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Abstract 
We generated a detailed forest type map of the dominant 
canopy species within northwestern Connecticut using multi- 
seasonal Landsat Thematic Mapper (TM) data which were 
ground referenced with the Global Positioning System (GPS). 
The map was designed as a calibration layer for a spatially 
explicit forest dynamics model we have developed, called 
SORTIE, and will allow us to test the model's effectiveness in 
predicting landscape level patterns. The precisely located 
field data were used to derive the forest class signatures used 
in the classification. Combining the six reflective bands each 
from spring, summer, and fall Landsat TM images to create 
an 18-band composite allowed for genus level forest classifi- 
cation precision. We delineated a total of 33 forest classes: 
20 dominant types with 13 additional sub-classes represent- 
ing differing understory composition. Accuracy assessment 
using the Gopal-Woodcock fuzzy set process returned an 
overall forest class accuracy of 78.9 percent a t  the proce- 
dure's Acceptable level. 

Introduction 
The field of remote sensing has added greatly to our ability 
to understand forested systems, with the production of in- 
creasingly detailed maps and attribute sets, from the level of 
the stand to the landscape. Surprisingly, few studies have 
been published which document efforts to use satellite data 
to map the mixed deciduous temperate forest types of the 
northeastern United States at Anderson Level 2 or better 
(Anderson et al., 1976). The many broad scale efforts under- 
taken (Brown et al., 1993; Goward et al., 1985; Loveland et 
al., 1991; Townshend et al., 1991; Zhu and Evans, 1994) 
have delivered regionally generalized cover types with the- 
matic and spatial resolutions too broad to assist adequately 
local forest researchers and resource managers focusing on 
smaller scales. The few remote sensing studies analyzing for- 
ested systems of the Northeast (Bryant et al., 1980; Herwitz 
et ul., 1990; Nelson et al., 1984; Rock and Vogelmann, 1989; 
Vogelmann, 1988; Vogelmann and Rock, 1989) have effec- 
tively omitted attempts to delineate among deciduous forest 
t v ~ e s .  
d l  - 

Acceptable estimates of detailed forest cover for New 
England and the compositionally similar Great Lakes States 
are now being obtained by researchers using multi-seasonal 
remotely sensed imagery. Using phenological change infor- 

J.G. Mickelson and D.L. Civco are with the Department of 
Natural Resources Management & Engineering, University of 
Connecticut, Storrs, CT 06269 (jmickel@canrl.cag.unconn. 
edu; dcivco@canrl.cag.uconn.edu). 

J.A. Silander is with the Department of Ecology and Evolu- 
tionary Biology, University of Connecticut, Storrs, CT 06269 
(silander@uconnvm.uconn.edu). 

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING 

mation in a layered approach, Wolter et al. (1995) have re- 
cently mapped forest classes in northern Wisconsin at the 
genus a n d  species level, where previously only generalized 
Anderson Level 2 Iconiferous/deciduous/mixed1 delineation 
was achieved ( ~ a u k r  et al., 1994; Beaubien, 19%; Benson 
and DeGloria, 1985; Karteris, 1990). Slaymaker et al. (1995) 
obtained class detail for the forests within New England at 
Anderson Levels 3 and 4, with a total of 30 forest classes, us- 
ing GPS-referenced videography to interpret a summer/fall 
clustered TM image sequence. 

Vast and rapid improvements in technological capabili- 
ties have no doubt facilitated much of this progress. Access 
to faster and more capable computer platforms has aided our 
ability to store and process larger and more detailed image 
and attribute sets. The Global Positioning System (GPS) has 
provided a precise and cost-effective ground referencing 
method to aid in relating the information from multi-tempo- 
ral and multi-source digital data layers to the patterns and 
processes recorded within field plots. These advances have 
allowed us to extend the scope of our analysis of the spatial, 
spectral, and contextual patterns within natural systems 
across more complete four-dimensional fields; X, Y, Z (eleva- 
tion), and T (time). We can, in effect, more effectively recog- 
nize and incorporate patterns from a wider array of source 
data. For instance, Lee et al. (1989), Franklin and Peddle 
(1989), and Woodcock et al. (1994) have shown that adding 
spatial or spectral texture information for coniferous and 
mixed forest types can significantly improve map classifica- 
tion accuracy. Linking biogeographic data with knowledge of 
specific species response patterns to variables such as soils, 
elevation, slope, and aspect has evolved as a commonly ac- 
cepted method for improving vegetation maps in many areas 
(Damman and Kershner, 1977; Damman, 1979; Bolstad and 
Lillesand, 1992; Lee et al., 1992; Brown et al., 1993; Good- 
child, 1994). Tracking differences in spectral reflectance at 
the landscape scale level with multi-date imagery allows us 
to detect the apparent change of cover type at a specific geo- 
graphical location, for example, deforestation (Varjo, 1996) or 
the emergence and senescence of a wheat field (Reed et al., 
19941. 

The overall purpose of our study was to develop a de- 
tailed forest-cover type map as a calibration layer for a forest 
dynamics model we have developed, named SORTIE. SORTIE 
is a spatially explicit explanatory and predictive forest dy- 
namics model that was calibrated from field data to approxi- 
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Figure 1. Study site location. 04 May 1988. TM Band 5 .  

mate stand level interactions of individual trees. It was 
constructed from four sub-models that estimate performance 
parameters for propagule dispersal, recruitment, growth, and 
mortality as well as functions of local resource availability, 
primarily light (Pacala et al., 1993). Accurate predictions of 
the dynamics and species compositions of stands have been 
produced (Pacala et al., 1996) for intermediate soil moisture 
and nutrient conditions. 

Among our project goals was the production of an inde- 
pendent test of a landscape version of SORTIE. For this pur- 
pose, a map depicting the region's ten dominant canopy 
trees and forest types was generated to test the model at 
varying scales and levels of complexity. Because we wished 
to study apparent vegetation gradient relationships derived 
from overlays of our output map with ancillary digital layers 
(soils, elevation, slope, aspect) and compare them with 
SORTIE outputs, biogeographic data were not utilized to aid 
this portion of the classification. Only the spectral patterns 
from the TM data were considered in order to avoid circular- 
ity in the classification and subsequent overlay process. The 
results from the forest type map and biogeographic data 
overlays are reported elsewhere (Mickelson, 1997). The ob- 
jective of this project was to assess whether the spectral pat- 
terns contained within multi-seasonal TM data could be used 
to improve discrimination among the forest canopy species 
in northwestern Connecticut. This paper describes the utili- 
zation of multi-seasonal TM data and GPS-referenced ground 
data to produce a forest type map at Anderson Levels 3 and 
4. 

Methods 
Study Site 
The study site comprises 16 USGS 7'12-minute quadrangles in 
the northwestern highlands of Connecticut, an area of approxi- 
mately 240,000 hectares (Figure 1). The dominant forest-cover 
types have been described as transitional between oak-hickory 
central hardwood and northern hardwood forest associations 
(Eyre, 1980). Soils are predominantly inceptisols with occa- 
sional spodsolic areas and span from rich moist calcareous 

bottomlands to dry, thin nutrient poor ridges. Relief ranges 
from 150 to 550 metres above sea level. The underlying geo- 
logical formations are highly metamorphosed Precambrian 
gneisses and shists with inclusions of limestone and marble. 
Glacial till and glacio-fluvial deposits overlie most of the 
bedrock. Rainfall averages 1220 mm per year and is evenly 
distributed throughout the year. 

The U. S. Forest Service (Dickson and McAfee, 1985) 
lists the ten dominant species for Litchfield county, in rela- 
tive abundance, as red oak (Quercus rubra L.), red maple 
(Acer rubrum L.), hemlock (Tsuga canadensis L.), white pine 
(Pinus strobus L.), American beech (Fagus grandifolia Ehrh.), 
sugar maple (Acer saccharum Marsh.), white ash (Fraxinus 
americana L.), yellow birch (Betula allegheniensis Britt.), 
white oak (Quercus alba L.), and black cherry (Prunus sero- 
tina Ehrh.). These are also the species for which SORTIE was 
calibrated. Common understory associates which we found 
to affect spectral responses include mountain laurel (Kalmia 
latifolia L.) and juvenile hemlock. Intensive land-use prac- 
tices over the past 300 years (Egler, 1940; Winer, 1955; West- 
veldt et al., 1956; Foster, 1992) include charcoaling of 
hardwoods and intensive softwood harvesting, with most of 
the landscape having been cleared and allowed to regenerate 
repeatedly. Such widespread impacts have helped lead to the 
great compositional and structural heterogeneity of today's 
forest (Foster, 1993). 

GPS Field Sampling 
Field sampling was conducted according to a modified Dam- 
man method (Damman and Kershner, 1977), with all sites be- 
ing sampled prior to image classification. The purpose was to 
provide a detailed characterization of the composition and 
structure of each sample plot (SP) on a per-pixel basis for can- 
opy and understory, and to relate those features to the corre- 
sponding spectral patterns within the layered Tiv~ image. The 
percent composition (total of 100 percent) for each canopy 
species greater than 10 cm in diameter was visually estimated 
for a 30-m radius at 405 SPs. Additional estimates were taken 
for the type and percent composition of understory (2 to 5 
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TABLE 1. KMEANS CLUSTER/CLASS-SUBCLASS DESCRIPTORS 

1. RO 22. NHd/Be/SM 
Red oak dominated stands Northern hardwood stands dominated by beech 
Mean 83% min. 70% with other hardwoods minor components. Beech mean 35% min. 17% with red maple, sugar maple, 

2. RO/LU- as above with mt. laurel understory yellow birch. 
3. ROIMx 23. NHd/Be/SM/HU - as above with hemlock understory 

Red oak stands with mixed hardwoods. 24. NHd/YB/RM/He 
Red oak mean 55%, min. 35% with mixed hardwoods. Mixed northern hardwoodlconiferous stands 

4. RO/MX/LU - as above with mt. laurel understory Dominated by yellow birch, mean 30% min. 10% with red 
5. RO/MX/HU - as above with hemlock understory maple and hemlock 

6. OAK/Mx No Subclass 
White oak dominated stands 25. MxHd 
Mean 40% min. 20% with chestnut oak, red oak, red maple. Mixed hardwood no specific dominance. 

7. OAK/Mx/LU - as above with mt. laurel understory Mostly red oak, white ash, red maple, sugar maple, mixed 
8. RO/RM birches. 

Mixed red oak and red maple stands. 26. MxHd/HU - as above with hemlock understory 
Red oak mean 33% min. 15% min., red maple mean 29% min. 27. Mx/Hd/WP 

15% with mixed hardwood. Mixed hardwoodlwhite pine stands 
9. RO/RM/LU- as above with mt. laurel understory Dominated by black cherry mean 53% min. 35%, with white 

10. RO/RM/HU - as above with hemlock understory pine and red maple. 1 11. RM No Subclass 
Red maple dominated stands 28. WP 
Mean 63% min. 45% with mixed hardwoods White pine dominated stands 

12. RM/HU - as above with hemlock understory White pine mean 85% min. 50%. with white ash, red maple, 
13. RM/LU- as above with mt. laurel understory red oak ' 14. SM No Subclass 

Sugar maple dominated stands 29. P/MiConif 
Mean 56% min. 38% with white ash. Red pine dominated stands 

15. SM/HU - as above with hemlock understory Red pine mean 90% min. 85%. white pine, hemlock, spruce, 
16. SM/RO/Mx and mixed conifers common. 

Mixed sugar maple red oak stands No Subclasses 
Sugar maple mean 36% min. 20%, red oak mean 36% min. 20% 30. He/RM 

with white Ash and mixed hardwoods. Hemlock and red maple dominated. stands. 
No subclass Hemlock, mean 38% min. 16%, red maple mean 38% with 

17. WA/RM/Mx hardwoods. 
Mixed white Ash and red maple stands No Subclass 
White Ash mean 43% min. 20%, with red maple common and 31. He/MxHd 

mixed hardwoods Mixed hemlock and hardwood stands 
18. WA/RM/WP/Mx - as above with white pine Hemlock mean 49% min. 30% with red maple, red oak, mixed 
19. BC/SM/Mx hardwoods. 

Black Cherry with sugar maple stands with mixed hardwoods No Subclass 
Cherry mean 42% min. 25%, sugar maple mean 37% min. 15%. 32. He 
White ash common. Hemlock dominated stands 

No Subclass Mean 80% min. 65% with red maple, Beech, Yellow Birch. 

20. Be No Subclass 
Beech dominated stands 33. Sp 
Beech mean 67% min. 50% with sugar maple, red oak, ana Black or red spruce dominated stands 

hemlock Mean 91% min. 85%. With minor components of hemlock and 
21. Be/Hu - as above with hemlock understory red maple. 

No Subclasses 

metres in height) and herb layer (1 to 2 metres) for the ever- 
green species, hemlock and mountain laurel. Hemlock unders- 
tory (HU) and laurel understory (LU) indices were calculated 
by multiplying the total percent cover of the understory and 
herb layer by the percent composition accounted for by either 
species. Index values ranged from 0 to 25, with 0 representing 
a site with no sub-canopy component to 25 for a site com- 
pletely covered by a combination of either species. All sites 
were within three miles of a road in order to reduce travel 
time between SPS. Three-hundred and ten of the plots were se- 
lected to be at least 150 meters from a boundary with a differ- 
ing composition or structure type. This was done to maintain 
accurate site depictions, once GPS and satellite pixel misregis- 
tration (optimally, 2 to 5 metres and 15 metres, respectively) 
were taken into account. We received data for another 95 
plots, which were acquired in a random manner, with plots 
falling within a compositional gradient between cover types. 
Universal Transverse Mercator eastings and northings for each 
plot were determined by averaging 180 differentially corrected 
GPS point readings. Field checks on Connecticut geodetic sur- 

vey monument markers showed the GPS accuracy to be within 
2 to 5 metres. 

Forest Cover-Type Class Generation 
We wished to develop and test a reproducible vegetation 
classification procedure, which would be constructed from 
the TM spectral data alone. Existing classifications, which are 
based on vegetation or taxonomic units alone, may not have 
possessed a sufficiently unique spectral signal to allow for 
adequate class separability (Treitz et al., 1992; Schreiver and 
Congalton, 1995). For this reason, we started by classifying 
the 405 SPS using a K-Means clustering process to produce 
20 forest type clusters. Each of these 20 classes was sub-clas- 
sified based on percent composition of hemlock or mountain 
laurel in the understory, yielding an additional 13 classes 
(Tables 1 and 2). Output statistics for the clustered classes 
reported minimum and mean percent compositiorl for the ten 
dominant canopy species as well as the understorv compo- 
nent. To avoid obvious confusion, none of the 20 dominant 
classes that contained more than 10 to 1 5  percent hemlock 
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TABLE 2. PERCENT SPECIES COMPOSITION FOR THE FINAL 33 FOREST COVER TYPES. I N I T I A L  GROUPING OF SPECIES INCLUDED: OAK, ALL OAKS; RM, RED MAPLE; SM, 
SUGAR MAPLE; WA, WHITE ASH;  BC, BLACK CHERRY;  BE, A M E R I C A N  BEECH;  BRCH, ALL BIRCHES; WPM, WHITE P I N E ;  HE, EASTERN HEMLOCK; SP, ALL SPRUCE; OTH, 

OTHER GENERA; HU, HEMLOCK UNDERSTORY INDEX; LU, MOUNTAIN LAUREL UNDERSTORY INDEX. 

Class Spp. Composition (O/O) 'Total 100 

Class 
Number Forest Class Oak KM SM WA BC Be Brch Wpm He Sp 0 th  HIJ LU 

RO 
RO/LU 
RO/Mx 
RO/MX/HTJ 
RO/MX/LIJ 
OAKIMx 
OAK/Mx/LU 
RO/RM 
RO/RM/HU 
RO/RM/L U 
RM 
RM/HU 
RM/L U 
SM 
SMI f fU  
SM/RO/Mx 
WA/RM/Mx 
WA/RM/WP/Mx 
BC/MS/Mx 
Be 
Be/HU 
NHd/Be/SM 
NHd/Bs/SM/HU 
NHd/YB/RM/He 
MxHd 
MxHd/HU 
Mx/Hd/WP 
W P  
P/MxConif 
He/RM 
He/MxHd 
He 
SP 

in the canopy were stratified by the evergreen understory. 
The results of our classification would later be compared to 
currently used forest cover types (Eyre, 1980). 

Remote Sensing 
Remote sensing studies of forested systems in the northeast- 
ern United states which have focused on pattern extraction 
from within single date imagery have mostly failed to pro- 
vide detailed depictions of forested landcover, especially of 
deciduous types. (Franklin et al., 1986; Moore and Bauer, 
1990; Spanner et al., 1990; Bauer et al., 1994). Schreiver and 
Congalton (1993) showed that deciduous forest type map ac- 
curacy for the Northeast can be improved by including 
multi-seasonal satellite data in the classification procedure. 
They utilized the seasonally unique spectral patterns of nine 
southern New Hampshire forest types to delineate among 
them using spring, late summer, and early fall images. They 
concluded that the stand differences in foliar presentation 
and dieback contained within fall and spring images made 
these data superior to those acquired during the full leaf-out 
conditions of summer. However, their research focused on 
classification processes applied to and compared between 
images of individual seasons, without following patterns that 
the species might exhibit throughout the year. Slaymaker et 
al. (1995) have incorporated a spring-summer hyperclustered 
image (12 bands1240 classes) coupled with terrain and neigh- 
borhood information to provide detailed forest-type maps of 
southern New England which include seven Anderson Level 
3 forest types and 33 Level 4 subclasses. Our approach is 
similar to this, though we chose to concatenate the six reflec- 

tive bands each from three seasonal TM images. This would 
allow us to test whether analyzing the phenologically depen- 
dent spectral patterns extending across an entire growing 
season would significantly improve species discrimination. 

TM Satellite Data Selection 
Three Landsat-5 Thematic Mapper images (Path 131Row 31) 
were chosen that span seasonal and apparent phenological 
changes in the forest. These include images for spring (4 May 
19881, summer (30 August 19901, and fall (6 October 1992). 
The images were acquired as precision corrected data from 
EOSAT, and the May and October sccnes were cloud-free. The 
August scene had less than one percent cloud cover, and we 
accounted for clouds and their shadows as a combined spec- 
trally classified map unit. The May image captured early bud- 
break and pre-leafout conditions for most angiosperms in 
southern New England (Egler, personal communication, 1994) 
and was chosen to aid in the discrimination of upland decidu- 
ous, coniferous, and wetland forests and moist soil conditions. 
The August scene was used as a baseline summer vegetation 
layer depicting full leaf-on conditions. The October image was 
chosen because of its depiction of heightened color and senes- 
cent leaf condition for maples and oaks (Smith, 1992). Though 
the four-year interval between image dates would likely create 
a change class, we considered the likelihood that this cover 
type would account for more than a small fraction of the for- 
ested scene to be negligible. Thirty road intersections from 
within the study area were located within both the reference 
and test imagery, and then referenced on the ground with GPS, 
to check intra-image spatial registration. Additional inspection 
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Figure 2. DN values for three sample plots for May, August, October images. 
RO/Mx, a mixed oak/hardwood stand, its clustered hemlock understory sub- 
class RO/Mx/HU, and a hemlock dominated stand He. 

for the presence of "ghosting" along the boundaries of perma- 
nent water bodies confirmed the imagery to be approaching 
the 15-metre (0.5 pixels) RMS error of the data. 

Ancillary reference data included region-wide USGS Digi- 
tal Line Graph (DLG) road and hydrography coverages. These 
were used to check inter-image registration and alignment of 
linear features. A SPOT panchromatic image (10-m resolution) 
from May 1988 was used to verify selection of non-forest 
class cover type signatures, as were black-and-white 1: 
12,000-scale aerial photographs from May 1990. 

Signature Selection and Image Classification 
Initial exploration of our image data suggested that phenolog- 
ical sequences might be used to separate understory sub- 
classes of the dominant canopy types. Figure 2 contains the 
mean reflectance values across the three image dates for 
three forest plots: RO/Mx, a mixed oaklhardwood stand; its 
clustered hemlock understory sub-class RO/Mx/HU; and a 
hemlock dominated stand He. The stands are clearly strati- 
fied within the spectra of the May image, especially within 
the red and mid-infrared portions of the spectrum (Bands 3, 
5, and 7). The hardwood stand exhibits a heightened overall 
reflectance which is especially demonstated in the red and 
middle infrared, possibly from the early stages of leaf flush 
from the juvenile shrub/sub-canopy layer or, more likely, the 
high reflectance of dried leaf litter on the forest floor (Ripple, 
1986; Curran et al., 1991) showing through the canopy. Be- 
cause, within this scene, components of the oak canopy are 
exhibiting little leaf-out, the RO/Mx/HU stand displays a sig- 
nature more like the He than the mixed oak, because it is 1 principally the hemlock which the sensor detects. As the leaf 
canopy has fully flushed by the acquisition time of the sum- 

1 mer image, the oak masks the hemlock subcanopy, and that 
I same stand most closely matches the spectral pattern of the 

compositionally similar RO/Mx . The October TM image 
stratifies the classes somewhat further, with the RO/Mx class 
exhibiting a heightened reflectance in the near and middle 
infrared bands, without the dampening effect of the ever- 
green components. Classifications run on any single image 
would likely have sorted the classes differently, likely parti- 
tioning the RO/Mx/HU as a hemlock stand in the spring 
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scene, as hardwood in the summer, and mixed hardwood1 
conifer in the fall. We chose to include three seasons in our 
test data, because signatures exhibited across an entire grow- 
ing season (18 bands) might provide a unique spectral pat- 
tern that would not be found in any single image. 

For our classification regime, we adopted a modified tra- 
ditional hybrid unsupervised-supervised pixel-based classifica- 
tion method (Richards, 1986). Typically during a supervised 
classification, cover-type signatures are chosen by deriving the 
mean pixel values from within a user-selected region. These 
regions are generated in one of two ways. In the first, areas 
of known or assumed composition are located within a refer- 
ence data source, such as a forest stand map or aerial photo- 
graph. These areas are then located within the digital 
imagery, and boundaries are drawn around an area of inter- 
est (AOI), with the spectral properties (mean vector, variance- 
covariance, etc.) being calculated from all pixels within the 
polygon. In the second method, the signature relating to a 
single specific seed pixel is chosen from within an A ~ I ,  and 
the signatures of contiguous pixels are compared and in- 
cluded, until a preset spatial or spectral threshold is met. 

Following the second method, our forest class signatures 
were region grown within the 18-layered image, but we used 
the GPS-referenced sample points as the seed pixels. This al- 
lowed us to tie the means of the spectral signatures to the 
detailed species composition that we measured within the 
precisely located sample plots. To minimize edge effects, a 
typical spectrally grown region was limited to 8 to 15 pixels 
(0.72 to 1.35 ha) and was spatially constrained to be con- 
tained fully within a larger region of known composition, 
based on our ground survey. From the 405 sample points, 
one to three replicates for each of the 33 forest classes (total 
of 83 SPS) were selected as signatures. Within-class replicates 
were selected to account for compositional variance as well 
as a range of site conditions. Ideally, we would have liked to 
have had a greater number of test plots from which to select 
both calibration areas as well as test sites for the final classi- 
fication. Congalton (1991) recommends that an appropriate 
rule of thumb is to collect 50 samples for each map unit or 
cover type being derived. However, given the limited time 
and resources that most projects and ours operate under 



NW CT Forest Cover Tvue M ~ D  

: R"ou 
I ROlMx 
I ROIMxMU 
I ROIMXILU 

D : 8 N h u  ROlRM 

4 ROIRMMU 
ROIRMAU 

m 
1111 RNmu - RMAU 

I SM 
n SMMU 

rMW 
I WAlRMMlPlMx 

BCISMIMx 
I Be 
I BeMU 
I NHdlBelSM 
I NHdlBeISMMU 
I NHdNWRMlHe 
I xHd , ~ d M U  

m MxMdMlP 
m WP 
m PlMxConi - e / M  
m #efixHd - He 
- S  - PEOIPSS 

n Water 

- 1Metus 
0 5000 IMXX) 1m 

Plate 1. Flnal 40-class land cover/forest class~fication. 

(Thompson et al., 1996), we felt that the high quality (com- 
positional and spatial accuracy) of our plots compensated for 
the statistical question of sampling numbers. 

Signatures for seven non-forested classes - open water, 
urban, agricultural lands, barren, non-forested wetlands, 
clouds and cloud shadow, and unclassified - were visually 
selected from a 250 class ISODATA unsupervised classifica- 
tion of the 18-band image. The unclassified group contained 
those pixels within the image which we knew to be com- 
monly confused with one another (coniferous forest, conifer- 
ous wetlands, impervious surfaces, shadowed west and 
northwest facing slopes) (Franklin et al., 1986) and where 
such a confusion would lead to extreme errors. The unclassi- 
fied portion of the image represented less than 1.5 percent of 
the final output map, and will be the subject of future classi- 
fication refinements. Shadow and topographic influences on 
the data's radiometric properties were not accounted for in 
this phase of the analysis in order to retain the imagery's 
original spectral integrity. Non-forest-class masking was also 
forgone, due to minor pixel shift effects obsenred in early 
masking attempts. The final signatures were checked for con- 
fusion within an error matrix, using a minimum-distance 
metric, with all test signatures achieving less than 25 percent 
omission rates. 

A minimum-distance-to-means classifier (MDM) has been 
shown to produce accuracy results equal to or exceeding a 
maximumlikelihood (ML) decision rule in a number of land- 
cover and forest mapping efforts (Hixon et a]., 1980; Tho- 
masson et al., 1994; Zeff and Merry, 1993; Zhuang et al., 
1995). This is especially true when the multispectral data are 
not normally distributed across the information classes. In 
our own study, preliminary results comparing the two classi- 
fiers indicated that MDM also produced an image with less 
spatial heterogeneity (salt-and-pepper) at a fine scale. Third, 
because the MDM decision rule has less rigorous statistical re- 
quirements, because no covariance matrix is required, the re- 
gion grown around the GCP could be confined to a more 
spatially discrete area (i.e., contain fewer pixels) than that 
which the ML rule demands. This allowed for a more precise 
signature characterization. For these reasons, we utilized an 
MDM classifier to generate our final classification (Plate 1). 

Fuzzy Accuracy Assessment (FAA) 
Forest-cover mapping strategies must be sensitive to the spe- 
cific patterns which the vegetation for a particular locale ex- 
hibit (Beaubien, 1979; Damman, 1979; Woodcock and 
Strahler, 1987). Within the compositionally mixed forests of 
southern New England, distinct stand boundaries seldom ex- 
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ist. This makes the traditionally difficult decision of where to 
place class transition lines even more challenging. Even the 
few species that exhibit clear canopy dominance and form 
"pure," locally dense stands, e.g., oaks on ridges, red maples 
in swamps, and hemlocks and white pine in mature stands, 
follow near continuous gradations from one type into another. 
This produces great compositional variability at the stand 
level and spectral overlap (mixed pixels) at the pixel level, 
and commonly results in moderate map class uncertainty 
(Wang and Civco, 1992; Manyara and Lein, 1994). A simple 
binary accuracy assessment procedure (i.e., right versus 
wrong) seemed inappropriate for assessing the set membership 
and subsequent forest class boundaries in our study, given the 
depth of thematic and spatial detail likely to exist in our clas- 
sified map. 

We believe that membership criteria in forest classes for 
sites such as ours are best dealt with by allowing for multiple 
set memberships. Fuzzy set theory (Zadeh, 1965; Banyikawa 
et al., 1990; Wang, 1990; Manyara and Lein, 1994; Woodcock 
and Gopal, 1992; Woodcock and Gopal, 1992; Woodcock et 
al., 1994) has been shown to aid in the application of re- 
motely sensed data products by analyzing and quantifying 
vague, indistinct, or overlapping class memberships. Wang 
(1990) concluded that much of the information from within 
digital data can be lost during the course of traditional one- 
pixel-one-class classification methods, due to efforts to apply 
"hardened" or discrete classes to mixed pixels containing 
multiple cover types. Compared to traditional accuracy assess- 
ment procedures, the Gopal-Woodcock fuzzy accuracy assess- 
ment operator provides useful and otherwise lost information 
as to the magnitude and frequency of errors, and reports on 
the distribution of intraclass confusion (Gopal and Woodcock, 
1994). For these reasons, a fuzzy accuracy assessment (FAA) 
program developed at Boston University was employed to 
evaluate the mapping results (Collins, 1994). ~ Following the supervised MDM classification procedure, 

I the pixels containing the remaining 322 (405 minus 83) 
ground sample units were located within the image, and the 

I forest class assigned to those locations was recorded. As input 
into the FAA program, our 322 test SPs were arranged in a 33- ~ column (Class) by 322-row (SP) matrix. An expert evaluation 
was calculated for each SP, which grades the degree of accept- 
ability at each site for each for each of the 33 possible forest 
classes. The evaluation scale ranged from 5, for best fit, to 1,  
for poorest fit, as described in Table 3. Genus level interclass 
error among oaks (red, white, other), maples (red, sugar) and 
birches (black, yellow, paper, other) were counted as Accept- 
able as were errors where hemlock in the canopy was misclas- 
sified as hemlock in the understory. It is at the stage of 
acceptability rating that the geatest degree of subjectivity is 
introduced in a fuzzy accuracy assessment. To counter this, 
we used the simple percent mean cluster similarity index 

I (Ludwig and Reynolds, 1988) to provide an initial quantitative 
measure of fuzzy ranking. The percent similarity between two 

i classes was calculated as the sum of the minimum percent 
composition for all species that the two classes had in com- 1 mon; i.e., 

C min (Aii Ai,) 

where Aii and A, are the abundances (in percent composition) 
of all species i in samples j and k. The total percent similarity 
which was possible between two classes was 125, which in- 
cluded values for the canopy (maximum of 100 percent) as 
well as the understory index (maximum of 25 percent). Al- 
though the threshold criteria were different for many classes, 
only one Best fuzzy rank value of 5 was allowed per class, 
that of the seed class. 

The FAA program successively evaluates the impact on 
the map's accuracy that classifying each of the test sites as 

TABLE 3. FUZZY ACCURACY ASSESSMENT-EXPERT EVALUATION RANKING SYSTEM. 

Fuzzy 
Score Ranking Description 

5 Best Possible Classified as exact class 1 cluster 
4 Very Good Classified as class, subclass replicate 

or other with percent cluster similarity 
typically > 80-85% 

Acceptable Classified as other. Genus level interclass 
discrimination was accepted. e.g. red 
oak for white oak, red maple for sugar 
maple, hemlock subdominant canopy for 
hemlock understory. 
Similarity typically > 70%. 

2 Understandable, Usually correct at Anderson Level I1 (e.g. 
but wrong Coniferous, Deciduous forest), but contains 

serious problems at genus level of detail. 
Similarity < 70% 

1 Entirely wrong Absolutely wrong. 

each of the possible land-cover classes would have, and out- 
puts the results in three tables. The MAXIRIGHT operator (Table 
4) delivers a general measure of the overall accuracy of the 
map and presents the number and frequency of the ranked er- 
rors. It lists the number of test sites which ranked the MAX (5 
or Best) and those whose sites were ranked as RIGHT (3 or Ac- 
ceptable). The DIFFERENCE metric (Table 5) for a particular test 
site represents the expert score for that class minus the score 
for any other higher ranked class. The maximum value possi- 
ble (5 minus 1) is a score of 4, indicating a class which is per- 
fectly unique (no other classes fit at all) as well as correctly 
classified. In our case, it is an approximate measure of the 
amount of overlap, or uniqueness, for a class as well as a 
value for the magnitude of the map's errors. 

Traditional confusion or classification error matrices pro- 
vide a means of evaluating the thematic accuracy of a classi- 
fied image, by comparing the class assigned to a group of test 
pixels to the actual ground information at those sites. The an- 
alyst can benefit by identifying which categories are being 
confused with each other, either by being erroneously ex- 
cluded from one class (omission error), or included in another 
(commission error), and determine the seriousness of such an 
error. In an FAA procedure, the CONFUSIONIAMBIGUITY opera- 
tor provides similar though slightly different information, be- 
cause multiple classes can be acceptable for any given sample 
plot (Woodcock et al., 1992), with the number of errors pre- 
sented actually exceeding the number of test pixels. In addi- 
tion, values are provided for two levels of error. The 
CONFUSION value contains the number of instances another 
map category scored higher than a particular map class. The 
AMBIGUITY value contains the number of classes whose scores 
equaled the value for that map category. As in a traditional er- 
ror matrix, column totals represent errors of omission and the 
row totals indicate the total commission errors. 

Results and Discussion 
Overall forest class accuracy was surprisingly good, 78.9 per- 
cent at the Acceptable or HGHT level, but rather low, 13 per- 
cent, for the MAX level (Table 4). Such low MAX percentages 
are not alarming given the number and detail of classes and 
the level of compositional heterogeneity of the forest. It is 
clear that many of the more common errors within the map 
are due to intuitively obvious and generally acceptable mis- 
takes that stem from the spectral overlap that exists among 
compositionally similar forest classes (Treitz et al., 1992; Man- 
yara and Lein, 1994). Overlays of our classified forest-type 
map with ancillary data sets (soils, elevation, slope, aspect) 
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TABLE 4. FUZZY ACCURACY ASSESSMENT-MAX-RIGHT CLASSIFICATION RESULTS. MEAN MAX PERCENTAGE I S  13.35, MEAN RIGHT PERCENTAGE IS 78.88 

Class # MAX MAX RIGHT RIGHT Increase Increase 
No. Forest Type Sites Number Percent Number Percent Number Percent 

1 RO 14 3 21.43 13 92.9 10 71.4 
2 ROILU 18 1 5.56 17 94.4 16 88.9 
3 RO/Mx 12 0 0 8 66.7 8 66.7 
4 RO/MX/HU 6 0 0 5 83.3 5 83.3 
5 RO/MX/L U 10 0 0 6 60.0 6 60.0 
6 OAK/Mx 6 0 0 3 50.0 3 50.0 
7 OAK/Mx/L U 10 0 0 10 100.0 10 100.0 
8 RO/RM 11 1 9.09 10 90.9 9 81.8 
9 RO/RM/LU 8 0 0 8 100.0 8 100.0 

10 RO/RM/HU 15 0 0 14 93.3 14 93.3 
11 RM 3 0 0 2 66.7 2 66.7 
12 RM/HU 5 1 20 5 100.0 4 80.0 
13 RM/LU 3 0 0 2 66.7 2 66.7 
14 SM 11 1 9.09 9 81 .8 8 72.7 
15 SM/HU 4 0 0 4 100.0 4 100.0 
16 SM/RO/Mx 7 0 0 4 57.1 4 57.1 
17 WA/RM/Mx 10 0 0 7 70.0 7 70.0 
18 WA/RM/Mx/PU 6 1 16.67 4 66.7 3 50.0 
19 BC/SM/Mx 1 1 100 1 100.0 0 0.0 
20 Be 16 1 6.25 11 68.8 10 62.5 
21 Be/HU 9 2 22.22 9 100.0 7 77.8 
2 2 NHd/Be/SM 6 2 33.33 6 100.0 4 66.7 
23 NHd/Be/SM/HU 13 0 0 10 76.9 10 76.9 
24 Hd/YB/RM/He 8 0 0 5 62.5 5 62.5 
2 5 MxHd 12 2 16.67 10 83.3 8 66.7 
26 MxHd/HU 4 0 0 1 25.0 1 25.0 
27 Mx/Hd/ WP 12 1 8.33 9 75.0 8 66.7 
28 WP 17 9 52.94 11 64.7 2 11.8 
2 9 P/MxConif 3 1 33.33 3 100.0 2 66.7 
30 He/RM 10 0 0 10 100.0 10 100.0 
3 1 He/MxHd 21 2 9.52 17 81.0 15 71.4 
3 2 He 28 12 42.86 19 67.9 7 25.0 
3 3 SP 3 1 33.33 1 33.3 0 0.0 

Mean 13.35% 78.88% 

validated both generalized species distribution patterns we ob- 
served in the field and matched patterns output from SORTIE 
(Kobe, 1996; Mickelson, 1997). For instance, our red maple 
classes occurred more frequently on wet soils and our oak 
classes dominated higher elevations and steeper terrain, 
matching commonly described species distributions (Egler, 
1940; Winer, 1955; Damman, 1977; Kobe, 1996). Because this 
study focused on forest-type discrimination, we omitted non- 
forest classes from the accuracy assessment. 

There are several reasons immediately apparent that 
would account for many of the classification errors. The large 
number of classes, the level of compositional and spectral 
similarity among classes, and the possible need for a more 
representative and better distributed training set are among 
the obvious (Wang, 1992). Additionally, while inter-image reg- 
istration was found to approach the 0.5-pixel (15 metre) RMS 
error as stated by EOSAT, such a shift applied across three im- 
ages with such a diverse forested land-cover pattern could in 
itself create a large degree of per-pixel spectral ambiguity. In 
addition, it should be noted that, because the majority of sam- 
ple plots were specifically selected to avoid the boundary be- 
tween forest types, the final classification may not adequately 
represent "edge classes." A change class was not incorporated 
within the classification, which, given the four-year interval 
between the spring and fall images, could ideally have ac- 
counted for harvested or burned forest cover as well as regen- 
erated shrub areas. 

Much of the output classification's value and limitations 
are apparent within the Fuzzy Accuracy Assessment CONFU- 
SION and AMBIGUITY tables. While it is beyond the scope of 
this paper to discuss the detailed interactions among the 33 
forest classes, we present CONFUSION and AMBIGUITY tables for 

the three broad dominant forest cover type groups found 
within the study area. These groups include the oaks (red, 
white, other), the maples (red, sugar), and the conifers (hem- 
lock and pine). Combined, they account for more than two- 
thirds of the forest cover for the study site (Dickson and Mc- 
Afee, 1988), and compositionally, they compose a similar per- 
centage, 67 percent, of our 405 sample plots. 

Tables 6 through 8 show pair-wise comparisons of three 
sets of commonly mistaken classes, red oak (RO) and red oak/ 
mountain laurel (RO/LU) (6A and 6B), red maple (RM) and 
sugar maple (SM (7A and 7B), and white pine (WP) and hem- 
lock (He) (8A and 8B). The tables were constructed by sorting 
the combined omission errors found for each pair of classes, 
and show, in descending order, those forest types that were 
most commonly included within the two example classes. Sig- 
nificant composition overlap is apparent within the tables, 
which contain examples of the fuzzy CONFUSION and AMBIGU- 
ITY operator values. For instance, in Table 6A, the classes 
most commonly confused, or ranked higher in the classifica- 
tion than RO or RO/LU, possess a large oak component. The 
upper ten classes, which account for 74 percent of the com- 
bined sorted ommission errors, have a mean oak composition 
of 59 percent, compared to 14 percent for the remaining clas- 
ses. The upper five classes exhibit an even more concentrated 
oak component, a mean of 79 percent, as compared to 19 per- 
cent for the remaining classes, and account for 50 percent of 
the combined omission errors. Clearly, oaks are mostly being 
confused with other oaks. 

Table 6B lists the classes whose AMBIGUITY ranking 
equaled that of the RO or RO/LU class. There is nearly a two- 
thirds increase in the number of omission errors. However, an 
examination of the species compositions reveals that most of 
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TABLE 5. Fuzzy ACCURACY ASSESSMENT-DIFFERENCE TABLE. OPTIMUM DIFFERENCE VALUE OCCURS WHEN MAX Cuss VALUE Is 5 (BEST POSSIBLE) ANSWER AND 
ALL OTHERS ARE 1 (COMPLETELY WRONG), YIELDING A DIFFERENCE OF 4. 

Class No. Forest Type N -4 -3 

1 RO 14 0 1 
2 RO/LU 18 0 1 
3 RO/Mx 12 2 2 
4 RO/MX/HU 6 0 1 
5 RO/MX/LU 10 0 4 
6 OAK/& 6 1 2 
7 OAK/Mx/LU 10 0 0 
8 RO/RM 11 0 1 
9 RO/RM/LU 8 0 0 

10 RO/RM/HU 15 0 1 
11 RM 3 0 1 
12 RM/HU 5 0 0 
13 RM/LU 3 0 1 
14 S M  11 0 2 
15 SM/HU 4 0 0 
16 SM/RO/Mx 7  1 2 
17  WA/EIM/Mx 10 0 3 
18 WA/RM/Mx/PU 6 1 1 
19 BC/SM/Mx 1 0 0 
20 Be 16 1 4 
21 Be/HU 9 0 0 
22 NHd/Be/SM 6 0 0 
2 3 NHd/Be/SM/HU 13 1 2 
24 NHd/YB/RM/He 8 1 2 
2 5 MxHd 12 0 2 
26 MxHd/HU 4 0 3 
2 7  Mx/Hd/WP 12 1 2 
28 WP 17 1 5 
29 P/MxConif 3 0 0 
30 He/RM 10 0 0 
3 1 He/MxHd 2 1 1 3 
3 2 He 28 0 9 
33 SP 3 0 2 

Total Plots 322 - 

Percent - 3.4% 17.7% 
- - - -  

the errors can be understood and are Acceptable. The species 
overlap patterns are very similar to those found within the 
CONFUSION table. The upper ten classes account for 71 percent 
of the combined omission error, and have a mean oak percent 
of 54 percent, compared to 16 percent for the remaining clas- 
ses. 

The conifer-dominated classes at the bottom of the oak 
and maple CONFUSION and AMBIGUITY tables contain no com- 
mission errors, indicating a good measure of the separability 
between the oaktmaple classes and the conifer groups. The 
strength of the species spectral response patterns can be con- 
sidered to be the classification signal allowing for successful 
class separation. Conversely, the sum of the unaccounted vari- 
ables (e.g., topographic effects, canopy crown density, intra- 
class and interdata spectral variability) (Bartlett et al., 1988; 
Kharuk et al., 1992), combined with the compositional and 
spectral ambiguity due to inter-class heterogeneity, can be 
considered to be classification noise. Below an undetermined 
signal threshold, which allows for the successful separation of 
the classes at the top and bottom of the tables, the classes 
within the middle of the tables likely have low signal-to-noise 
ratios. The errors found within these classes are more difficult 
to interpret in all our tables, and likely represent actual classi- 
fication process error. 

Within the RM and SM tabies, similar CONFUSION and 
AMBIGWY patterns are found although, compared to oak, the 
maple composition is less concentrated in the upper classes; 
the overall maple signal appears to be less strong. Both maple 
species were considered interchangeable within the accuracy 
assessment, and their percentage values in the CONFUSION and 

AMBIGUITY tables are considered as a combined group. Within 
the CONFUSION table (7A), the upper ten classes contain 61 
percent of the combined ommission errors for RM and SM, 
but contain a mean of only 33 percent combined red maple or 
sugar maple versus 21 percent for the remaining classes. This 
difference is just significant, while the composition differences 
within all other tables are very significant at the 0.95 percent 
confidence level. The composition values increase slightly 
within the AMBIGUITY error table (Table 7B), with a mean 
combined maple percent of 40 percent for the upper ten clas- 
ses and 18 percent for those remaining. While not all classes 
with high maple percentages are being included within the 
higher commission levels, the significant amount of maple 
that is within the upper classes likely contributes greatly to 
both the CONFUSION and AMBIGUITY errors. 

The errors found within the WP and He classes (Tables 
8A and 8B) follow patterns which are similar to those for oak 
and maple though their interpretation involves a bit more con- 
sideration. Genus level discrimination was accepted among 
oaks and maples while we ranked errors between white pine 
and hemlock as a fuzzy value of 2, meaning "understandable 
but wrong." All of the upper ten classes within both the CON- 
FUSION and AMBIGUITY tables for WP and He contain a major 
coniferous component, 47 percent and 19 percent, respec- 
tively, within either the canopy or the sub-canopy. More spe- 
cifically, where conifer errors occur, white pine and hemlock 
are typically being misclassified as each other. For example, 
within the CONFUSION table (Table 8A), looking at He, more 
than 80 percent of the upper ten CONFUSION errors have white 
pine as dominant or co-dominant (the mean WP percentage is 
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TABLE 6. Fuzzy ACCURACY ASSESSMENT-RED OAK/RED OAK-LAUREL CONFUSION A N D  AMBIGUITY CLASS COMPARISONS. TABLE 6 A .  CONFUSION. BOLD LINE I N D I C A T E S  
UPPER TEN CLASSES, WHICH COLLECTIVELY ACCOUNT FOR 74 PERCENT OF THE COMBINED TOTAL OMISSION ERRORS FOR THE TWO CLASSES. MEAN OAK COMPOSITION 
FOR THESE TEN CLASSES IS 59 PERCENT, COMPARED TO 14 PERCENT FOR THE REMAINING CLASS. TABLE 6B. AMBIGUITY. BOLD LINE I N D I C A T E S  UPPER TEN CLASSES, 

WHICH COLLECTIVELY ACCOUNT FOR 71 PERCENT OF THE COMBINED TOTAL O M ~ S S ~ O N  ERRORS FOR THE TWO CLASSES. MEAN OAK COMPOSITION FOR THESE TEN 
CLASSES IS 54 PERCENT COMPARED TO 16 PERCENT FOR THE REMAINING CLASSES. 

Table 6A Table 6B 

OakILaurel Confusion 
Class Total Class OakILaurel Ambiguity Total 
No. Class Name RO ROILU Omission No. Class Name RO ROILU Omission 

6 OAK/Mx 3 12 15  4 RO/MX/HU 5 11 16 
3 RO/Mx 3 10  13  16  SM/RO/Mx 4 11 15 
1 RO X 10 10 5 RO/MX/L U 3 11 14  
7 OAK/Mx/L U 2 4 6 8 RO/RM 3 11 14  

10 R O/RM/L U 5 1 6 10 RO/RM/LU 1 12 1 3  
8 RO/RM 4 2 6 9 RO/RM/HU 6 6 12  

11 RM 4 2 6 7 OAK/Mx/L U 3 9 12  
16 SM/RO/Mx 3 2 5 2 5 MxHd 5 6 11 

5 RO/MX/L U 2 2 4 26 MxHd/HU 5 6 11 
2 6 RO/RM/HU 2 L 3 6 OAK/Mx 7 2 9 
2 5 MxHd 2 1 3 3 RO/Mx 6 3 9 
14  SM 2 1 3 1 7  RO/RM/LU 4 2 6 
12 RM/HU 2 1 3 2 RO/LU 5 X 5 
13  RM/LU 2 1 3 1 RO X 4 4 
1 7  WA/RM/Mx 1 1 2 12 RM/HU 2 1 3 
2 2 NHd/Be/SM 1 f 2 1 3  RM/LU 2 1 3 
15  SM/HU 1 1 2 14  SM 2 1 3 

9 RO/RM/HU 1 1 2 2 2 NHd/Be/SM 2 1 3 
2 RO/LU 2 X 2 3 1 He/MxHd 1 1 2 

2 3 NHd/Be/RM/HU 1 0 1 11 RM 1 1 2 
1 9  BC/SM/Mx 0 1 1 2 3 NHd/Be/RM/HU 1 1 2 
24 NHd/YB/RM/He 1 0 1 24 NHd/YB/RM/He 1 1 2 
3 1 He/MxHd 1 0 1 27 Mx/Hd/WP 1 1 2 
30 He/RM 0 0 0 15  SM/HU 1 0 1 
21 Be/HU 0 0 0 3 0 He/RM 1 0 1 
3 2 He 0 0 0 20 Be 0 1 1 
20 Be 0 0 0 2 1 Be/HU 1 0 1 
1 8  WA/RM/WP/Mx 0 0 0 19  BC/SM/Mx 1 0 1 
27 Mx/Hd/ WP 0 0 0 1 8  WA/RM/WP/Mx 0 1 1 
4 RO/MX/HU 0 0 0 3 2 He 0 0 0 

28 WP 0 0 0 33 S p  0 0 0 
29 P/MxConif 0 0 0 28 WP 0 0 0 
33 S p  0 0 0 29 P/MxConif 0 0 0 

Total commission 45 5 5 100 Total commission 74 105 179 

26 percent for all ten classes, compared to 8 percent for the 
remaining classes). Conversely, classes which are erroneously 
being confused with WP contain a significant He composition, 
commonly in the sub-canopy (the mean He canopy composi- 
tion for the upper ten classes is 2 1  percent versus 9 percent 
for the remaining classes, while the HU value is 7 for these 
classes compared to 3 for those remaining). The errors found 
within the AMBIGUITY table (Table 8B) are more diffuse, but 
more acceptable. As a group, the total conifer canopy compo- 
sition is relatively low for the upper ten classes, 19 percent (7 
percent WP and 1 2  percent He), though individually we find 
that seven out of the ten classes have a significant He compo- 
nent. Given the abundance of hemlock across the landscape, 
especially within mixed broadleaf-coniferous classes, such er- 
rors are understandable and even expected. 

Our initial assumptions, matching the conclusions of 
Treitz (1992), that classes which were simpler (made up of 
one or two dominant species) tend to be easier to classify ac- 
curately, proved incorrect. A simple sorting of classes by 
number of significant canopy components, from greatest to 
fewest, showed no clear or coherent trend in terms of those 
classes which consistently scored higher and those which at- 
tained poor accuracy. In our study, class composition and het- 
erogeneity seemed to have less effect on classification 
accuracy performance than did the sum of the unaccounted 
variables (Beaubien, 1979). Among the more consistent clas- 
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ses, pine and hemlock exhibited interesting patterns. They 
each had among the highest MAX classification accuracy, but 
among the lowest RIGHT; they improved little by applying the 
RIGHT metric, which is a somewhat relaxed level of accep- 
tance. This means that the classes that were right were very 
right, but that the errors were more extreme, and class accu- 
racy improved little by allowing for compositional flexibility 
or canopy-understory confusion among conifers. Among the 
single-species conifer classes, the white pine class more com- 
monly included hemlock (commission error) than the hemlock 
class included white pine. The white-pine-dominated class 
had more commission than omission errors and so tends to be 
somewhat over-represented within the map. Comparisons with 
the USFS statistics for Litchfield county (Dickson and McAfee, 
1988) confirm this pattern, with their estimates for hemlock 
accounting for nearly two to three times the areal extent of 
white pine. Knowledge of this sort is useful when considering 
methods for improving map accuracy, especially when deline- 
ating classes with overlapping composition. 

The most common DIFFERENCE value returned in our anal- 
ysis, that of -2 (Table 9), accounted for a total of 51.5 percent 
of all sample plots and cumulatively 78.5 percent of all of our 
test plots were ranked at or above this value. This suggests 
that the detail of the classes may be in excess of what can be 
reasonably and successfully resolved at the species level, us- 
ing this method. However, review of the expert evaluation de- 
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TABLE 7. RED MAPLE/SUGAR MAPLE CONFUSION AND A M E I G ~ N  CLASS COMPARISON. TABLE 7A. CONFUSION. BOLD LINE INDICATES UPPER TEN CLASSES, WHICH 

COLLECTIVELY ACCOUNT mR 61 PERCENT OF THE COMBINED TOTAL OMISSION ERRORS FOR THE TWO CLASSES. MEAN COMBINED MAPLE COMPOSITION FOR THESE TEN 
CLASSES IS 33 PERCENT, COMPARED TO 21  PERCENT FOR THE REMAINING CLASSES. TABLE 7B. AMBIGUIN. BOLD LINE INDICATES UPPER TEN CLASSES, WHICH 

COLLECTIVELY ACCOUNT FOR 58 PERCENT OF THE COMBINED TOTAL OMISSION ERRORS FOR THE TWO CLASSES. MEAN COMBINED MAPLE COMPOSITION FOR THESE TEN 
CLASSES IS 40 PERCENT COMPARED TO 18 PERCENT FOR THE REMAINING CLASSES. 

Table 7A Table 7B 

RMISM Confusion RMISM Ambiguity 
Class Total Class Total 
No. Class Name RM SM Omission No. Class Name RM SM Omission 

16 SM/RO/Mx 1 4 5 26 MxHd/HU 2 8 10 
8 RO/RM 0 4 4 13 RM/LU 0 9 9 
9 RO/RM/HU 0 4 4 17  WA/RM/Mx 0 9 9 

19 BC/SM/Mx 1 3 4 22 NHd/Be/SM 2 7 9 
17 WA/RM/Mx 3 0 3 2 5 MxHd 3 6 9 
4 RO/MX/HU 0 2 2 12 RM/HU 0 8 8 

12 RM/HU 1 1 2 15 SM/HU 2 6 8 
15 SM/HU 1 1 2 10 RO/RM/LU 3 4 7 
2 2 NHd/Be/SM 1 1 2 16 SM/RO/Mx 2 5 7 
2 3 NHd/Be/RM/HU 0 2 2 11 RM X 6 6 
2 6 &Hd/HU 1 1 2 19 BC/SM/Mx 2 4 6 
1 RO 0 1 1 5 RO/IMX/LU 1 4 5 
2 RO/LU 0 1 1 8 RO/RM 3 2 5 
3 RO/Mx 0 1 1 2 RO/LU 0 4 4 
5 RO/MX/L U 0 1 1 3 RO/Mx 0 4 4 
6 OAK/Mx 0 1 1 7 OAK/Mx/LU 0 4 4 
7 OAK/Mx/LU 0 1 1 9 RO/RM/HU 3 1 4 

10 RO/RM/LU 0 1 1 27 Mx/Hd/WP 0 4 4 
11 RM X 1 1 1 RO 0 3 3 
13 RM/LU 1 0 1 4 RO/MX/HU 0 3 3 
14 SM 1 X 1 6 OAK/Mx 0 3 3 
20 Be 0 1 1 18 WA/RM/WP/Mx 3 0 3 
21 Be/HU 0 1 1 14 SM 2 X 2 
24 NHd/YB/RM/He 0 1 1 24 NHd/YB/RM/He 1 1 2 
2 7 Mx/Hd/WP 1 0 1 2 1 Be/HU 0 1 1 
30 He/RM 0 1 1 23 NHd/Be/RM/HU 1 0 1 
3 1 He/MxHd 0 1 1 28 WP 0 1 1 
3 2 He 0 1 1 29 P/MxConif 0 1 1 
18 WA/RM/WP/Mx 0 0 0 30 He/RM 0 1 1 
25 MxHd 0 0 0 3 1 He/MxHd 1 0 1 
28 WP 0 0 0 3 3 SP 0 1 1 
29 P/MxConif 0 0 0 20 Be 0 0 0 
3 3 SP 0 0 0 32 He 0 0 0 

Total commission 12 3 7 49 Total commission 3 1 110 141 

cision tree shows that at the genus level, or the stage where a 
class was considered to be acceptable, the method works quite 
well, with an overall forest classification accuracy rivaling 
maps with far fewer and less detailed classes. The patterns 
displayed within the DIFFERENCE table also reinforce the 
broadness and frequency of class overlap. 

Summary 
The forest classification results provide encouraging support 
for the method. It is apparent that seasonal species-specific 
spectral signals, as represented within TM data, are strong 
enough to aid greatly in the mapping of the mixed deciduous 
forests of the northeastern United States. Utilizing the spectral 
patterns from within a combined spring/summer/fall image, 
we obtained satisfactory forest-type classification accuracy 
(78.9 percent) at the genus level, delineating a total of 33 for- 
est-type classes, with thematic detail as fine as Anderson 
Level 4 for sub-categorical understory classes. Preliminary dis- 
criminant analysis between the three dates indicated that 
spring and fall data are potentially more useful than those ac- 
quired during summer, and it is likely that utilizing well- 
timed image acquisition dates from within these periods, com- 
bined with specific knowledge of canopy and understory phe- 
nologies, can improve discrimination further. For detailed 
vegetation mapping, the GPS is clearly valuable for referencing 

the spectral patterns found within multi-date imagery to the 
specific vegetation composition of individual forest stands. 

The forest-type classification we adopted was tailored to- 
wards our own research needs, though such an approach has 
broad utilization for regional biodiversity and vegetation map- 
ping, forest inventorying and ecological analysis for the forests 
of the Northeast. Seasonally acquired satellite data could sup- 
ply the foundation for a hybrid vegetation classification sys- 
tem which could deliver map units approaching the Federal 
Geographic Data Committee's (FGDC) community and alliance 
level (usGS, 1996). This would greatly aid the efforts of such 
programs as the National GAP Analysis project (Scott et al., 
1993) and others needing detailed vegetative land-cover infor- 
mation. 

While it seems unlikely that vegetation cover types for 
the forests of the Northeast can be delineated consistently at 
the FGDC community or alliance level (USGSINGDC, 1996) 
when using strictly spectral information and computer-derived 
classifications, much work needs to be undertaken to evaluate 
the maximum level of vegetation information contained 
within satellite-derived remotely sensed data. A wide variety 
of techniques and methodologies are currently being em- 
ployed to improve delineation of the forests of this region, 
and it is likely that an optimum strategy would make use of 
aspects of each. Adding derived information (band ratios, veg- 
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TABLE 8. WHITE PINE/HEMLOCK CONFUSION AND AMBIGUIW CUSS COMPARISON. TABLE 8A. CONFUSION. BOLD LINE ~ ~ D ~ C A T E S  UPPER TEN CLASSES, WHICH 
COLLECTIVELY ACCOUNT FOR 58 PERCENT OF THE COMBINED TOTAL OMISSION ERRORS FOR THE TWO CLASSES. MEAN WHITE PINE COMPOSITION FOR THESE TEN CLASSES 

IS 26 PERCENT COMPARED TO 8 PERCENT FOR THE REMAINING CLASSES. MEAN HEMLOCK CANOPY COMPOSITION FOR THIS GROUP IS 21 PERCENT VERSUS 9 FOR THE 

REMAINING CLASSES. MEAN HEMLOCK UNDERSTORY VALUE IS 7 VERSUS 3 FOR THE REMAINING CLASSES. TOTAL CONIFER COMPOSITION IS 47 PERCENT FOR THE CANOPY 
WITH A SIGNIFICANT HEMLOCK UNDERSTORY COMPONENT. TABLE 8B. AMBIGUIW. BOLD LINE INDICATES UPPER TEN CLASSES, WHICH COLLECTIVELY ACCOUNT FOR 67 

PERCENT OF THE COMBINED TOTAL OMISSION ERRORS FOR THE TWO CLASSES. MEAN WHITE PINE COMPOSITION FOR THESE TEN CLASSES IS 7 PERCENT, COMPARED TO 

10 PERCENT FOR THE REMAINING CLASSES. MEAN HEMLOCK CANOPY COMPOSITION FOR THIS GROUP IS 8 PERCENT VERSUS 8 PERCENT FOR THE REMAINING CLASSES. 
MEAN HEMLOCK UNDERSTORY VALUE IS 8 VERSUS 3 FOR THE REMAINING CLASSES. 

Table 8A Table 8B 

WPITC Confusion WP/TC Ambigu i ty  
Class To ta l  Class To ta l  
N o .  Class Name WP H e  Omission No.  Class N a m e  W P  H e  Omission 

Mx/Hd/WP 
P/MxConif 
WP 
He/RM 
He/MxHd 
WA/RM/ WP/Mx 
RO/MX/HU 
RO/RM/HU 
MxHd/HU 
He 
SM/HU 
RO/RM 
RO/RM/LU 
RM/HU 
SM/RO/Mx 
RO/RM/HU 
RO/MX/L U 
Be/HU 
NHd/Be/RM/HU 
NHd/YB/RM/He 
SP 
RO/LU 
RO/Mx 
OAK/Mx 
OAK/Mx/L U 
RM 
SM 
RM/LU 
WA/RM/Mx 
BC/SM/Mx 
Be 
NHd/Be/SM 
MxHd 

Tota l  commission 

He/RM 
RM/HU 
NHd/Be/RM/HU 
NHd/YB/RM/He 
SP 
MxHd/HU 
RO/RM/HU 
RM 
SM/HU 
WA/RM/WP/Mx 
He/MxHd 
Mx/Hd/WP 
P/MxConif 
WA/RM/Mx 
NHd/Be/SM 
MxHd 
RO/LU 
RO/Mk 
OAK/Mx/LU 
He 
RO/MX/L U 
R O r n  
RO/RM/LU 
RM/L U 
SM/RO/Mx 
Be/HU 
OAK/Mx 
BC/SM/Mx 
WP 
RO 
RO/MX/HU 
SM 
Be 

Tota l  commission 72 86  158 

etation indices, or texture indices), physical data (soil mois- 
ture, slope, aspect, elevation), structural stand information 
(canopy height, percent cover, understory composition and 
density), as well as site specific vegetation knowledge (phenol- 
ogy), would likely improve the thematic map resolution of 
these forests. Improved processes and algorithms such as sub- 
pixel classifiers, resolution merging enhancements, and neural 
network classifiers might contribute to the more detailed pat- 
tern extraction capabilities that will be needed. 

TABLE 9. FUZZY ACCURACY ASSESSMENT-PERCENT AND CUMULATIVE PERCENT 
CLASS DIFFERENCE TOTALS 

Difference Value % o f  SP /Va lue  To ta l  Cumulat ive % 
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