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Abstract (1992) and Aspinall and Veitch (1993) mapped the extent of 
A supewsed nonparametric classifier, previously applied to red deer in Scotland with a similar probability-based ap- 

classify remotely sensed data, is used to classify GIs layers. proach. 
The algorithm is trained using G I ~  data layers as the inde- Regardless of the classification method used, an impor- 
pendent variables, and predicts the spatial distribution of a tant issue in wildlife ecology is the scale chosen to describe 

dependent using a nonpmmetric technique. A GCS the distribution of a species. For example, is it reasonable to 

database ofkangamo distribution in ~ ~ ~ ~ ~ ~ l i ~  tests the describe the distribution of kangaroos on a continental scale, 

fithm. Results are satisfactory, with the presence of kanga- when an individual Or group of interact 

roes being mapped k t h  a producers accumcy of 93 with the environment at a local scale? As Van Home (1983) 

for the western grey, and 100 percent for the eastern grey points out, the inference habitat quality is On 

and kangamo. ~h~ algorithm appean robust to varia- identifying the important independent factors which influ- 

tions in training sample size and a priori probabilities. ence habitat quality. The climatic data used in this study 
were shown by Caughley et al. (1987) to be the major varia- 
bles influencing the distribution of three kangaroo species 

Introduction across Australia. The study by Caughley et al. (1987) de- 
The modeling capabilities of most geographic information scribed the range of climate experienced by each kangaroo 
Systems (GIs) use a tool-box approach, where sophisticated species, and determined the components of the climate that 
models may be generated by combining simple commands, indexed the distributions most economically. They did not 
such as mathematical or Boolean operators. The "carto- assume that precipitation and temperature alone determine 
graphic modeling" described Tomhn (1987) is whether a particular species occupies an area; rather, they 
one of the best known approaches. Wildlife distribution has used climatic variables as a rough index of attributes (such 
been mapped with GIs, using a number of alternative analy- as land use, forage production, water supply, and habitat) 
sis techniques. Examples of using the "cartographic model- which directly influence a species ability to survive and re- 
ing" technique for wildlife mapping include characterizing produce. 
suitable condor habitat using GIS (Scepan et al., 1987), deline- 
ating Florida Scrub Jay habitat (Breininger et al., 1991), and Objectives 
evaluating the preferred habitat of cranes (Herr and Queen, ~h~ aim of this study is to generalize a nonparametric classi- 
1993). The main problem with conventional cartographic fier to work with GIS data and map the distribution of kanga- 

is that and must be before roos across Australia; the supervised nonparametric classifier 
writing the GIS model. has been previously used with remotely sensed data (Skid- 

A sophisticated and automated method of using more and Turner, 1988; Dymond, 1993; Dymond and Luck- 
GIs to map wildlife involves the classification and regression ,,,, 1994). A database of kangaroo distribution in 
tree (CART) software package (Brieman et al., 1984) to de- Australia was selected to test the algorithm as it has been re- 
v e l ~ ~  for mapping the distribution kangaroos (Wal- viewed in the ecological literature (Caughley et al., 1987) as 
ker and Moore, 1988). The rules are entered into the MAP GIs as the literature (walker, 19g0). 
(Tomlin, 1987), and kangaroo distribution is predicted from 
climate and vegetation variables (Walker and Moore, 1988). 
Another technique proposed for wildlife habitat mapping Method 
uses regression analysis. For example, Periera and Itarni Preparation of Data 
(1991) mapped red squirrel habitat using regression tech- The data set used to test the algorithm was initially devel- 
niques in combination with GIs. Wildlife has been modeled oped to map the distribution of kangaroos using the BIOCLIM 
using a modified bioclimatic analysis and prediction system model (Caughley et a]., 1987). This data set comprises 12 cli- 
termed BIOCLIM (Busby, 1986; Richards et al., 1990); this matic variables (Table 1) considered to represent the mean, 
method interpolates climatic variables, and the bio-climatic seasonal, and extreme climatic variables for a species. 
envelope of a species can then be estimated and the distribu- Caughley et al. (1987) aerially surveyed the distribution 
tion of the species mapped. Flather and King (1992) used of the red kangaroo (Macropus rufus), the western grey kan- 
discriminant function analysis to generate classification rules garoo (Macropus fuliginous), and the eastern grey kangaroo 
that predict deer and turkey abundance, as well as wood- (Macropus giganteus) by recording the presence or absence 
pecker presencelabsence based on land-based predictor vari- of each species along transects across Australia. A grid of 40 
ables. Yet another method for classifying GIS data layers 
involves expert systems (Skidmore, 1989) where expert Photogrammetric Engineering & Remote Sensing, 
knowledge about the variable being modeled relates the GIs Vol. 64, No. 3, March 1998, pp. 217-226. 
data layers to the variable, through a series of rules. Aspinall 
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by 33 cells was constructed, with each cell representing 1" TABLE 2. NUMBER OF GRID CELLS WITH KANGAROOS PRESENT AND ABSENT I N  

longitude by 1" latitude. For each cell occurring over Austra- EACH lo LONGITUDE BY lo LATITUDE GRID CELL 
lia (i.e., 686 cells), the presence of kangaroos was recorded Species presence absence 
(Table 2), as well as the 1 2  climatic variables. Note that 
some grid cells have more than one species of kangaroo pres- red 331 355 
ent. western grey 142 544 

eastern grey 183 503 
total 656 1402 

Definition of the Nonparametric Classifier 
Data in a raster GIS may be viewed as a series of geometri- 
cally rectified layers. Each layer (notated as E,, for i = 1, ..., 

layers) pertains to a variable (containing a set of values) where A, is the area extent of class "a" and A, is the total 

and consists of co-registered grid cells that define the spatial area. The kangaroo data were used to estimate the a priori 

position of each value in the layer. For example, four layers probability for each species of kangaroo (Table 3), though 

may exist such as precipitation, slope, elevation, and temper- these values could also be estimated by an experienced wild- 

ature. For the precipitation layer, an estimate of precipitation life biologist. 

is recorded at each grid cell. For the kangaroo data set described above, the feature 

The layers may be mapped into an n-dimensional fea- space of the data set has 1 2  dimensions (i.e., i = I, ..., 12 for 

ture space, with each layer forming one dimension in the Equation 1). To reduce the number of dimensions of the data 

feature space. For two layers (El and E,), a frequency histo- set while maintaining the information content of the kanga- 

gram may be constructed, using "F" as the notation for fie- roo data set$ principal comPonents was applied 

quency (Figure 1). (Richards, 1986). The first four principal components were 
The frequency histogram is built using known regions selected to predict the distribution of the kangaroos; these 

(or training areas) from the data layers, Grid cells of known principal components 99.95 percent of the vari- 

classes are selected, and the values of each GIS layer are re- ance in the data. 

corded. These independent environmental variables are then Note that the supervised nonparametric classifier is 

mapped into an n-dimensional feature space, If more that trained using the presence data. The absence of a kangaroo at 

one grid cell occurs at a vector E in feature space (as in Fig- a grid cell cannot be differentiated from the grid cell being 

ure then the grid cells at that vector space are counted. unclassified, because an unclassified grid cell will occur at 

The class with the largest sum at the vector space E ''repre- an vector position in the feature 'Pace (Figure 2). 

sents" the vector. Finally, each grid cell of unknown class is The data were entered into the SPIRAL GIs (Myers, 1986) 

assigned to its vector in feature space based on the values in and linked to the algorithm. Map output was created using 

the GIS layers (i.e., E, and E,], and is allocated to the class the ARC'1NF0 software On a Sun SparcStation (ESR1~ lgg2) 

with the greatest probability of occurring at the vector posi- and the MAP I1 GIs software (Pazner et a]., 1989). 

tion E. 
The probability of class i (for i = 1, ..., k classes) occur- Testing the Performance of the Nonparametric Classifier 

ring, given a vector position E, is as follows [Skidmore and The performance of the algorithm as the number of training 
Turner, 1988; Gong and Dunlop, 1993): cells are varied was tested by randomly selecting a training 

sample of 5, 10, 25, 50, 75, and 100, as well as all data 

(&)ni(E)~(i )  
points, for each kangaroo species. The training data were in- 
put to the classifier and the effect on the accuracy of the out- 

P(ilE) = , (1) put maps was calcuIated. 

Z ( ; )n , (~)~(i )  The a priori probabilities of the kangaroos were also var- 
,=I ied to test the robustness of the classifier to changes in the 

user estimates for this parameter. The a priori probabilities 
Note that N is the sum of all training area cells, Ni is the were varied as shown in Table 3. The intermediate probabili- 
sum of training area cells for class i, and ni(E) is the number ties in Table 4 were interpolated by a linear stretch (Rich- 
of grid cells at vector position E. The a priori probability of ards, 1986) between the a priori probabilities in ~ ~ b l ~  3 and 
the class P(i)  may be estimated from the relative areal extent equally probable (that is = 0 .33  for species) a priori 
of the class: i.e., probabilities. 

The accuracy of the maps was calculated by randomly 
A, P(i) = - (2) selecting 30 grid cells from the "present" and "absent" strata 
At defined by Caughley et al. (1987) (Figures 2, 3, and 4). These 

TABLE 1. CLIMATIC VARIABLES (ACROSS AUSTRALIA) USED TO PREDICT THE KANGAROO DISTRIBUTION. TOTAL SAMPLE WAS 686 GRID CELLS 

Standard 
BIOCLIM Variable Mean Deviation Median 

Annual Mean Temperature ("C) 21.59 4.06 21.86 
Minimum Temperature of the Coldest Month ("C) 6.92 3.62 5.96 
Maximum Temperature of the Hottest Month ("C) 35.54 3.91 36.64 
Annual Temperature Range ("C) 28.62 3.78 29.42 
Mean Temperature of the Wettest Quarter ("C) 24.88 7.27 27.99 
Mean Temperature of the Driest Quarter ("C) 18.80 4.14 19.22 
Annual Mean Precipitation (mm) 435.55 323.37 308.68 
Minimum Precipitation of the Wettest Month (mm) 81.58 70.67 55.25 
Maximum Precipitation of the Driest Month (mm) 11.19 13.51 6.94 
Annual Precipitation Range (mm) 70.24 70.86 43.06 
Mean Precipitation of the Wettest Quarter (mm) 214.73 185.54 145.42 
Mean Precipitation of the Driest Quarter (mm) 40.56 47.21 25.22 

I 
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" 
layer 2 (E2) 

Figure 1. Frequency histogram of 
two GIS layers (El and E,). 

TABLE 3. A PRIORI PROBABILIN FOR THE KANGAROO SPECIES 

Species P ( i )  class 

red 
western grey 
eastern grey 

L E C E N D  
Absent 
Present  

1 

u n n  CELL: 
SCALE: One c e l l  i l  e q u i r a l e n l  l o  

one  degree  l 8 l l l n d e  b y  one  
d e g r e e  l o n g l l n d e .  

m 
Figure 2. Red kangaroo distribution data 
developed by Caughley et a/. (1987). 

points were used to calculate user and producer accuracy of 
the maps (Congalton, 1991). User accuracy is the total num- 
ber of grid cells the classifier correctly attributes to the class 
divided by the total number of grid cells the classifier attrib- 
utes to the class. The producer accuracy is the total number 
of grid cells the classifier correctly attributes to the class di- 
vided by the total number of ground truth (reference) grid 
cells for the class. As a consumer of a map classification, one 
is usually more interested in the user accuracy, because this 
shows the probability that the grid cell is truly the class la- 
beled on the output map. Both the user and producer accura- 
cies are plotted in the following Results section. 

TABLE 4. INTERMEDIATE A PRIORI PROBABILITIES INTERPOLATED BElWEEN THE A 
PRIORI AND THE EQUALLY PROBABLE PROBABILITIES, AND USED TO TEST THE 

ROBUSTNESS OFTHE CLASSIFIER 

species 

inter- inter- inter- 
a priori mediate mediate mediate 
proba- probability probability probability equally 
bilities 1 2 3 probable 

red 0.505 0.463 0.420 0.377 0.333 
western grey 0.216 0.290 0.306 0.319 0.333 
eastern grey 0.278 0.243 0.273 0.303 0.333 

L E G E N D  . Absent 
Present  

r I 

UNIT CELL: 
SCALE: One c e l l  I 0  e q u i r a l c n l  l o  

o n e  d e g r e e  l a l i t ~ d e  bj o n e  
d e g r e e  l o n g i l ~ d e .  

Figure 3. Eastern grey kangaroo distribution data 
developed by Caughley et a/. (1987). 

L E C E N D  
.Absent 
W Present  

U N I T  CELL: 
SCALE: One c e l l  It e q u i r n l e n t  Lo 

o n e  d e g r e e  I 8 1 i t n d e  by o n e  rn 
Figure 4. Western grey kangaroo distribution data 
developed by Caughley et a/. (1987). 

Results 
The original presence and absence data for the three kanga- 
roo species are shown in Figures 2 to 4, (i.e., red kangaroo 
(Figure 2),  eastern grey kangaroo (Figure 3),  and western grey The results from the classifier using equal probabilities 
kangaroo (Figure 4)). are shown in Figure 5. The a posteriori probabilities for each 
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species P( i  I E) are mapped into percentile ranges (Table 5) TABLE 5. LIKELIHOOD OF OCCURRENCE FOR A SPECIES IN FIGURES 6 THROUGH 9 
for ease of comparison. An interpretation of the likelihood of Percentile Interpretation 
occurrences for the species, given the percentile range, is P (i I E) Range o f  L ikel ihood 
also indicated in Table 5. If a vector position is trained so 
that P(i I E) is greater than 0.5 for a particular species, then it 0.5-1.0 50-100 most l i ke ly  

may be assumed that the species is most likely to occur, 0.01-0.49 1-49 marginal 
given two classes co-occurring in the vector space. For three 0 0 absent 

or more classes, the percentile ranges may be considered 
conservative for mapping the occurrence of the three kanga- 
roo species. In order to test the robustness of the classifier to changes 

When the a priori probabilities listed in Table 1 are in the a priori probabilities, the a priori probabilities in Ta- 
used, the resulting classifications are little changed, as ble 4 were input to the algorithm and the accuracy was cal- 
shown in Figure 6, except that the probability of occurrence culated. Figures 10a and lob show the user and producer 
for the eastern grey and western grey kangaroos decreases accuracies for red kangaroos, Figures l l a  and lib for eastern 
relative to the red kangaroo. The effects of using only 50 grey kangaroos, and Figures 12a and 12b for western grey 
sample points for each training area are shown in Figure 7, kangaroos. There is no change in accuracy (for either user or 
for a classification using the a priori probabilities (Table 1). producer accuracy) for the three species (Figures 10, 11, and 
When the a priori probabilities are assumed to be equal, the 12). Note that, in Figures 10, 11, and 12, "inter 1," "inter 2," 
classification results are shown in Figure 8. There appears to and "inter 3" refer to the intermediate probability 1, 2, and 
be little change in the output maps as a result of varying the 3, respectively, as defined in Table 4, while "equal" refers to 
a priori probabilities, or the number of sample points used to the equal probabilities. 
train the classifier. The raw a posteriori probabilities for each The accuracy of the maps output by the classifier 
species (P(i I E)), expressed as a percentage, may also be dis- changes as the sample size decreases below 50 samples per 
played. For example, Figure 8 is re-displayed showing the training area, but the classifier appears robust if the size of 
(percentage) a posteriori probabilities (Figure 9). the sample is greater than 50 (Figures 13 to 15). The pro- 

- 

. . . . .  . . . . .  . . . . .  
..... ..... ..... ..... ..... 

(a) (b) 

I 

J I 

Figure 5. Results for the classifier using equal probabilities 
showing the distribution of the red, eastern grey, and west- 
ern grey kangaroos for all data. (a) Red kangaroo. (b) East- 
ern grey kangaroo. (c) Western grey kangaroo. 

(c) 

absent 

<49% 

>SO% 
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(a) (b) 

....... Figure 6. Results for the classifier using a priori probabili- 
ties. Figure shows the distribution of the red, eastern grey, 
and western grey kangaroos for all data. (a) Red kangaroo. 
(b) Eastern grey kangaroo. (c) Western grey kangaroo. 

(c) 

ducer accuracies for Figures 13 to 15 show that the percent- 
age of grid cells that are absent and unclassified increases as 
the sample size decreases (remember that the absence of a 
kangaroo species at a grid cell cannot be differentiated from 
the grid cell remaining unclassified). The eastern grey kanga- 
roo has the largest percentage of unclassified grid cells for 
low sample sizes (i.e., for 5 and 10 samples). The user accu- 
racies for Figures 13 to 15 show that the presence of the kan- 
garoo species appears to become more accurately mapped 
with fewer grid cells per training area. Some potential anom- 
alies are apparent for the eastern grey kangaroo with a sam- 
ple size of 5, 10, and all samples (Figure 14). 

Discussion 
The generalized nonparametric classifier successfully classi- 
fied the kangaroo data set prepared by Caughley et al. (1987). 
The predicted distribution of the kangaroos (Figure 3) visu- 
ally matches the distribution of the kangaroos as recorded by 
Caughley et al. (1987) (Figures 2 to 4). This was confirmed in 
Figures 10 to 12, where the classifier predicts the presence of 
the red and eastern grey kangaroo species with a producer 
accuracy of 100 percent, and the western grey kangaroo pres- 
ence with a producer accuracy of 94 percent. It is concluded 
that the generalized nonparametric classifier successfully pre- 
dicts the presence of the kangaroo species. 

- absent - a9% - >50% 

The "absent and unclassified" class on the output maps 
is generally under-classified. In other words, few ground 
truth grid cells of the "present" class tend to occur over the 
"absent" areas on the classified map, because the map is 
mostly comprised of the "present" class. Consider, for exam- 
ple, the error matrix for the red kangaroo map generated by 
using all samples for the training data, and the a priori prob- 
abilities (Table 6). The user accuracy is 100 percent for the 
"absent" class, because no ground truth "present" class oc- 
curs on the "absent" areas on the classification. Table 6 also 
highlights and explains the different results in Figures 10 to 
15 for user and producer accuracies; a high user accuracy for 
the absent class does not necessarily correspond to a high 
producer accuracy! 

TABLE 6. ERROR MATRIX FOR THE RED KANGAROO MAP GENERATED BY USING 
ALL SAMPLES FOR THE TRAINING DATA, AND THE A PRIOR1 PROBABILITIES 

Reference ground 
truth class 

User 
absent present accuracy 

Class output absent 14 0 100% 
from the classifier present 16 30 65% 
Producer accuracy 47% 100% 
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Figure 7. Results for the classifier using a priori probabili- 
ties. Figure shows the distribution of the red, eastern grey, 
and western grey kangaroos using only 50 sample training 
points to train the classifier. (a) Red kangaroo. (b) Eastern 
grey kangaroo. (c) Western grey kangaroo. 

To ascertain the robustness of the algorithm, the equal 
probabilities (that is, for the thee  kangaroo species, P(i I E) 
= 0.33) were replaced with the a priori probabilities in Table 
1. As visually indicated in Figure 6, there were small visual 
differences; specifically, the probability of a cell being a 
western grey or an eastern grey decreases relative to the red 
kangaroo. To quantify this observation, a series of intermedi- 
ate a priori probabilities was estimated (Table 4)  between the 
equally probable P(i I E) = 0.33 and the a priori probabilities 
in Table 1. The accuracy of maps (Figures 1 0  to 12)  shows 
that there is no change in accuracy (i.e., both user and pro- 
ducer) for the three kangaroo species. It is concluded that the 
output from the classifier is not significantly altered by varia- 
tions in the a priori probabilities. 

Another test of robustness of the algorithm was to vary 
the number of training area samples for each species. The re- 
sults shown in Figures 7 and 8 for 50  samples indicate that 
the algorithm is little changed by a reduction in training area 
number, but, as expected, the number of unclassified cells 
increases for 5 0  samples (Figures 7 and a), compared with 
Figures 5 and 6 where all data are used to train the classifier. 
This may be explained by some vector positions remaining 
unfilled or partly filled (for one or all of the species). As a 
result, a grid cell may become "unclassified" because no 
training area samples have filled the vector space, or the a 

posteriori probability may change due to the varying num- 
bers of training area grid cells contributing to the conditional 
probabilities calculated for the vector position. In order to 
quantify these observations, the classifier was executed with 
5, 10 ,  25, 50, 75, and 100,  as well as all data points, as train- 
ing area data. 

The producer accuracies for Figures 1 3  to 1 5  show that 
the percentage of "absent" grid cells increases as the sample 
size decreases. This is because the number of unclassified 
grid cells increases (remember that the absence of a kangaroo 
at a grid cell cannot be differentiated from the grid cell re- 
maining unclassified). The user accuracies for Figures 1 3  to 
15  show that the presence of the kangaroo species appear to 
become more accurately mapped as fewer grid cells train the 
classifier. This apparent contradiction is because both the 
user and producer accuracy are calculated. As the number of 
sample cells is reduced, the number of unclassified cells on 
the map increases. This decreases the overall number of cor- 
rect and incorrect grid cells of the "present" class. Thus, the 
producer accuracy for the absent class increases (there are 
more correct "absent" cells), while the user accuracy for the 
"present" class also increases (there are fewer absent cells in- 
correctly classified as present). The behavior of the user and 
producer accuracy also explains the unusual values for the 
eastern grey kangaroo with small sample sizes (Figure 14). 
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Figure 8. Results for the classifier using equal probabil it ies.
Figure shows the distribution of the red, eastern grey, and
western grey kangaroos using only 50 sample training
points to train the classifier. (a) Red kangaroo. (b) Eastern
grey kangaroo. (c) Western grey kangaroo.

Most of the variance (99.95 percent) in the kangaroo data
is in the first four principal components because the climatic
variables are interpolated from common data (i.e., DEM and
weather records) and are, therefore, highly correlated. Fea-
ture reduction techniques, such as principal component anal-
ysis, are particularly useful when "independent" variables
are partially correlated. An alternative strategy would be to
directly remove climatic variables which are clearly depen-
dent (for example, "precipitation" and "rainfall").

As the algorithm is based on nonparametric (ranked) sta-
tistics, it does not assume the training data or map data val-
ues Erre normally distributed. It is therefore possible to
include diverse data sets into a classification problem. For
example, it would be possible to incorporate remotely sensed
data, digital elevation and terrain models, and classification
(thematic) data such as a soil map without violating statisti-
cal assumptions. Parametric classifiers, such as maximum
likelihood (Richards, 1986) and discriminant function analy-
sis (Johnson and Wichern, 1984), are sensitive to the distri-
bution of the input (training) data, particularly the
assumption of normalitv, because they are based on covari-
ance riatrices and standard deviation!. respectively.

It should be emphasized that the probability of correct
classification (e.g., Figure 9) refers to the training area alone.
It may be that the training area does not adequately sample

PE&RS March tggS

the full environmental domain for a species; in this case, the
probability of correct classification would be biased by the_
iample. Ho*ever, this is also a problem for any supervised
classifier, such as maximum likelihood.

There is no attempt here to consider density of kanga-
roos as an indicator of habitat quality, although density has
been considered by others, as in the study by Short ef a/.
(1983), who incorporated density indices of kangaroos in
Western Australia. Indeed, as Van Horne (1983) points out,
"...we need to be much more careful in identifying high-qual-
ity or critical habitat and not assume simple density-habitat
qiality relationships without the demographic data to sup-
port them." Thus, the method proposed here does not at-
tempt to model habitat quality per se. Rather, ecologists-may
coniider using the model in the future for mapping wildlife
habitat quality as additional field data and knowledge be-
come available. It is, of course, possible to apply the tech-
nique at higher spatial resolutions and to incorporate_
additional independent variables, thereby exploring the habi-
tat relationships of individual species at a particular site
(Van Horne, 1983).

Finally, even though more spatially detailed analyses are
possible, the data used in this study record the presence -and
ibsence of kangaroos on a 1o longitude by 1" Iatitude grid'
The application of site-level observations to regional models
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- 48% 

- 48% 
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(c) 
Figure 9. Results for the classifier using equal probabilities. Figure shows the distribution 
of the red, eastern grey, and western grey kangaroos using only 50 sample training points 
to train the classifier. The raw a posteriori probabilities, expressed as a percentage, are 
displayed. (a) Red kangaroo. (b) Eastern grey kangaroo. (c) Western grey kangaroo. 
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Figure 10. (a) Effect of changing a priori probabilities on
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Figure L2. (a) Effect of changing a priori probabilities on
the mapping accuracy of the western grey kangaroos for
Producers accuracy. (b) Effect of changing a priori proba'
bilities on the mapping accuracy of the western grey kan-
garoos for Users accuracy.

pnor

h 6 0
E q o

0

is not recommended, but reasonable models of empirically
defined habitat relationships can be defined, and their use
iustified, if the accuracy of the models is evaluated (Flather
and King, 1992),

Conclusion
The generalized nonparametric classifier proposed by Skid-
more and Turner (1988) is described. It is shown here that
the classifier will successfully function with spatial data in-
put from a GIS. The GIS analyst may delineate training areas,
which in turn are used to predict dependent variables from
the input spatial data. Spatial data, showing the distribution
of kangaroos in Australia (Caughley et al., 1.987), were used
to test the algorithm. The algorithm is robust to variations in

sample size and a priori probabilities. Analysts may wish to
consider this algorithm as another alternative model when
classifying cIS data.
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