false alarms was plotted against the pixel-fill factor to ob- 
tain a measure of performance. Note that the matched filter 
was included only as a point of comparison, because it re- 
quires knowledge of the target spectra which is not assumed 
known for the other algorithms. 

Our final set of experiments involved data taken using 
Night Vision Laboratory's linear variable filter (LVF) infrared 
camera. This sensor obtains 256 spectral bands ranging from 
3 to 5 pm. These image cubes were taken from the Hogback 
and Mount Marshall Overlooks and contained sub-resolved 
military vehicles. These data were reduced to six bands 
through decimation and elimination of atmospheric absorp- 
tion regions, and were processed in the same manner as the 

(a) 

I 

(C) (d) 

Figure 3. (a) A 200- by 200-pixel section of band 1 from 
the  TIM^ Kona data cube. This  section contains ten tar- 
gets at 16 percent pixel fill. (b) The outlined section of 
(a), processed using RX filtering and thresholded at 100 
percent detection. False alarm rate is 0.35 percent. (c) 
Processed using first residual unmixing followed by Rx. 
Th is  case yields 0 false alarms. (d) Processed using 
spectral matched filtering. This case yields 0 false 
alarms. 
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Figure 5. (a) Two-band data distribution, with two end- 
members and a 1D simplex. (b) ID, approximately Gaus- 
sian distribution resulting from the first residual. Only the 
dimension perpendicular to the extended simplex has 
value. The dimension parallel to the extended simplex 
will have a null eigenvalue and will be eliminated. (c) 2~ 
distribution resulting from the total residual. All pixels 
falling between L 1  and L2 in (a) will form a l o  distribu- 
tion similar to (b), in a direction perpendicular to the sim- 
plex. The pixels outside L 1  and L2 will form a smaller 2~ 
distribution which will be nearly Gaussian. The superposi- 
tion of these two distributions, given in (c), will be highly 
non-Gaussian. 

T 1 . S  and PHILLS data. In these data, the precise pixel-fill fac- 
tors of the targets are unknown, but relative false-alarm rates 
for the various algorithms could be derived. These results are 
given in the following section. 

- Matched filter - - -m - - - - -  I st residual+RX -.--- Total residual 
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Results and Discussion 
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Application to TIMS data 
Our first application experiments were carried out on two 
sets of TIMS data. Figure 3(a) shows band one of a 64- by 64- 
pixel block of the TIMS Kona data cube. Ten targets are pres- 
ent. Each is a CARC brown metal panel, and fills 16 percent 
of its pixel. Figure 3(b) gives the thresholded output of this 
cube processed using the RX algorithm with window size 32. 
Note that, although the targets are visible, there are signifi- 
cant numbers of false alarms. Figure 3(c) shows the results 
obtained through background reduction using linear unmix- 
ing followed by application of the RX algorithm to the first 
residual. Figure 3(d) gives the output of the spectral matched 

!i 
0.6 

0 

$ 0.4 

eEi 
0.2 

filter. 
Figure 4 plots false alarm rate versus pixel fill factor for 

this data cube. As expected, the matched filter provides the 
best results, reaching zero false alarms at a pixel fill factor of 
14 percent. Of the pure anomaly detectors, a combination of 
first residual unrnixing with RX provides the best result by a 
significant margin, followed by RX alone and unmixing using 
the total residual without any postprocessing. 

Two complications in the application of RX to unmixing 
residuals bear mentioning. First, the first residual has a di- 
mensionality which is less than that of the original data. In 
order to apply RX to the f is t  residual, it is necessary to apply 
the Hotelling transform first, and eliminate those dimensions 
with which null eieenvalues are associated. The number of " 
null dimensions is one less than the number of endmembers. 
This situation is illustrated in Figure 5. Second, the total re- 
sidual is not statistically suited to the = algorithm. RX as- 

1 2  
&%el fil? 

4 2 8  

Figure 4. Plot of pixel fill versus false alarm rate at 
100 percent target detection for the TIMS Kona2 data 
cube. Note that the combination of first residual un- 
mixing provides better detection than either RX or total 
residual unmixing alone. 

: I \: 

(a) 

(c) (d) 

Figure 6. (a) A 200- by 200-pixel section of band 1 from 
the TIMS White Mountains data cube. This  section con- 
tains five targets at 70 percent pixel fill. (b) Processed 
using RX filtering and thresholded at 100 percent detec- 
tion. FAR in this case is 0.60 percent. (c) Processed us- 
ing spectral unmixing followed by RX. FAR is 0.15 percent. 
(d) Processed using spectral matched filtering. FAR is 
0.04 percent. 
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(a) 

Plate 1. (a) Scatterplot in three bands of targets (red) and background pixels (green) for the TIMS Kona data cube with 100 
percent pixel fill factor. Note first that the background does fall into a well defined simplex, and second that the targets are 
well separated from the background distribution. This  data set is ideally suited for application of a LMM. (b) Scatterplot in 
three bands of targets and background for the TIMS White Mountains data cube with 100 percent pixel fill. The simplex in 
this case is less well defined, and the targets are very close to the background in spectral space. This is a much more 
difficult detection problem. 

sumes a multvariate Gaussian distribution of data. Such a 
distribution can be reasonably expected to result from the 
first residual. The total residual, however, generally results 
in a distribution which is the superposition of two or more 
multivariate Gaussian distributions of different dimensional- 
ity. Points which project to the interior of the simplex will 
be reduced in dimensionality by a factor of N-1, where N is 
the number of endmembers. Points which project to an edge 
or vertex will be reduced in dimensionality by a smaller 
number in the first case, and not at all in the second. Apply- 
ing RX to the total residual causes noise boosting in the pix- 
els with null dimensions, producing results which are 
unpredictable. 

Figure 6a shows band one of a 64- by 64-pixel block of 
the TIMS White Mountains data cube. This cube contains five 
targets. Again, each is a CARC brown metal panel. In this 
case, each has a pixel fill factor of 70 percent. Figures 6b, 6c, 
and 6d show the thresholded output of our processing algo- 
rithms, as above. Note that, in this case, the required pixel 
fill factor for target identification is considerably higher than 
that observed in the Kona data cube. The reason for this is 
obvious from examination of Plate 1, which shows scatter- 
plots of background and target pixels for both data sets in 
three bands. Clearly, the target and background pixels in the 
White Mountains cube are much closer in spectral space 
than the target and background pixels in the Kona cube. Fur- 
thermore, the Kona background data falls into a well-defined 
simplex distribution in spectral space. This data set fits the 
LMM'S assumptions. The White Mountains data, however, fall 
into a more Gaussian distribution. Spectral unmixing should 
provide less benefit in this case. This observation is con- 
firmed in Figure 7 ,  which shows the relative performances of 
the detection algorithms on this cube. The results are similar 
to those obtained for the Kona cube, but the pixel fill factor 
required for equivalent levels of detection is much higher. 
Also, the relative performance of total residual unmixing has 
improved from that seen in the Kona cube, due to the close- 
ness in spectral shape of the target and background, and the 
total gains achievable through unmixing are reduced. How- 

ever, the use of RX as a postprocessor still allows the first 
residual to provide the most effective detection. 

Plate 2. Scatterplot in three bands of targets (red) and 
background pixels (green) for the PHILLS Hogback image 
cube with 100 percent pixel fill factor. The distribution of 
these data cause the enclosing simplex to also enclose 
the targets in several dimensions. Because of this, the 
gains from the LMM will be much smaller than those seen 
in the infrared imagery. 
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Figure 7. Plot of pixel fill versus false alarm rate at 
100 percent target detection for the TIMS White 
Mountains data cube. Spectral unmixing in combi- 
nation with RX again provides the best anomaly de- 
tection, but all algorithms require a higher pixel fill 
factor in this case due to the similarity of the back- 
ground and target spectra. 

Application to PHILLS Data 
Our second set of application experimerlts involved data 
taken using the NKL PHILLS sensor from the Hogback overlook 
in Shenandoah National Park. This image cube contains pri- 
marily forested areas. The target spectrum was taken from 
the CARC green metal side panel of a military vehicle. The 
image cube was processed in the same manner as the TIMs 
data, and detection was attempted using each of the algo- 
rithms. Thresholding was carried out at the highest level 
such that the single implanted target was detected. False 
alarms were the11 calculated as a percentage of total pixels, 
and plotted against pixel fill. 

Figure 8a shows band one of a 64- by 64-pixel block of 
the PHILLS data cube. This cube contains one target, at a 
pixel fill factor of 30 percent. Figures 811, 8c, and 8d show 
the thresholded output of our processing algorithms. Note 
that the results for this case are consistent with those ob- 
tained in the thermal IR experinlents described above. Plate 2 
shows the distribution of these data in spectral space. The 
targets in this case appear to be lost in clutter. This data set 
is not particularly well suited to spectral unmixing, but there 
is separation in the out-of-plane direction which the LMM is 
able to exploit. Figure 9 shows the relative performances of 
the various detection algorithms on this cube. Although the 
gap in performance between the matched filter and the 
anomaly detection algorithms is greater in this case than in 
the previous ones, and unmixing using the total residual 
provided results which were far worse than the other algo- 
rithms, the results were generally consistent with those oh- 
tained using TIMS data. Again, unmixing using the first 
residual in combination with RX proved to be the most effec- 
tive of the anomaly detection algorithms. 

Application to LVF Data 
Our final set of validation experiments involved data taken 
using the LVF sensor. These image cubes were intended to be 
realistic approximations of possible field applications. The 
images were of forested rural regions, and contained actual 
military vehicles at sub-pixel ranges. Figure 10a shows band 
one of a 100- by 100-pixel block of the LVF Hogback data 
cube. Figures lob, lot, and 10d show the results of process- 
ing this cube using our algorithms and thresholding at the 
highest level that preserves the known target. It is difficult to 

determine false-alarm rates in these cases, because other 
man-made objects in the scene should also appear as anoma- 
lies, and the number of such objects is unknown. FAR is 
therefore most useful as a relative measure. The results of 
processing in Figure 10 demonstrate moderate utility for the 
unrnixing technique, with total residual unmixing and first 

Figure 8. (a) A 64- by 64-pixel section of band 1 from the 
PHILLS Hogback Overlook data cube. This  section contains 
one target at 30 percent pixel f i l l .  (b) Processed using RX 
filtering followed by thresholding at 100 percent detec- 
tion. FAR in this case is 0.29 perecent. (c) Processed us- 
ing spectral unmixing followed by RX. FAR is 0.17 percent. 
(d) Processed using spectral matched filtering. This case 
yields 0 false alarms. 

2 5. 
% pixel fill 

3 0  

Figure 9. Plot of pixel fill versus false alarm rate at 100 , 
percent target detection for the PHILLS Hogback data 
cube. Note that these results are consistent with those 
achieved using TlMs data. Total residual unmixing in this 
case was of limited utility. 
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Figure 10. (a) A 100- by 100-pixel section from the LVF 
Hogback data cube. This section contains one target of 
sub-pixel extent. (b) Processed using the RX filter. FAR is 
0.34 percent. (c) Processed using total residual unmix- 
ing. FAR is 0.24 percent. (d) Processed using first resid- 
ual unmixing followed by RX. FAR is 0.27 percent. 

residual unmixing followed by RX providing roughly equiva- 
lent performance. 

More interesting results are seen in Figure 11, which 
shows a scene taken from the Mount Marshall LVF data cube. 
In this case, there are three sub-pixel targets. ~x and first re- 
sidual unmixing followed by RX both identify all three tar- 
gets, with unmixing providing a reduction of more than 50 
percent in false alarms. Total residual unmixing, however, 
not only has a higher false alarm rate, but also fails to iden- 
tify one of the targets. This result highlights the fact that, al- 
though the combination algorithm is sometimes sub-optimal, 
as in Figure 10, its advantage in robustness compensates to 
an extent for the possibility of a fall-off in performance. 

Conclusions 
In this paper we have addressed the most difficult problem 
related to detection of targets in multispectral imagery: detec- 
tion of sub-pixel targets with unknown-spectral signatures. 
We have demonstrated the application of a known algorithm, 
RX, to the residuals produced through an application of the 
linear mixing model, and shown that the combination algo- 
rithm provides consistently superior results to those obtained 
through either method alone. We have also presented a novel 
approach to the automated determination of endmembers for 
the LMM, which is the most challenging problem associated 
with that model. 

Our experiments have indicated that these algorithms 
are applicable to both the infrared (thermal) and visible (re- 
flective) spectra. Clearly, the benefits of applying this model- 
ing technique are directly related to the extent that the 
background distribution matches the assumptions of the 

I 
(a) 

L 
(c) (d) 

Figure 11. (a) A 100- by 100-pixel section from the LVF 
Mount Marshall data cube. This section contains three 

ual unmixing. FAR IS 0.76 percent. Note also that one 

followed by RX. FAR is 0.18 percent. 

targets of sub-plxel extent. (b) Processed using the RX fil- 
ter. FAR is 0.40 percent. (c) Processed using total resid- 

target is lost. (d) Processed using first residual unmixing 

LMM. Future work will include a more detailed analysis of 
this phenomenon. In particular, we would like to determine 
whether it is possible to assess the applicability of these al- 
gorithms to a given problem a priori. Future work will also 
include application to a wider range of targethackground 
combinations, more extensive application to mid-wave IR im- 
agery, and further testing of these algorithms on imaged tar- 
gets in realistic settings. 
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