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Abstract 
A supervised classification strategy containing a suite of 
techniques that allow the linking of urban land cover from 
remotely sensed data with urban functional characteristics 
from population census data is  outlined and demonstrated. 
For a stronger link, census tract data are also interpolated 
into more disaggregated and more precise raster-based sur- 
faces using GIS. Census data in  tabular and surface format 
are then used to modify maxim um -likelihood classifications 
through stratified class a priori probabilities, and in terms of 
assisting the selection of training samples and contextual 
post-classification sorting. The strategy is  applied to the clas- 
sification of housing density of four settlements in the United 
Kingdom. The results show high site-specific accuracy, and 
improvements in class area estimates. 

Introduction 
Urban areas are undoubtedly one of the most challenging 
surfaces for image classification. Yet the dynamic nature of 
settlements means that the classification of urban areas has 
perhaps the greatest potential among the widest audience. 
For example, practitioners of urban monitoring, management, 
planning, and land-use zoning activities all need detailed in- 
formation on the morphology, and especially functional use, 
of urban land at frequent time intervals. These needs have in 
part been met by image classifications which have allowed 
the consistent interpretation of the physical structure of ur- 
ban land cover, albeit at somewhat small-scale distinctions of 
urbanlnon-urban, builtlnon-built, and, at best, categorical 
building sizes and shapes (Forster, 1993). Limitations to 
more detailed urban properties are of course the result of the 
inherent spatial variabilities and composition heterogeneity 
of urban surfaces, both of which lead to pixels with multiple 
class membership (Forster, 1985; Haack et al., 1987). As a 
consequence, per-pixel image classifications have become 
less favored than approaches that seek to examine the tex- 
tural, contextual, and spatial (Barnsley and Barr, 1996) prop- 
erties and patterns of neighboring pixels, as well as sub-pixel 
class member compositions using, for example, fuzzy sets or 
assuming linear relationships between pixel values and land- 
cover proportions. 

However, most of these extensions to per-pixel methods 
have had somewhat variable degrees of success in producing 
classifications that are more accurate than simple per-pixel 
categorization. Indeed, given the additional calculations 
needed to perform neighborhood or sub-pixel classifications, 
similar accuracy results have been routinely produced from 
standard per-pixel methods guided by ancillary information 
(Harris and Ventura, 1995), including a modification of the 
per-pixel algorithm itself to take into account non-spectral 
information on the structure and characteristics of urban ar- 
eas (Mesev et al., 1998). Ancillary data could also possibly 
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be used to represent the functional characteristics of urban 
areas which could then be linked with urban structural prop- 
erties derived from remote sensing. If urban monitoring and 
planning is desired at the city and regional levels, what is 
needed is a strategy which could introduce functional-related 
data, for instance, housing type and population, into stan- 
dard image processing to produce land-cover classifications 
that are more consistent with both the physical layout of ur- 
ban areas as well as their socio-economic distributions. 

This paper will outline a strategy within which such ad- 
ditional urban-related data from the United Kingdom Cen- 
sus of Population (OPCS, 1991) can be used to construct a 
unique urban classification strategy (Figure 1) as well as con- 
tribute to research on remote sen sing/^^^ integration. Census 
data and interpolated surfaces of census data are incorpo- 
rated into standard supervised image processing at three 
stages: before, during, and after classification (Hutchinson, 
1982): i.e., 

Before, or pre-classScation, census surfaces are used to assist 
the selection of class training samples; 
After classification, census surfaces are used to assist in post- 
classification sorting; and 
During classification, census data in tabular form are normal- 
ized and used as class a priori probabilities in a Bayesian- 
modified maximum-likelihood estimator. 

Census Data and Census Data Surfaces 
Before this three-forked strategy is examined, it's important 
to first define and conceptually justify the use of tabular and, 
more importantly, surface-based census data. Socio-economic 
and housing data from national population censuses are rep- 
resented as aggregated spatial units, known as census tracts 
(in the UK these are enumeration districts (EDS)). If research 
is at the city level, a collection of interrelated census tracts 
can be accurately and reliably used to calculate a number of 
functional attributes (for instance, population size, social 
composition, housing type, etc.). However, as census attrib- 
utes are assumed to be uniform within a census tract, there 
is no relation between a settlement's physical structure and 
its functional characteristics. In other words, within a census 
tract land cover and land use are unrelated and indistin- 
guishable. What is needed is a means of disaggregating the 
census tract and filtering out areas that are non-built and 
non-residential. Remotely sensed data are a convenient 
source for separating built form from open spaces and vege- 
tation, and, to some degree, separating buildings that may or 
may not be used for residence. Where image data fall short, 
support can be given from census data which are spatially 
manipulated to determine more accurately the location of 
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Figure 1. Methodology: Interaction between census data and image 
classification. 

residential land use. The basis for this manipulation is the 
use of population-weighted centroids which act as pointers to 
where within the tract the greatest concentration of residential 
land use is located (Figure 2). By using distances between 
centroids, a surface can be interpolated which takes into ac- 
count residential density and, therefore, an approximation of 
the residential, not urban, geography of the settlement. 

Surface models have long been used to represent point 
data as more continuous distributions which are essentially 
scale-free from rigid zonal collection units, and are used to 
reveal more apparent trends and patterns. The arrival of GIs 
has facilitated the easier manipulation and more efficient 
storage of surface models, thereby realizing immense poten- 
tial for analyzing large amounts of population-related data- 
sets at consistent scales and frequent temporal intervals. The 
surface model used in this paper is derived from work by 
Martin and Bracken (1991), and is essentially a smoothing, 
point-based areal interpolation algorithm with a weighting 
factor based on intercentroid distances. It is able to transform 
spatial data from irregular zonal units (census tracts) (Figure 
2) into regular units (surface cells] at finer levels of spatial 
disaggregation (Figure 3). Basically, the census value associ- 
ated with each ED centroid is distributed spatially according 
to a simple model of distance-decay, implemented by center- 
ing a moving window (kernel) over the cells containing each 
centroid. For any cell i, the variable Y, is allocated as 

where Y, is the estimated value in  the ith cell of the output 
surface, A, is the value of the variable assigned to the jth 
centroid (where c is the total number of centroids in the 
model area), and Z, is a weighting of cell i relative to cen- 
troid j (based on the distance-decay assumptions). The sur- 
face produced has been documented to closely approximate 
(over 90 percent) the spatial dimensions of urban areas rep- 
resented from remotely sensed imagery (Bracken and Martin, 
1991). It was also selected as the most appropriate means for 

preparing and representing census data to be used in urban 
image classifications for three reasons: it provides the basis 
for population-weighted centroids, it takes into account lo- 
calized intercentroidal distance decay functions, and it pre- 
serves the total volume under the surface. By calculating 
each census tract centroid as the population center-of-mass, 
the model ensures that most surface cells fall within the resi- 
dential morphology of an urban area, thereby excluding non- 
built areas and non-residential urban land use. In calculating 
intercentroidal distances (with a decay function), and by en- 
suring that the total population is preserved, each cell is al- 
located a representative density value which is an estimated 
proportion of the whole area. 

With the assistance of standard GIS data query opera- 
tions, the raster-based surface model is able to reconstruct a 
much larger-scale geography of residential patterns, with 
each cell able to represent the density values of population 
and housing attributes. For each cell, census variables are 
represented as probability values at two scales, local and 
global. Local probabilities define the relative proportions of 
each variable a,  composed of J states (for discrete) or J values 
(for continuous) of each cell Y, of the surface model, and as- 
suming 0 < Pr(Y,] < 1, where i = 1, 2, . . . , 1; and X,Pr(Y,) = 
1. These local probabilities associated with discrete surface 
cells are used at both the training stage, as well as for post- 
classification sorting. Global probabilities are independent of 
the surface model and determine the relative proportions for 
each variable within a defined area of the image, or stratum, 
and again assume 0 < Pr(a,) 5 1, where j = 1 ,  2, . . . , I; and Z, 
Pr(a,] = 1. These global probabilities associated with varia- 
bles a, are used directly in the Bayes' modified rule as 
weights, or a priori probabilities, for each spectral class. 

Classification Strategy 
Training Area Selection 
Census surfaces using local probabilities bring into urban im- 
age classification for the first time a reliable and consistent 
means with which to select training samples based on census 

432 M a y  1998 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING 



Figure 2. Census tracts (enumeration districts in the UK) with population- 
weighted centroids of Bristol, England. Note that the sizes of the tracts 
represent residential density, and these closely coincide with different areas of 
the SPOT HRV-xs background image. Larger in the downtown area and rural 
periphery, but much smaller in the suburbs. Also, centroids are population 
weighted and must fall within a built area. 

I 

Figure 3. Generalized training samples and post-classification sorting using the 
residential census surface and SPOT image. Non-residential areas, represented 
by low residential probabilities, are readily apparent at A (downtown) and B 
(industrial estate); whilst high probabilities are evident in suburbs C and D. Y 
indicates areas classified as residential but not coincident with the surface 
(bare soil), and Z is represented by the surface but not coincident with the 
residential class (heavily forested community). 



distributions. The process of signature extraction, however, 
still relies on interpretation skills, but these surfaces are a 
way of increasing the amount of information on urban func- 
tional characteristics available to the analyst. This additional 
information can then be used to differentiate between similar 
urban classes as well as to improve the quality of the class 
label. When selecting class signatures, there is a trade-off be- 
tween having a sufficiently large sample size to ensure accu- 
rate statistical parameters used by classifiers, and restrictive 
enough to ensure class separability. It is essential not to ex- 
clude any important pixels that would contribute to the rep- 
resentation of the class, but it is equally essential from a 
computational standpoint not to include redundant pixels in 
the classification. Therefore, there needs to be a balance be- 
tween sample size and sample error (Curran and Williamson, 
1986), because the generation of representative training sta- 
tistics is sometimes more important for obtaining accurate 
classifications than is the selection of classifier algorithm it- 
self. Generating training statistics for spectral classes that are 
spectrally distinct and mutually exclusive do not pose prob- 
lems. Difficulties arise with images of urban areas where het- 
erogeneous land cover leads to severe spectral variability and 
where uni-modal class statistics are not easily selected. 

It is argued here that, although the spatial resolutions be- 
tween image pixels and surface cells are different, their mis- 
match still enables the generation of sensible training statis- 
tics. The following line of argument may clarify this. SPOT-XS 
images are commonly resampled and represented at a 20-m 
spatial resolution, while the surface model produces cells 
with an optimal 200-m representation (for standard British ur- 
ban areas) (Martin and Bracken, 1991). This means that, when 
spatially integrated, a single surface cell will cover 100 image 
pixels. As training samples are generated from contiguous 
groups of pixels representing areas, not points, this resolution 
imbalance is more of a benefit than a hindrance. Training 
samples of land-cover characteristics can be collected within 
the spatial limits of surface cells representing associated cen- 
sus functional local probabilities (Quarrnby et al., 1988). How- 
ever, it must be stressed that the surface model is only an 
approximation to the residential geography of an urban area. 
As such, the analyst should only use the model as a flexible 
framework within which to base sampling decisions. 

Post-Classification Sorting 
The other use of census surfaces is in post-classification sort- 
ing. This is simply the resolution of potentially misclassified 
pixels, and the role of the surfaces is to verify the classifica- 
tion of the residential land-use category from other built land 
covers. In this capacity, the surface model closely follows the- 
oretical assumptions in the use of contextual model-based ap- 
proaches to the segmentation of satellite imagery. The 
essential reasoning of such approaches is primarily based on 
the ability to incorporate context more formally into the inter- 
pretation of a scene. The method proposed here involves the 
use of census surfaces as simple, spatially approximate con- 
textual devices for "weeding out" potentially misclassi£ied res- 
idential pixels. The implementation relies on the spatial 
registration of the residential classified stratum with the resi- 
dential surface to common geometrical co-ordinates. Acting 
very much as a template, surface cells are then used to deter- 
mine whether pixels classified as residential fit within the ap- 
proximate spatial pattern of the local probabilities of the 
residential surface. If pixels clearly do not conform, they are 
then labeled as potentially misclassified, and will either await 
further verification (e.g., ground survey, topographic maps, or 
aerial photographs) or will be eliminated. Most of these elimi- 
nated pixels are expected to be outside the main urban areas, 
representing quarries, exposed soil, and other land-cover types 
with reflectance characteristics similar to built structures. 

Modified MaximumLlkelihood Classifier 
The third, and final component of the classification strategy 
is the Bayesian modification to the conventional maximum- 
likelihood (ML) classifier. The Bayes' classifier has already 
been successfully applied to the physical landscape (Strahler, 
1980; Maselli, et al., 1992; Foody et al., 1992), but not until 
most recently has it become operational in an urban context 
(Sadler and Barnsley, 1990; Mesev et al., 1998). This is an 
interesting anomaly because it is exactly when classes are 
closely related, as in urban environments, that modified ML a 
priori probabilities have been documented to have the most 
effect (Haralick and Fu, 1983; Tom and Miller, 1984; Mather, 
1985). As long as a priori probabilities are reliably calculated 
using ancillary information and applied to feature space that 
contains mutually exclusive classes, classifications should be 
more accurate. To preserve these assumptions, a priori prob- 
abilities will be calculated with reference to census data and 
applied to stratified feature space that contains all mutually 
exclusive classes. A brief synopsis of the modification to the 
ML algorithm should be helpful. 

As a parametric classifier, the ML algorithm relies on 
each training sample being represented by a Gaussian proba- 
bility density function, completely described by the mean 
vector and variance-covariance matrix using all available 
spectral bands. Given these parameters, it is possible to com- 
pute the statistical probability of a pixel vector being a mem- 
ber of each spectral class (Thomas et al., 1987). The goal is 
to assign the most likely class w,, from a set of N classes, w,, 
. . . , w,, to any feature vector x in the image. A feature vec- 
tor x is the vector (x,, x,, . . . , x,), composed of pixel values 
in M features (usually, spectral bands). The most likely class 
w, for a given feature vector x is the one with the highest a 
posteriori probability Pr(w, I x). Therefore, all Pr(w, l x), j E [I 
. . . N] are calculated, and w, with the highest value is se- 
lected (Fukunaga and Hummels, 1987). The calculation of 
Pr(w, I x) is based on Bayes' theorem: i.e., 

On the left-hand side is the a posteriori probability that a 
pixel with feature vector x should be classified as belonging 
to class w,. The right-hand side is based on Bayes' theorem, 
where Pr(x l w,) is the conditional probability that some fea- 
ture vector x occurs in a given class, in other words, the 
probability density of w, as a function of x. Supervised clas- 
sifications, such as the ML, derive this information from 
training samples by parametrically assuming normal class 
probability densities and estimating the mean vector and co- 
variance matrix. The modification to the ML is Pr(w,) which 
is the a priori probability of the occurrence of w, irrespective 
of its feature vector, and as such is open to estimation by a 
priori knowledge external to the remotely sensed image. Ex- 
ternal a priori knowledge will typically include information 
on the distribution and relative areas covered by each class 
in the study scene, which is most readily handled by a GIS. It 
follows that the accuracy of class priors is at best equal to 
the quality of ancillary a priori knowledge. To further clarify 
in image classification terms, a priori probabilities can be vi- 
sualized as a means of shifting decision boundaries to pro- 
duce larger volumes in M-dimensional feature space for 
classes that are expected to be large and smaller volumes for 
classes that are expected to be small. The denominator in 
Equation 2, Pr(x), is the unconditional probability density 
which is used to normalize the numerator such that 

Typically, ML classifiers assume a priori probabilities to 
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- - 

Residential Density Categories (dwellingslha.) 
- 

low medium high tower 
Settlement density density density blocks 
Bdstol < 18 18 - 25 26 - 69 70 > 
Nonvich < 22 22 - 33 34 - 75 76 > 
Swindon < 20 20 - 29 30 - 129 130 > 
Peterborough < 21 21 - 34 35 - 147 147 > 

- - 

Average < 20 21 - 30 31  - 105 105 > 

be equal and assign each Pr(w,) a value of 1.0. However, vari- 
ations in a priori probabilities can be an important remedy 
for the problem of spectrally overlapping urban classes. If a 
feature vector x has probability density values that are signif- 
icantly different from zero for several classes, it is not incon- 
ceivable for that pixel to belong to any of these classes. 
When selecting a class solely on the basis of its spectral 
characteristics, a large probability of error inevitably results. 
The use of appropriate a priori probabilities, based on reli- 
able supplementary information, is one way to reduce this 
error in class assignments. Moreover, it would seem intui- 
tively more sensible to suggest that some classes are more 
likely to occur than others. In this paper, these a priori prob- 
abilities will be generated from census global probabilities, 
and applied to four urban images which have been stratified 
using training samples and post-classification sorting based 
on census surfaces. 

Four Settlements in the United Kingdom 
Study Areas and Materials 
The classification strategy outlined above will now be tested 
on four medium-sized settlements in the United kingdom us- 
ing a SPOT HRV(XS) image for the city of Bristol (320,000 pop- 
ulation; 145,000 households), taken on 17  May 1988; and 
two Landsat 5 (TM) scenes of Swindon (347,000 and 65,000), 
taken on 30 October 1988, and of Norwich (202,000 and 
90,000) and Peterborough (126,000 and 53,000), taken on 15 
July 1989. Census data are taken, and surfaces generated, 
from the UK 1991 Census of Population (OPCS, 1991). All 
processing is carried out using UNIX-based ERDAS (IMAGINE, 
8.2) proprietary software (ERDAS, 19961, along with a suite 
of purpose-written C and FORTRAN programs. 

Methodology 
The methodology is based on a series of hierarchical stratifi- 
cations whereby each scene is systematically classified into a 
succession of urban land covers/land uses. The first segmen- 
tation is generated by a standard ERDAS ISODATA unsuper- 
vised classification, and produces a general binary distinc- 
tion between built and non-built land covers. The built 
stratum is then classified into residential and non-residential 
land use using the modified maximum-likelihood estimator 
and supervised by training samples based on the residential 
census surface. Figure 3 illustrates how superimposing the 
built image stratum (shown darker) and the residential sur- 
face (shown brighter and coarser) can reveal clear distinc- 
tions between residential and non-residential land use in 
Bristol. Indeed, the surface is such a reasonable approxima- 
tion with the image that reliable training areas can be easily 
inferred, for example, non-residential areas corresponding to 
the central business district (downtown) (labeled A), and an 
outlying industrial estate (B). Residential density categories 
are also trained using census surfaces in the same manner. 
This time, the residential image stratum is stacked with cen- 
sus surfaces representing four levels of residential density. 
These are low, medium, high, and tower blocks, and are cal- 

culated by the average number of dwellings per hectare, 
which in turn are derived from the average ratios between 
census counts and census tract areas (Table 1). In Figure 3, 
training samples for these density categories are selected by 
surfaces cells of high local probability of occurrence. For in- 
stance, the area marked (C) may be used for high density, 
and (D) for low density. 

The same residential surface is also used to assist post- 
classification sorting of the residential stratum by removing 
misclassified pixels. The circles, labeled (Y) in Figure 3, rep- 
resent features that are not covered by the surface, and, upon 
further investigation using ground and collateral information, 
these were deemed not as non-residential but as exposed soil 
and agricultural fields. The area labeled (Z) illustrates a third 
scenario and corresponds to an area of surface representation 
but scarce image representation. An investigation into this 
case later found that localized dispersed housing was par- 
tially hidden by a heavily forested habitat and hence mis- 
classified from the SPOT image. 

Once sufficient class signatures are collected for residen- 
tial, non-residential, and each of the four residential density 
categories, the built and residential strata of the SPOT image 
are classified using these samples, and global census proba- 
bilities in the form a priori probabilities within the maxi- 
mum-likelihood discriminant function. In the uK 1991 
Population of Census (OPCS, 1991), residential density is 
measured by reference to the type of building as well as the 
number of dwellings per census tract. The majority of build- 
ing types include detached housing, which corresponds to 
low density, semi-detached to medium, terraced to high, and 
apartments to tower blocks. As a consequence, a scaling ratio 
is needed to convert these census categories into ones of 
density categories and, at the same time, preserve relative 
areal proportions. Using stereoscopic aerial photographs, 20 
samples of dwelling type sizes were generated, and average 
relative size ratios between dwelling types were constructed. 
The ratios were 1 detached dwelling to 1.5 semi-detached, 1 
detached to 2.25 terraced, 1 semi-detached to 1.5 terraced, 
and 1 detached to 10 apartments (Table 2). Although these 
are approximations, they are still more realistic than assum- 
ing absolute linear building type relationships. The a priori 
probabilities are then calculated and inserted as follows. 

Consider z, as the census variable "residential building 
type" (where k: 1 = detached, 2 = semi-detached, 3 = ter- 
race, and 4 = apartment blocks). When stratified into exclu- 
sively residential feature space, the four classes will have A 
pixels with feature values x,, where x,, . . . , x, are not neces- 
sarily mutually exclusive. The objective is to find the proba- 
bility that a random pixel (within the residential stratum of 
the image) will be a member of a spectral class w, (where j: 1 
= low density, 2 = medium density, 3 = high density, 4 = 
tower blocks), given its density vector of observed measure- 
ments x, in m-dimensional feature space and that it belongs 
to ancillary class z,, described as 

TABLE 2. CENSUS a priori PROBABILITIES AND SCALING FACTORS 

Census a priori probabilities 

low medium high tower 
Settlement density density density blocks 

Bristol 0.1145 0.3779 0.4686 0.0390 
Norwich 0.4240 0.3027 0.2393 0.0339 
Swindon 0.3014 0.3642 0.3138 0.0210 
Peterborough 0.3625 0.3500 0.2648 0.0227 

Scaling 1.00 1.50 2.25 10.00 
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Figure 4. Area estimation errors under conditions of equal and unequal a priori probability classifications. 

It is also assumed that the effects of zk are external to the 
original generation of the mean vector and covariance matrix 
of w,. As a result, the likelihood function Pr(w, I x) is unal- 
tered by the introduction of zk, but is simply modified by the 
conditional probability 

This is a process of identifying the association between spec- 
tral class w, with census variable z,. For example, the spec- 
tral class labelled as low density residential would be di- 
rectly associated with a conditional probability of the census 
variable "detached dwellings." In effect, w, is weighted by 
the probability of z,, producing the a priori probability of 
Pr(w,). In our example we assume that the a priori probabili- 
ties of each of the four dwelling types exist in inclusive M- 
dimensional feature space, so that Pr(w,) + Pr(w,) + Pr(w,) + 
Pr(w4) = 1.0. The probability densities d,, = Pr(x, I w,), d,, = 
Pr(x, I w,), d,, = Pr(x, I w,), d,, = Pr(x, I w,), are known for each 
pixel. Let I,, be the shorthand for the a posteriori probability 

Pr(w, I xi,zl) that pixel i belongs to class w,, and let pi be the 
shorthand for the a priori probabilities. The Bayesian modi- 
fied ML is now represented as 

d,, PI 

11' = d.1~1 + 4 2 ~ 2  + 4 3 ~ 3  + d.4~4. 

Likewise, I,, = Pr(w, I x,,z,), I,, = Pr(w, I x,,z,), and I,, = 
Pr(w4 I x,,z4) may also be calculated, and, of course, the sum 
of the four a posteriori probabilities equals 1.0, 

Results 
The complete methodology is repeated for all four settle- 
ments. From Figure 4, it is readily apparent that classifica- 
tions generated using census-assisted training area selection, 
post-classification sorting, and modified a priori probabilities, 
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TABLE 3. SITE-SPECIFIC ACCURACY ASSESSMENT OF BRISTOL, CLASSIFIED UNDER ( A )  EQUAL a prior/ PROBABILITIES AND UNSUPERVISED METHODS (6) CENSUS-ASSISTED 
UNEQUAL a priori PROBABILITIES, AND TRAINING SAMPLE SELECTION AND POST-CLASSIFICATION SORTING. NOTE: NUMBER OF CORRECT SAMPLE POINTS I N  BOLD AND 

PERCENTAGE CORRECT I N  PARENTHESES; WITH CLASSIFICATION STRATA SHOWN BETWEEN BOLD LINES, AND 250 SAMPLE POINTS I N  EACH STRATUM 

CLASSIFIED REFERENCE DATA 

CLASSIFIED REFERENCE DATA 

in most cases, resulted in more accurate areal estimates with 
lower percentage errors and smaller standard errors. Refer- 
ence data on the areal coverages of residential density cate- 
gories were calculated directly from the population census. 
However, there do not seem to be any clear distinctions be- 
tween density categories, with no systematic pattern to the 
errors. Perhaps multitemporal images and further case stud- 
ies would provide some indication of whether some land 
uses have inherent propensity to over or under predict class 
areas. Only then can adjustments be made both to the Bayes' 
modifier, class definitions, and scaling factors. 

A detailed site-specific accuracy assessment was con- 
ducted to examine more closely the effects of the overall 
methodology. Table 3 summarizes the results from the Bris- 
to1 stratified classifications under (a) standard supervised 
methods, and (b) a priori probabilities modified using census 
data, and training sample selection and post-classification 
sorting using the residential and residential density category 
census surfaces. The strata were each verified by 250 random 
samples of ground truth points, collected at distinguishable 
locations in the image (usually at main road junctions), by 
manual observation. The built stratum was generated by an 
unsupervised classification, and so the results are the same 
in both (a) and (b). However, kappa coefficients for classifica- 
tions using the census-assisted methods improved markedly 
for both the residentialtnon-residential, and residential den- 
sity strata. In the former, the greatest improvement was in a 

number of samples correctly classified as non-residential 
(mostly on the urban periphery). A larger increase in the 
kappa, from 0.607 to 0.737, was calculated for the residential 
density stratum, which can be attributed to a combination of 
more informed training areas and responsive class a priori 
probabilities. These results are certainly comparable with 
other urban land-use classification studies, and seem to sug- 
gest that further research on the use of additional informa- 
tion on urban functional characteristics (such as census data) 
should be seriously investigated, or at least welcomed, into 
urban image classifications. 

Conclusions 
This paper has called for greater integration between func- 
tional data and remote sensing in the much neglected field of 
urban image classification. It has argued how such attribute 
data (handled by GIS) can make substantial in-roads into the 
quality of information that can be used to supervise training 
sample selection, post-classification sorting, as well as the 
application of stratified census probabilities in a modified 
maximum- likelihood classifier. On the whole, tabular census 
and census surfaces have brought a number of benefits to 
standard image classification by 

Improving the a priori probabilities of spectrally overlapping 
urban categories. 
Providing a raster-based data structure for easier integration 
with image data. 
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By allowing surfaces to be unconstrained by zonal boundaries 
and transforming point-based centroids into areal surfaces, 
they thereby satisfy conditions for training sample selection. 
Representing urban functional attributes within the physical 
layout of the urban built form. This ultimately will provide 
scope for representing other human-related data, including 
postal information and address-matching. 
Creating a fully automated, nationally available vehicle for 
consistent local- and regional-scale information. These exten- 
sive small-scale classification improvements can assist small- 
scale spatial analyses of the form and structure of entire ur- 
ban systems, both spatially and temporally. 

The  repercussions a n d  spin-offs from this work are  par- 
ticularly aimed at  urban monitoring a n d  analysis a t  the  city- 
wide  a n d  regional level. Surfaces of human-related activities 
wil l  allow various aspects of demographic, socio-economic, 
a n d  housing characteristics to  b e  modeled within the  struc- 
tural limits of urban morphologies outlined by  image data. 
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