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Abstract 
A multispectral classifier based on an alternative spectral 
representation is described, and its performance over a full 
Landsat Thematic Mapper (TM) scene is evaluated. Spectral 
classes are represented by their spectral shape - a vector of 
binary features that describes the relative values between 
spectral bands. An algorithm for segmenting or clustering TM 
data based on this representation is described. After classes 
have been assigned to a subset of spectral shapes within 
training areas, the remaining spectral shapes are classified 
according to their Hamming distance to those that have al- 
ready been classified. The performance of the spectral shape 
classifier is compared to a maximum-likelihood classifier 
over five sites that are fairly representative of the full Land- 
sat scene considered. Although the performance of the two 
classifiers is not significantly different within a site, the per- 
formance of the spectral shape classifier is significantly bet- 
ter than the maximum-likelihood classifier across sites. 
Analysis of results suggest that the spectral shape classifier 
is relatively insensitive to seasonal changes between wetland 
and upland areas in the scene and is not affected by thin 
clouds over one of the sites. A full-scene spectral shape clas- 
sifier is then described which combines spectral signature 
files that associate classes with spectral shapes derived over 
the five sites into a single file that is used to classify the full 
scene. The classification accuracy of the full-scene spectral 
shape classifier is shown to be superior to that of a stratified 
maximum-likelihood classifier. 

Introduction 
Accurate and reliable classification of multispectral imagery 
over extended areas is critical to the development of land- 
cover maps for a variety of applications in a timely and cost- 
effective manner. Yet after over 20 years, the generation of 
such maps from imagery in an operational manner remains a 
labor-intensive and costly process. Conventional statistical 
classifiers perform well over limited areas where spectral sig- 
natures do not vary greatly from those captured in the train- 
ing data. However, as the size of area to be classified in- 
creases, the classification accuracy typically decreases due to 
environmental, topographical, and phenological factors. The 
most common method of classifying large heterogeneous 
regions is by spatial stratification whereby the scene is di- 
vided into regions (e.g., based on climate, topography, e t ~ . ) ,  
each region is classified separately, and the results are com- 
bined (Todd et al., 1980; Hutchinson, 1982). An advantage of 
stratification is that regional knowledge can be used to signif- 
icantly improve classification accuracy. By labeling each part 
of the scene separately and combining the results, the overall 
classification accuracy does not have to be sacrificed for area 
coverage. A disadvantage of stratification, however, is that it 
requires a certain amount of interactive processing as well as 
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additional data (e.g., elevation matrices, maps) which add to 
the processing cost. Signature extension techniques (Hender- 
son, 1974) and extendible classification algorithms (Carlotto, 
1990) provide an alternative to stratification in which spec- 
tral signatures derived over limited portions of a scene are 
used to classify the remainder of the scene and, in some 
cases, other scenes as well. 

An early rule-based multispectral classifier (Carlotto et 
al., 1984) used qualitative knowledge and relative constraints 
for classifying general land-cover categories. Two kinds of 
rules were developed: those that defined classes relative to 
each other in terms of their spectral features (e.g., the green- 
ness of vegetation is greater than the greenness of bare soil, 
etc.), and those that defined single classes in terms of the rel- 
ative values between spectral bands. The spectral shape clas- 
sifier (Carlotto and Tom, 1985) was an outgrowth of this 
work and addressed the problem of deriving a complete and 
consistent set of spectral classification rules from training 
data. In this paper, we describe a new method of classifying 
multispectral imagery based on a set of binary features that 
represent the relative values between spectral bands. We be- 
gin by describing the theoretical basis of the spectral shape 
representation. The spectral shape representation is com- 
pared to K-means clustering, and its use in multispectral 
classification is described. The software architecture of the 
spectral shape classification system is then outlined. Experi- 
mental results from a full Landsat scene are used to examine 
the classification accuracy of the spectral shape classifier 
within and across training areas and to compare its overall 
accuracy to that of a maximum-likelihood classifier. 

Spectral Shape Representation 
Instead of correcting for terrain and atmospheric effects sys- 
tematically, we seek a representation (i.e., a set of invariant 
features) for classification that will be less sensitive to these 
effects, perhaps at the expense of loosing some spectral de- 
tail. Our method represents the shape of the spectral re- 
sponse in terms of the relative values between bands 

+(i,j,n,n') = 
1, y(i,j,n) > y(i,j,nl) 
0, otherwise 

w h e r e n = 1 , 2  ,..., N - 1 a n d n 1 = n + 1 , n + 2  ,..., N.In 
effect, the spectral shape representation converts the original 
multispectral image into an image of binary features that are 
used for classification. This set of features is equivalent to 
ranking the spectral bands in decreasing (or increasing) order 
by value; e.g., 
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Example spectral response for 6 band sensor 
(e.g., Landsat TM bands 1-5 and 7) I 
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Spectral bands ranked by value - Spectral value 
replaced by rank (left) provides a qualitative 
description of the spectral shape 
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I Representation of spectral shape in terms of binary features I 
Figure 1. Example of spectral response and its spectral shape 
representation. 

where n, is the number of the kth largest band in value at a 
particular pixel, and using the rank-ordered band numbers as 
features. Figure 1 shows an example spectral response and 
its spectral shape representation, both in terms of binary fea- 
tures and rank-ordered band numbers. We choose the binary 
feature representation because it has a simple physical inter- 
pretation and can be compared using similarity measures 
such as the Hamming distance, as discussed later in the pa- 
per. 

For N bands, there are N x (N - 1) ... = N! possible 
ways to order the bands. Each ordering can be expressed by a 
unique combination of N(N - 1)/2 binary features. Ordering 
bands by value using QUICKSORT (Sedgewick, 1983) requires 
approximately N log, N operations compared to N(N - 1)/2 
operations involved in comparing all distinct pairs of bands 
and is, thus, computationally more efficient as the number of 
bands increases. It should be clear, however, that because 
the number of features grows quadratically and the number 
of combinations grows factorially, the spectral shape repre- 
sentation is intended for multispectral sensors with a moder- 
ate number of bands such as Landsat TM and is not 
well-suited for sensors with a small number of bands like 
SPOT or for hyperspectral sensors. 

The spectral shape representation effectively segments 
the spectral measurement space into N! disjoint regions. 
Each spectral shape corresponds to a wedge-shaped region in 
this space, all of which touch the origin. Figure 2 illustrates 
the shape of the region in three-space corresponding to the 
set of features @ = {1,1,1), i.e., the region where, for a sensor 
with three bands, y(1) > y(2), y(1) > y(3), and y(2) > y(3). 
We show the construction of the region in stages for clarity. 
Without loss of generality, the original spectral response can 
be uniformly scaled to fit into the unit cube shown in Figure 
2a. In Figure 2b, the cube is split in half along the diagonal 
y(1) = y(2), and the half-space y(1) > y(2) is retained. In 
Figure 2c, the previous region is split along the diagonal y(1) 
= y(3), and the part where y(1) > y(2) and y(1) > y(3) is 
retained. Finally, in Figure 2d, the previous region is split 
along the diagonal y(2) = y(3), and the region where y(1) > 
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y(2), y(1) > y(3), and y(2) > y(3) is retained. By integration, 
it can be shown that the volume of this or any of the other 
five wedge-shaped regions in three-space is 116 (= l/N!). 

The use of binary features provides a basis for compar- 
ing spectral shapes. The similarity between two spectral 
shapes u and v is defined to be equal to the number of bi- 
nary features that are different and is given by the Hamming 
distance 

where O denotes exclusive-or. The Hamming distance satis- 
fies the following properties: 

(i) d(u,v)>O 

(ii) d(u,v) = 0, i f  u = v 

(iii) d (u,v) = d (v, u) 
(iv) d(u,v) + d(v,w)>d(u,w) 

and is thus a valid metric. 
Table 1 shows the Hamming distance between all six 

spectral shapes for N = 3 bands. Each spectral shape is 
shown along the top row and left column along with its set 
of binary features @ = {+,,, $,,, $,,]. As seen in Table 1, 
spectra that have a similar shape have a smaller Hamming 
distance between them than do spectra with different shapes. 

Application to Clustering 
Clustering is performed to identify regions with similar spec- 
tral properties in an image. Algorithms such as K-means and 
ISODATA (Tou and Gonzales, 1974) partition the underlying 
spectral measurement space into clusters where the param- 
eters of the clusters are adjusted iteratively to minimize 
some objective function, typically the total squared error be- 
tween the clusters and the data. Because the spectral shape 
representation effectively segments the measurement space, 
it functions like a clustering algorithm. An important differ- 
ence between spectral shapes and clusters is that spectral 
shapes correspond to regions with fixed boundaries in the 
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Figure 2. Construction of region in spectral measurement space 
corresponding to a spectral shape. 

measurement space while the boundaries between clusters 
depend on the distribution of the data. 

Spectral shapes and K-means clusters were extracted 
from a 226- by 236-pixel image over Gordonsville, Virginia 
(Figure 3). Figure 4 compares the structure of clusters in fea- 
ture space extracted by the K-means algorithm to that of the 
fixed spectral shape regions for Landsat TM data. Instead of 
attempting to visualize the underlying six-dimensional space 
for Landsat TM (bands 1 to 5 and 7),  the K-means clusters 
and spectral shape regions have been projected down into 
the two-dimensional space spanned by the first two tasseled 
cap features (Crist and Cicone, 1984). The boundaries be- 
tween clusters and spectral shape regions are shown in the 
figure. Fifty-six spectral shapes were found in the Landsat 
TM imagery over the region shown in Figure 3. For compari- 
son purposes, the same number of clusters were extracted 
using the K-means algorithm. 

Comparing the two plots in Figure 4, K-means clusters 
are more evenly distributed in space than are spectral shapes 
(K-means attempts to minimize the squared error between 

the data and the clusters) and are more compact (K-means 
uses the Euclidean distance, which encourages the formation 
of compact regions). The boundaries between spectral shape 
regions, on the other hand, radiate out from the origin and 
have more of a tapered appearance. It has been observed that 
multispectral data tends to cluster in teardrop rather than el- 
liptical distributions due to shading, shadowing, and pixel 
mixing (Craig, 1994; Crist and Cicone, 1984). The boundaries 
between spectral shapes also have this same general appear- 
ance. 

Finally, it is noted that the amount of computation re- 
quired to compute the spectral shape representation is sig- 
nificantly less than algorithms like K-means which have a 
complexity of = O(KLN) floating point operations per pixel 
where L is the number of iterations. As a result, the spectral 
shape algorithm can be used to segment an entire data set 

Figure 3. Landsat TM Band 3 over Gordonsville site. 
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Figure 4. Comparison of spectral shape and 
K-means cluster boundaries in tasseled cap 
space. (a) Boundaries between spectral 
shape regions. (b) Boundaries between K- 
means clusters. 

without having to first reduce its size, e.g., by sub-sampling, 
as is often required with K-means and similar clustering al- 
gorithms. 

Multispectral Classification 
The spectral shape approach can be used for multispectral 
classification by segmenting an image into spectral shapes as 
described in the previous section, assigning a class to a sub- 
set of spectral shapes (e.g., those within a training area), and 
classifying the remaining spectral shapes according to their 
Hamming distance from those that have already been as- 
signed a class. Figure 5 compares spectral shape and maxi- 
mum-likelihood classifications over the Gordonsville site 
shown in Figure 3. The spectral shape classifier was trained 
by visually assigning a class to a subset of the spectral 
shapes. Remaining spectral shapes were classified by assign- 
ing the class of the spectral shape with the smallest Ham- 
ming distance. A maximum-likelihood classifier was trained 
by first clustering the image using K-means as described in 
the previous section. Classes were assigned by visually as- 
signing a class to a subset of the K-means clusters. Mean vec- 
tors and covariance matrices were then computed from the 
clusters and used to classify the full image. (A more detailed 
discussion of training and accuracy assessment is contained 
in the next section.) 

Six general surface categories are depicted in Figure 5: 
built-up, barren, herbaceous (grassland and agriculture), 
woody, wetland, and open water. In general, the spectral 
shape classification appears to contain somewhat less detail 
than the maximum-likelihood classification, although the lat- 
ter appears to confuse shadows and water and to contain 
more built-up pixels, many of which are scattered within 
woody and agricultural areas. 

Developed Barrcll Herbaceous Woody Wetland Water 

(a) 

Figure 5. Vlsual comparison of spectral shape and maxlmum-Irkellhood classification results. (a) Spectral shape 
class~f~catlon. (b) Maxlmum-Ilkellhood classlficaton. 
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(b) 

Figure 6. Spectral shape and maximum-likelihood classifi- 
cations plotted in tasseled cap space. (a) Spectral shape 
classification. (b) Maximum-likelihood classification. 

Figure 6 plots the classification results contained in  Fig- 
ure 5 into tasseled cap space as a function of their brightness 
and greenness values (the shades of gray match those used in  
Figure 5). Even though different classifiers were used, the 
class boundaries in  the two distributions are similar. The 
boundaries between spectral classes in Figure 6 are more like 
the boundaries between spectral shapes (Figure 4a) than the 
boundaries between K-means clusters (Figure 4b). Over-clus- 
tering and merging K-means clusters into classes appears to 
create decision regions that are very similar in  appearance to 
the boundaries between spectral shape regions. 

Software Implementation 
Figure 7 depicts the software architecture of the spectral 
shape classification system. The system contains four major 
functions: 

Compute Spectral Shape Representation. Segments the input 
Landsat TM image into spectral shapes. The spatial extent of 
each spectral shape is identified by a unique value in the la- 
bel image. A file lists the relative frequency of each label 
along with the binary feature vector describing the corre- 
sponding spectral shape. (In the present implementation, the 
largest 255 spectral shapes are extracted, i.e., those account- 
ing for most of the image area. When there are more than 255 
spectral shapes in an image, pixels whose spectral shapes are 
not retained are assigned the nearest spectral shape among 
the 255 spectral shapes that were retained. Typically, for a 
full Landsat scene, this amounts to only a few pixels total. 
Most TM scenes processed to date contain only about 100 to 
200 spectral shapes out of a possible 6 !  = 720.) 

Training. Associates classes derived from ground truth data 
with spectral shapes. The output of the training process is a 
classification file that specifies the class most frequently asso- 
ciated with each spectral shape in the training set along with 
its relative frequency. 
Merge Classification Files. Combines data from multiple train- 
ing areas into a single classification file. Spectral shapes that 
have been assigned more than one class in different training 
areas are assigned the class that has been assigned most fre- 
quently to the spectral shape overall. 
Minimum Hamming Distance Classifier. Assigns the class as- 
sociated with spectral shapes in the classification file to spec- 
tral shapes present in the image being classified. Spectral 
shapes not in the classification file can be assigned the near- 
est class. 

Table 2a is a classification file computed by training 
over one of the scenes (Chickahominy) discussed in  the next 
section. It lists all spectral shapes (in base lo ) ,  their as- 
signed class, and probability (fraction). Table 2b is part of 
the classification file for another scene (Gordonsville). Table 
2c is the result of merging the two files. The class assign- 
ments for spectral shape 1760 are underlined in  these tables. 
In Chickahominy, this spectral shape is assigned class 13 
(emergent wetland) while in  Gordonsville it is assigned class 
14 (woody wetland). The conflict is resolved during merging 
by assigning the spectral shape class that occurs more fre- 
quently, here by assigning class 14 because it occurs more 
often in  Gordonsville (0.055) than class 13 does in Chicka- 
hominy (0.027) for the same spectral shape. 

The spectral shape classifier is currently implemented in  
C and is able to classify a full Landsat TM scene in  about an  
hour on a SUN SPARC 10 workstation with 128 Megabytes of 
RAM. 

Experimental Results 
A series of experiments was performed to assess the accu- 
racy of the spectral shape classifier over a full Landsat TM 
scene (Path 15 Row 34) acquired on 23 October 1993. Five 
sites approximately 25 kmz in size within the scene were se- 
lected for study (Figure 8). Two of the sites - Fort Eustis 
and Chickahominy - are wetland sites containing mostly 
open water, grassy and forested wetlands, and forests. The 
other three sites - Fort A.P. Hill, Gordonsville, and Prince 
Edward State Forest - are upland sites containing forested 
and agricultural areas. With the exception of large built-up 
areas, the five sites are fairly representative of the overall 
scene. 

Site selection was based on the availability of M7 im- 
agery, which was used as image truth for classifier develop- 
ment and testing. The M7 was acquired within several days 
of the Landsat imagery ( ~ 7  is a 12-channel multispectral im- 

Merge Classification Class Freq, Binary Featwe 
Vector 

Classification Files 

Figure 7. Software architecture of the spectral shape 
classification system. 
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TABLE 28. CLASSIFICATION FILE FOR CHICKAHOMINY TABLE 2b. PART OF CLASSIFICATION FILE FOR GORDONSVILLE 

Spectral 
Shape Class Probability 

0 1 5  2.78E-02 
1 15  7.20E-05 

32 15  2.62E-03 
96 15  4.32E-04 

224 15  2.76E-03 
512 15  8.88E-04 
576 15  9.60E-05 
736 15  3.60E-04 

1536 15  2.45E-03 
1600 15  8.88E-04 
1728 7 1.18E-01 
1760 1 3  - - 2.073-02 

2016 11 5.93E-03 
2020 11 3.843-04 
2028 11 5.47E-03 
3776 7 5.68E-01 
3780 7 2.40E-05 
4032 7 4.793-02 
4036 7 4.323-04 
4076 11 7.44E-04 
4096 12  2.64E-04 
4128 15  4.80E-05 
4256 15  7.20E-05 
4320 15 6.963-04 
5120 14  9.60E-05 
5248 12  4.803-05 
5344 12  9.36E-04 
5632 12  1.443-04 
5760 12 9.60E-05 
5824 7 1.21E-02 
5856 1 3  4.15E-02 
5864 13  9.60E-04 
5868 11 1.92E-04 
6112 13  1.09E-02 
6120 11 8.76E-03 
6124 5 3.643-02 
6126 5 4.493-03 
7872 7 3.96E-02 
8128 7 2.31E-02 

Figure 8. Landsat TM (path 15 row 34) acquired on 23 
October 1993 (Band 3) showing site locations. 

Spectral 
Shape Class Probability 

pp 

Spectral 
Shape 

- - 

Class Probability 

aging system with an instantaneous field of view of 2 mrad 
(Slater, 1985)).  The effective ground resolution of the im- 
agery used in this study was about 5 metretpixel.) Over each 
site, the 25-metre Landsat TM data were resampled to 5 me- 
tres using nearest-neighbor interpolation. M7 imagery was 
then registered to the TM. 

The two-level classification scheme shown in Table 3, 
derived from a land-cover classification system under devel- 
opment by Bara (personal communication, 19931, was used 
in our evaluation. This classification scheme may not be to- 
tally exhaustive in general, but was suitable for the area con- 
sidered in this study. 

Our evaluation was based on comparing the overall ac- 
curacy (fraction correct) of the spectral shape classifier to 
that of a maximum-likelihood classifier. Over each site, both 
classifiers were trained using the M7 imagery as truth. For 
the spectral shape classifier, spectral shapes were first ex- 
tracted over the site. A subset of the spectral shapes were as- 
signed a class visually by an image analyst using the M7 
imagery as reference. The remaining classes were then as- 
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Level 1 Class Criteria Level 2 Class Criteria 

Developed > 50% man-made High Intensity > 80% man-made 
Low Intensity 50-80% man-made 

Herbaceous 
Land > 50% herbaceous Cropland Managed 

Grassland Unmanaged 
Woody > 50% woody Deciduous > 67% deciduous 

Evergreen > 67% evergreen 
Mixed 

Barren < 50% vegetated 
Wetland Anderson Level 1 Shore < 50% vegetated 

Emergent > 50% herbaceous 
Woody > 50% woody 

Open Water Anderson Level 1 

signed the class of the nearest spectral shape previously 
assigned a class based on the Hamming distance. The classi- 
fication file was retained for use in classifying other sites. 

For the maximum-likelihood classifier, the imagery was 
first clustered using the K-means algorithm into 30 clusters. 
This number of clusters was judged by an image analyst to 
be adequate to separate the classes of interest within each of 
the sites. A subset of the clusters was assigned a class, again 
using the M7 imagery as a reference. The mean vectors and 
covariance matrices were then computed and used to classify 
the entire image. The means and covariances were then re- 
tained for use in classifying other sites. 

In order to obtain an unbiased estimate of the relative 
performance of the two classifiers, a random sampling 
scheme was used to generate 60 sample points within each 
of the five sites. The points were assigned a class using the 
M7 imagery by a second image analyst. The points were then 
used to measure the accuracies of the two classifiers at Lev- 
els 1 and 2 as defined in Table 3. 

Tables 4 to 7 summarize the classification results over 
the five study areas: Fort A.P. Hill (APH), Chickahominy 
(CHI), Fort Eustis (FTE), Gordonsville (GOR), and Prince Ed- 
wards State Forest (PED). Tables 4 and 5 give the spectral 
shape classification results at Levels 1 and 2, respectively. 
Each entry gives an overall classification accuracy (fraction 
correct) for the spectral shape classifier developed over the 
training site (row) and measured over the evaluation site 
(column); i.e., the classification file derived from the training 
site was used to classify the imagery of the evaluation site. 
Tables 6 and 7 are maximum-likelihood classification results 
at Levels 1 and 2, respectively, provided for comparison pur- 
poses. Here the training statistics (class means and covari- 
ance matrices) from the training site were used to classify 
the imagery of the evaluation site. The 95 percent confidence 
intervals based on 60 points are the values in the tables t 10 
percent, approximately. 

First, we consider the overall accuracy of the two classi- 
fiers trained and evaluated over the same sites (these are the 
entries along the main diagonal qf the tables). The accuracies 
of the spectral shape classifier averaged over the five sites 
were 0.84 and 0.63 (Levels 1 and 2, respectively). The coqe- 
sponding accuracies of the maximum-likelihood classifier av- 
eraged over the five sites were 0.76 and 0.48. For 5 by 60 or 
300 points, the 95 percent confidence intervals are the above 
values 2 5 percent, approximately. The performance of the 
spectral shape classifier is thus not significantly different 
from that of the maximum-likelihood classifier at Level 1, 
but does appear to be significantly better at Level 2. How- 
ever, if we leave out the FTE site which has thin cloud cover, 
neither Level 1 nor Level 2 results are significantly different. 

Next, we compare the overall accuracies of the two clas- 
sifiers trained over one study area but evaluated over a dif- 

ferent area (these are the off-diagonal entries in the tables). 
This will provide an indication of the signature extendibility 
of the classifiers over the scene. For the five sites, there are 
20 possible combinations of different training and evaluation 
sites. The accuracies of the spectral shape classifier averaged 
over the 20 combinations were 0.79 and 0.57 (Levels 1 and 
2, respectively). The corresponding accuracies of the maxi- 
mum-likelihood classifier averaged over the 20 combinations 
were 0.57 and 0.31. The performance of the spectral shape 
classifier is thus significantly better than that of the maxi- 
mum-likelihood classifier at Levels 1 and 2. The spectral 
shape classification accuracies averaged over the 1 2  combi- 
nations of different training and evaluation sites that exclude 
FTE are 0.81 and 0.58 (Levels 1 and 2, respectively). The cor- 
responding maximum-likelihood accuracies are 0.76 and 
0.41. If we leave out the FTE site, the Level 1 results are not 
significantly different but the spectral shape classifier accu- 
racy is significantly better than that of the maximurn-likeli- 
hood classifier at Level 2. 

Within wetland sites, the Level 1 and 2 accuracies of the 
spectral shape classifier - 0.90 and 0.74 - are significantly 
better than the corresponding accuracies of the maximum- 
likelihood classifier - 0.63 and 0.35. This is due largely to 

Evaluation Site 

Training Site APH CHI FTE GOR PED 

APH 
CHI 
FTE 
GOR 
PED 

Evaluation Site 

Training Site APH CHI FTE GOR PED 

APH 0.523 0.587 0.360 0.733 0.606 
CHI 0.606 0.672 0.835 0.500 0.539 
FTE 0.491 0.606 0.847 0.419 0.428 
GOR 0.557 0.573 0.680 0.531 0.619 
PED 0.409 0.590 0.684 0.621 0.571 

Evaluation Site 

Training Site APH CHI FTE GOR PED 

APH 0.719 0.960 0.074 0.700 0.784 
CHI 0.540 0.919 0.900 0.604 0.666 
FTE 0.063 0.109 0.611 0.126 0.109 
GOR 0.829 0.905 0.339 0.716 0.879 
PED 0.735 0.765 0.447 0.800 0.819 

Evaluation Site 

Training Site APH CHI FTE GOR PED 

APH- 
- 

0.515 0.539 0.050 0.524 0.475 
CHI 0.366 0.634 0.463 0.311 0.315 
FTE 0.029 0.047 0.253 0.047 0.081 
GOR 0.347 0.500 0.279 0.476 0.475 
PED 0.149 0.415 0.300 0.500 0.508 
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the FTE site, which contains thin clouds that adversely affect of the scattering is = X0 (Schanda, 1986). Scattering by thin 
the maximum-likelihood classifier. In the uplands sites, the clouds (as well as dust and fog) can be modeled by the linear 
accuracy of the spectral shape classifier is significantly better relation, y(n) = ax(n) + c, where x(n) is proportional to the 
than that of the maximum-likelihood classifier at Level 2 surface radiance in the nth band, and the constants a and c 
(0.57 compared to 0.441) but is comparable at Level 1 (0.81 account for a uniform decrease in path transmittance and in- 
compared to 0.76). The average accuracy of the spectral crease in path radiance across all bands. Clearly, the spectral 
shape classifier within wetland and upland sites is 0.84 shape representation is not affected by a constant gain and 
(Level 1). Between wetland and upland sites, it falls slightly offset across bands because the features 
to 0.76 (Level 1). (The within wetland and upland cases in- 
volve all combinations in which the training and evaluation 1,  ax(n) + c > ax(n') + c 
site are either both wetland or both upland. The between 9(n,n1) = 0, otherwise (4) wetland and upland cases involve all combinations in which 
the training site is wetland and the evaluation site is upland, 
or vice versa.) The average accuracy of the maximum-like- do not depend on a or C. It should be noted, however, that 
lihood classifier within wetland and upland sites is 0.73 this invariance does not hold for areas affected by smoke and 
(Level I ) ,  but between wetland and upland sites falls dramat- haze where the scattering is wavelength dependent, nor for 
ically to 0.47 (Level 1). areas obscured by thick clouds. 

We then constructed a spectral shape classifier for the The full-scene spectral shape classifier combines classifi- 
full scene by merging classification files from each study cation files derived from several training sites that are rep- 
area. In cases where spectral shapes were assigned different resentative of the spectral diversity of the full scene and 
classes in different sites, the class with the highest probabil- combines them into a single file that is applied to the full 
ity across sites was selected and assigned to the spectral data set without stratification. The overall accuracies of the 
shape globally. The resultant classification file was then used full-scene spectral shape classification were 0.86 and 0.65 
to classify the full scene. The Level 1 classification results (Levels 1 and 2, respectively). This compares well with the 
are summarized by ,-lass in Table 8 based on 60 points per average spectral shape classification accuracies computed 
site for a total of 300 points. The overall accuracies of the over all sites. We noted above that the average accuracy of 
full-scene spectral shape classification were 0.85 and 0.65 at the maximum-likelihood classifier across wetland and up- 
Levels 1 and 2, respectively. land sites was considerably lower than the accuracy within 

TO gain some further insight into the classification per- those sites. If we assume that the scene contains two strata 
formance, Level 2 results for woody and wetlands categories - wetlands and upland areas - the accuracies of a stratified 
are shown in Tables 9a and 9b. (In these tables, the category maximum-likelihood classifier would be 0.73 and 0.41 (Lev- 
"other" represents all other Level 2 categories combined.) els 1 and 2). Of course, this presupposes that it is possible to 
The Level 1 accuracy for woody areas is high because most accurately delineate the boundaries between strata in order 
of the errors are between deciduous and evergreen catego- to develop such a classifier in the first place. 
ries. On the other hand, the Level 1 accuracy for wetlands is 
low because a large fraction of wetlands have been misclassi- 
fied as other (woody and herbaceous). The spectral shape TABLE 8. FULL-SCENE CLASSIFICATION RESULTS (LEVEL 1) 
classifier appears to have some trouble in discriminating be- 
tween evergreen and coniferous trees but is effective in dis- Ground Truth Classes: 

criminating trees from other categories. It also appears to Classified as: Developed Herbaceous Woody Barren Wetland Water 
have trouble in discriminating woody wetlands from other 
woody areas. Developed 0 0 0 1 0 0 

Herbaceous 1 32 3 1 3  0 0 
Woody 3 9 192 0 4 0 

Discussion Barren o 1 0 0 0 0 
Phenological and environmental variations within a scene Wetland 6 0 2 0 15 1 
limit the extendibility of a classifier. From general ground Water 0 0 0 0 2 15 

surveys conducted at the time, trees in the upland areas had 
already begun to shed their leaves while those in the wet- 
land sites had just begun to change color. Based on the 
marked decrease in Level 1 classification accuracy of the TABLE 9a. LEVEL 2 CLASSIFICATION RESULTS FOR WOODY AREAS 
maximum-likelihood classifier from 0.73 within wetland and Ground Truth Classes: 
upland sites down to 0.47 between wetland and upland sites 
compared to the relatively stable accuracy of the spectral Classified as: Deciduous Evergreen Mixed 
shape classifier (0.84 down only to 0.76), it appears that the Deciduous 136 20 0 
spectral shape classifier is less sensitive to the phenological Evergreen 2 1 15 0 
differences between upland and wetland sites at this particu- ~ i ~ ~ d  0 0 0 
lar time of year in this scene. Analysis of the confusion ma- Other 14  1 0 
trices, however, indicates some difficulty in discriminating 
between Level 2 vegetation categories. It is conjectured that 
what the spectral shape representation looses in discriminat- 
ing power (e.g., its ability to separate Level 2 vegetation cate- TABLE 9b. LEVEL 2 CLASSIFICATION RESULTS FOR WETLANDS 
gories), it gains in signature extendibility across certain kinds 
of phenological variations within the scene. Ground Truth Classes: 

Earlier, we noted that the accuracy of the spectral shape classified as: Shore Emergent Woody 
classifier was significantly better than that of the maximum- 
likelihood classifier within the FTE site and between FTE and 0 o 0 
other sites. As seen in Figure 8, cloud cover south of Rich- Emergent 0 14  1 

Woody mond partially obscures this site. Thin clouds tend to behave Other 0 o o 
0 5 4 

as non-selective scatterers; i.e., the wavelength dependence 
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Summary 
A new method of classifying multispectral imagery based on 
a set of binary features that represent the relative values be- 
tween spectral bands was described, and its performance 
over a full Landsat scene was evaluated. The overall clas- 
sification accuracy was found to be comparable to that of a 
maximum-likelihood classifier over individual sites. However, 
between sites, the spectral shape classifier out-performed the 
maximum-likelihood classifier. A full-scene spectral shape 
classifier was developed by combining classification files 
from the five sites into a single classification file. The accu- 
racy of the resultant classifier tested over the five sites was 
significantly better than the accuracy of a stratified maxi- 
mum-likelihood classifier, assuming wetlands and uplands 
strata. Preliminary results suggest that the spectral shape rep- 
resentation can provide a greater degree of signature extendi- 
bility but at the expense of reduced discrimination at Level 
2. 

Additional work in several areas is either underway or 
planned. Further testing over other areas is being performed 
in order to obtain a more representative estimate of the accu- 
racy of the spectral shape classifier. Other methods for com- 
bining classification files derived from individual training 
sites and applying them to the full scene are being explored 
that retain regional class-cluster relationships. Finally, exper- 
iments are planned to measure the extent to which the spec- 
tral shape classifier is sensitive to topographic effects. 
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