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Abstract 
Thematic mapping from remotely sensed data is generally 
achieved through the application of a supervised image classi- 
fication. Although this is one of the most common applica- 
tions of remote sensing, the maps derived are often of insuffi- 
cient accuracy for operational use. Consequently, considemble 
research effort has been directed at increasing the accuracy 
of thematic mapping, particularly through the development 
of classification techniques that make fuller use of the infor- 
mation content of remotely sensed data. One major set of 
problems limiting the accuracy of thematic maps derived 
from remotely sensed data relates to conceptual issues asso- 
ciated with the use of classification techniques as  the tool for 
mapping. It is shown that the conventional "hard" classifica- 
tions may be less appropriate than fuzzy classifications and 
that a continuum of classification fuzziness can be defined. 
The potential for classification at any point along this con- 
tinuum, from completely crisp to fully fuzzy, is discussed 
and may provide a framework for realizing more fully the 
potential of remote sensing as a source of thematic map 
data. The implications of the continuum on spatial data 

1 standards and reporting are also briefly discussed. 

Introduction 
Remotely sensed data may be used to map, monitor, and es- 
timate the properties of environmental features. Of these 
three main areas of application, mapping, and thematic map- 
ping in particular, is one of the most widespread and may be 
a necessary precursor to the others. Thematic mapping from 
remotely sensed data is found in numerous fields-of-study 
from forestry through climatology to geology. It also has a 
relatively long history, with maps derived initially from in- 
terpretation of aerial photography but with emphasis increas- 
ingly placed on computer-based analyses of digital imagery. 
Traditionally, classification techniques have been used as the 
tool for thematic mapping, whether based on visual or digital 
analyses of the remotely sensed data. Thus, for instance, 
classification is the basis of mapping through aerial photo- 
graph interpretation as well as from computer based analyses 
of digital sensor data (Lo, 1986; Campbell, 1996). Numerous 
classification approaches have been used with varying de- 
grees of success. Despite the considerable developments 
made recently, the accuracy with which thematic maps may 
be derived from remotely sensed data is, however, often still 
judged to be too low for operational use (Townshend, 1992), 
and the problem appears to be largely independent of classi- 
fier type (Wilkinson, 1996). Thus, despite thematic mapping 
being one of the most common applications of remote sens- 
ing, with a history extending back over several decades, we 
have not yet reached the stage at which accurate land-cover 
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maps can be derived from remotely sensed data on an opera- 
tional basis (Townshend, 1992). 

A range of reasons may be cited for the failure to realize 
the enormous potential of remote sensing as a source of 
Iand-cover and other thematic data. These include issues 
such as the nature of the classes, the spectral and radiomet- 
ric resolutions of the remotely sensed data, and the methods 
used in mapping. Here attention is focused only on the latter 
issue. In particular, this paper aims to discuss briefly the 
conventional "hard" classification-based approaches to map- 
ping and highlight their inappropriateness relative to "fuzzy" 
methods, especially for imagery containing a high proportion 
of mixed pixels. A major aim, however, is to show that 
widely used "fuzzy" classifiers are only a partial solution to 
the mixed-pixel problem as they do not accommodate fuzzi- 
ness throughout the classification process. A continuum of 
classification fuzziness will be presented and methods shown 
that may be used at points along the continuum to assist 
mapping investigations and thereby provide a greater realiza- 
tion of the potential of remote sensing as a source of the- 
matic data. Some of the main implications for spatial data 
standards and reporting are also discussed. 

ClassMcation for Mapping 
Of the many approaches available, per-pixel supervised im- 
age classifications are commonly used in thematic mapping 
from remotely sensed data. Such classifications are the sole 
focus of this paper, although much of the discussion will be 
of wider applicability. A variety of class%cation algorithms 
have been used in remote sensing, notably conventional statis- 
tical procedures such as the maximum-likelihood algorithm 
and, recently, approaches based on artificial intelligence 
such as neural networks (Schowengerdt, 1997). Whatever the 
specific algorithm adopted, the classification process may be 
broken down into three basic stages. First, the training stage 
in which class descriptors are generated. These are used by 
the classification algorithm in the second, class allocation, 
stage to allocate each pixel of unknown class membership to 
the class with which it has greatest similarity. Third, the 
testing stage, in which the accuracy of the classification is 
assessed. The approaches used in each stage are generally in- 
tuitively appealing, widely available, and, when their appli- 
cation is appropriate, can be used to classify data accurately. 
There are, however, problems in their use. At the outset it 
should be stressed that classification is a subjective process 
and the quality of the final classification is, therefore, in part 
a function of the analyst's skill and judgement. The analyst 
has, for instance, control or influence over many factors 
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which affect classification accuracy. This includes fundamen- 
tal issues such as the selection of the training sample size 
and sampling design, the definition of the classes, and the 
determination of numerous parameters linked to the selected 
classification algorithm such as those defining the learning 
rate in a neural network and prior probabilities in probabilis- 
tic classifiers (Foody, 1999). Furthermore, many of the classi- 
fication techniques used make assumptions about the data 
which are often not realized. The widely used maximum- 
likelihood classification, for example, assumes that the data 
are normally distributed. This algorithm may, of course, still 
be used when its assumptions are not satisfied. Although 
small deviations from the assumed conditions may be unim- 
portant, others may be a source of significant misclassifica- 
tion. Perhaps more importantly, and the focus of this paper, 
the appropriateness of classification as the tool for mapping 
is itself debatable. 

The classification techniques commonly used are 
"hard," with each image pixel allocated to a single class. A 
pixel therefore displays full and complete membership to a 
single class. Such approaches are only appropriate for the 
mapping of classes that are discrete and mutually exclusive 
and assume the data can be represented in crisp sets. On 
many occasions this will not be the case. Many land-cover 
classes, for instance, are continuous and so intergrade. This 
problem is partly a consequence of class definition. For ex- 
ample, how much tree cover is required for a patch of land 
to be classed as forest? Furthermore, classification is only ap- 
propriate if the basic spatial unit used, typically the pixel, 
is pure. This is rarely the case, with many pixels of mixed 
land-cover composition contained within a remotely sensed 
image (Crapper, 1984; Campbell, 1996). These mixed pixels 
may occur whatever the nature of the classes. For instance, 
with continuous classes, mixed pixels will occur frequently 
in the inter-class transition zones where the classes co-exist 
spatially whereas, for discrete classes, the area represented 
by a pixel will often enclose or straddle class boundaries. 
The exact proportion of mixed pixels in an image will vary 
with a range of factors, notably the land-cover mosaic on the 
ground and the sensor's spatial resolution, but is often very 
large (Crapper, 1984; Campbell, 1996). The proportion of 
mixed pixels will also generally increase with a coarsening 
of the sensor's spatial resolution. Thus, for coarse spatial res- 
olution data sets used in mapping land cover at regional to 
global scales, and where remote sensing has perhaps its 
greatest potential role in thematic mapping, mixed pixels 
may vastly dominate imagery (Foody et al., 1997). The 
mixed-pixel problem is not, however, conhed  to coarse spa- 
tial resolution data. At fine spatial resolutions mixing still 
occurs. At this scale much of the mixing arises from intra- 
class variability. With an agricultural crop class, for instance, 
the concern may be mixing due to the variable proportions 
of its components such as sunlit leaves, shadow, and soil 
within the sensor's field-of-view. Spectral mixing problems 
will, therefore, be evident in fine spatial resolution data sets, 
particularly for heterogeneous classes such as urban areas, 
and classification quality will remain a function of spatial 
resolution (Townshend, 1981; Cushnie 1987). Thus, the data 
from a range of proposed fine spatial resolution sensors 
(Barnsley and Hobson, 1996; Aplin et al., 1997) may be as 
inappropriate for "hard" classification analyses as coarse 
spatial resolution data sets. If the full potential of remote 
sensing as a source of land-cover data is to be realized, alter- 
native approaches to "hard" classification for thematic map- 
ping may be required. These must enable a pixel to possess 
multiple and partial class membership, a characteristic fea- 
ture of mixed pixels. As such, fuzzy rather than crisp sets 
provide a more appropriate framework for the analysis of re- 
motely sensed data sets. 

The inability of conventional "hard" classification out- 
puts to appropriately represent themes such as land cover 
from data containing a significant proportion of mixed pixels 
has been a major driving force in the development of alterna- 
tive approaches (Wang, 1990a). These have focused on fuzzy 
classification techniques in which the full class membership 
of each pixel is partitioned between all classes. In such a 
classification, a pixel can display any possible membership 
scenario, from full membership to one class through to hav- 
ing its membership divided, in any permutation, between all 
classes. Fuzzy classifications may be derived in a number of 
ways. There are, for example, a range of fuzzy classifiers (e.g. 
Cannon et al., 1986). Alternatively, a fuzzy classification may 
be achieved by "softening" the output of a "hard" classifica- 
tion. This is typically possible because the conventional 
"hard" classification approaches generate significant class 
membership information for the determination of a class la- 
bel which may be output and mapped. A probability vector 
containing the probability of membership a pixel has to each 
defined class could, for example, be output from a probabi- 
listic technique such as the maximum-likelihood classifica- 
tion. There are many related ways of softening other classifi- 
cations (Foody, 1996; Schowengerdt, 1997; Warner and 
Shank, 1997). In general, however, measures of the strength 
of class membership calculated for each pixel in the determi- 
nation of its class label, which are normally discarded, may 
be output. This type of output makes fuller use of the infor- 
mation on class membership generated in the classii3cation 
and may be considered to be fuzzy, as an imprecise alloca- 
tion may be made and a pixel can display membership to all 
classes. A number of studies have shown that measures of 
the strength of class membership derived from a variety of 
classification algorithms may be used to indicate the land- 
cover composition of mixed pixels (Fisher and Pathirana, 
1990; Bernard et al., 1996; Foody, 1996; Foody and Arora, 
1996; Schowengerdt, 1996; Veregin, 1996; Foschi and Smith. 
1997). 

Unlike their "hard" counterparts, fuzzy classifications 
can therefore provide a fuzzy class allocation that forms the 
basis of an appropriate representation of themes that may be 
considered to be fuzzy. However, they share with the "hard" 
classifications the three stages of training, allocation, and 
testing in their production and evaluation. The adoption of a 
fuzzy classification algorithm or softening of a "hard  classi- 
fication output in recognition of the need for a class assign- 
ment that allows for multiple and partial class membership 
does not in itself make any account for mixed pixels in the 
training and testing stages of the classification. In many of 
the fuzzy classifications reported in the literature, therefore, 
fuzziness is only accommodated in the second, class alloca- 
tion, stage of the classification process. The algorithm used 
to derive the fuzzy classification still requires training and 
its output testing, and, for these stages of the analysis, ap- 
proaches designed for conventional "hard" classifications, 
which assume pure pixels, are typically employed. This is 
inappropriate if the theme of interest may be considered 
fuzzy. The fundamental problem is that the pixel, as the ba- 
sic spatial unit of the remotely sensed data and derived clas- 
sification, constrains the scale at which the ground data may 
be integrated into the analysis in the training and testing 
stages. Just as a mixed pixel cannot be appropriately allo- 
cated by a "hard" classification which assumes pure pixels, 
it cannot be used appropriately in conventional training and 
testing procedures which also assume pure pixels. For exam- 
ple, the composite spectral response of a mixed pixel does 
not ideally represent any of its classes, and any "hard" class 
allocation of a mixed pixel must to some extent be errone- 
ous. Consequently, the use of a fuzzy classification technique 
may be considered to be onlv a partial solution to the mixed 
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pixel problem as it only provides a means of appropriately 
representing a theme such as land cover that may be consid- 
ered fuzzy at the scale of the pixel. Fuzziness should be rec- 
ognized as an issue in the training and testing stages of the 
classification as much as in the allocation stage. 

There is a need to recognize that fuzziness may, depend- 
ing on the specific circumstances of an investigation, require 
accommodation in some or all three stages of the classifica- 
tion. Research has, however, focused mainly on the deriva- 
tion of a fuzzy class allocation. Relatively little attention has 
been directed at the accommodation of mixed pixels in the 
training and testing stages of a supervised classification. 
Nonetheless, a variety of ways of accommodating mixed pix- 
els in these stages of a supervised classification may be iden- 
tified. Their effect could, for instance, be ignored and the 
analysis proceed as if mixed pixels were not present, making 
an implicit assumption that the pixels are in fact pure. De- 
spite the mixed-pixel problem being well known, many ana- 
lysts do exactly this, paying little more than lip service to 
the issue (Fisher, 1997). It must be recognized that errone- 
ously assuming pure pixels will degrade all three stages of 
the classification; mixed pixels will degrade the class re- 
sponses derived in training, cannot be appropriately allocated 
by a "hard" classification, and may vary in the accuracy of 
their allocation. As an alternative approach to handling the 
mixed-pixel problem, the analyst could harden the data. 
With this approach, each pixel is given the code of the domi- 
nant class. Although recognizing the existence of mixed pix- 
els, no real accommodation for their presence is made and 
the classification will be degraded in the same way as if the 
mixed pixels had been ignored. An extreme solution to the 
problem would be to exclude mixed pixels from the analysis, 
although their identification may be difficult and this could 
result in the loss of most of the data set. This approach does, 
however, at least ensure that the data set used is appropriate 
for analysis by conventional techniques, which assume pure 
pixels, if desired. 

Frequently, the only way the fuzziness of the land cover 
on the ground is accommodated in training and testing a 
classification is by deliberately avoiding mixed pixels (Metz- 
ler and Cicone, 1983). Thus, although an image may be dom- 
inated by mixed pixels, only pure pixels are selected for 
training. This typically involves selecting training sites from 
only very large homogeneous regions of each class in order 
to avoid contamination of training sites by other classes 
(Campbell, 1996). Moreover, research on refining training 
sets has often focused on removing potentially mixed pixels 
from the training set (Arai, 1992). With these approaches, it 
may be difficult to acquire a training set of an appropriate 
size. Moreover, the training statistics defined may not be 
fully representative of the classes and so provide a poor base 
for the remainder of the analysis. 

In testing the classification, pure pixels only are again 
generally selected or assumed. Conventional measures of ac- 
curacy assessment, which were designed for application to 
nominal level outputs derived with a "hard" classification 
algorithm, are generally used. As the majority of pixels may 
be mixed, however, failure to include them in the accuracy 
assessment may result in an inappropriate and unrealistic es- 
timation of classification accuracy. The accuracy statement 
may, for instance, only indicate the quality of the classifica- 
tion for "pure" pixels and provide a poorer expression of the 
quality for the remainder, possibly the vast majority, of the 
data set. There has recently been some investigation into the 
accommodation of fuzziness into the testing stage. Often this 
has been driven by the need to recognize that the ground 
data used in evaluating the accuracy of a classification are 
not error-free. Indeed many studies note that disagreements 
between the classification and ground data often arise 

through error or uncertainty in the ground data (Harris and 
Ventura, 1995; Abrams et al., 1996; Bowers and Rowan, 
1996). Alternatively, attempts have been made to accommo- 
date fuzziness in the class allocation derived from a fuzzy 
classification (Maselli et al., 1994; van der We1 et al., 1998). 
Thus, techniques to accommodate fuzziness in the ground 
data or the remotely sensed data and derived classification 
have been suggested but little attention has focused on ac- 
commodating for fuzziness in both. Additionally the various 
methods suggested differ in the extent to which fuzziness is 
accommodated. Some approaches, for example, consider 
only the primary and secondary class labels while others 
utilize the full class-membership information contained 
within the ground data and classification. 

Because a large proportion of image pixels may be 
mixed, it is important that they be accommodated through- 
out the classification. The degree to which fuzziness is ac- 
commodated will be a function not only of the nature of the 
data sets but also of practical constraints faced by the ana- 
lyst. By recognizing that there are various degrees to which 
fuzziness may be incorporated in each stage, a continuum of 
classification fuzziness may be defined. This may help select 
appropriate techniques for the analysis of a particular data 
set. The aim of the remainder of this article is to describe 
briefly this continuum and discuss some of its implications 
to studies based on thematic mapping from remotely sensed 
data, specifically the assessment and reporting of data qual- 
ity. 

Fuzziness in Supervised Classification 
Recognition of the mixed-pixel problem was a major driving 
force in the development of approaches for fuzzy classifica- 
tion (Wang, 1990a). As fuzziness may be a characteristic fea- 
ture of both the remotely sensed data and the ground data, 
the use of a fuzzy classification algorithm alone may be in- 
sufficient for the resolution of the mixed-pixel problem 
(Foody, 1995; Foody and Arora, 1996). A more appropriate 
approach would be, within the practical and logistical con- 
straints pertaining to the mapping investigation, to recognize 
the existence of mixed pixels and use techniques that accom- 
modate for their presence throughout the mapping process 
(Foody, 1995; Foody, 1997). The background to this and 
some suggestions as to how it may be achieved follow. For 
clarity, the stages of the classification process will be re- 
viewed briefly and possible means of accommodating fuzzi- 
ness in each highlighted. For simplicity, reference will be 
made only to per-pixel classifications based solely on spec- 
tral information; but the discussion is applicable to other 
classification approaches (e.g., per-parcel classification using 
spectral and spatial discriminatory variables). 

Tralning Stage 
A fundamental issue in any supervised classification is the 
quality of the data used in training. The aim of the training 
stage is to derive an accurate and representative description 
of each class. Provided the remotely sensed data have been 
preprocessed appropriately, it may be possible to use library 
spectra. However, given the vast array of problems in achiev- 
ing the desired accuracy of calibration and the range of epi- 
sodic and external variables that could influence the spectral 
response of a class in the image to be classified, it is more 
common and appropriate to derive the training data from the 
image itself. Typically, this is achieved by extracting data 
from sites of known class membership in the image and sta- 
tistically characterizing them in terms of the discriminating 
variables to be used in the classification. There is a large lit- 
erature that helps define an appropriate training set for a 
classification. This specifies a range of considerations such as 
the sample size and design, the effect of spatial autocorrela- 
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tion, and intra-image variations in the sensor's viewing ge- 
ometry (Mather, 1987; Campbell, 1996). It is often 
impractical to collect training data that satisfy all the require- 
ments. Indeed, training data are typically derived from a rel- 
atively small number of sites that are particularly pure or 
exemplars of the classes. This may not always be appropriate 
or even possible, particularly if the image is dominated by 
mixed pixels. 

Fuzziness may, however, be accommodated into this 
stage of the classification. Wang (1990b) shows how data on 
the fuzzy membership properties of training samples may be 
used to derive refined class descriptors for use in a the class 
allocation stage. With this and other approaches, it may be 
possible to refine the training statistics derived from a train- 
ing set in which some, or even all, of the pixels are mixed to 
obtain those statistics that would have been derived if the 
pixels had in fact been pure. These rectified training statis- 
tics could then be used in a conventional classification. Foody 
and Arora (1996) show how this may be achieved by using a 
linear mixture model in reverse to predict pure class re- 
sponses from those derived from a sample of mixed pixels. 
They also illustrate an alternative approach, the use of a clas- 
sification technique which enables the mixed-class member- 
ship of the training samples to be handled directly in the 
classification. The technique used was based on a feedforward 
neural network in which the class composition of each train- 
ing pixel was defined as the target output during training. 

Even if fuzziness is recognized, the analyst is often con- 
strained to use only pure pixels in an attempt to ensure the 
correct use of a conventional classification algorithm. For 
this, the analyst typically aims to select training sites from 
large homogeneous areas of the classes and remove atypical 
data, even if the classes may be recognized to be continuous 
and, therefore, fuzzy (e.g., Joria and Jorgenson, 1996). 

Allocation Stage 
The derived training statistics are used to guide the alloca- 
tion of pixels of unknown class membership to a class in 
this, the second, stage of the classification. To achieve this, 
the spectral response (and any other discriminating data) of a 
pixel is compared against that of each class in the training 
statistics, and the pixel is then allocated to the class with 
which it has the greatest similarity in accordance with some 
predetermined decision rule. The pixel may be allocated, for 
instance, to the class to which it is spectrally closest. There 
are many classifiers that may be used, and typically the out- 
put is wasteful of the class membership information derived 
as only the label of the class with which the pixel has the 
greatest strength of membership is provided. Recognition of 
the presence of mixed pixels leads to a desire to allow a 
pixel to display membership in more than one class. The 
means of accommodating mixed pixels is, therefore, to allow 
a pixel to have membership in more than one class. This is 
evident in studies that seek to apply secondary labels to 
class predictions and in fuzzier or softer classifications in 
which membership to all defined classes is possible. There 
are many approaches by which this may be achieved, nota- 
blv bv softening the o u t ~ u t  of conventional "hard" classifica- 
tions: These inilude m&ifying conventional approaches 
such as the maximum-likelihood classification and neural 
networks as well as through the adoption of a fuzzy classifi- 
cation algorithm (Foody, 1996). The classification output 
may vary in its fuzziness from the single class label charac- 
teristic of a "hard" classification, through one depicting a 
primary and secondary label, to the provision of class mem- 
berships for each class. Which is used will depend on the 
application or desired means of representing the classifica- 
tion. Because many mixed pixels are usually composed of 
only a few classes and as it may be cumbersome to store all 

the class memberships for each pixel, it may be preferable to 
use only one or two secondary labels. This output may also 
be easier to represent cartographically than all the fuzzy 
membership information that could be derived for each class. 
Such an approach may also be preferable if the degree of 
correspondence between the fuzzy membership values and 
class composition is poor. This may, for example, occur if 
the training data are not fully representative of the classes 
(Canters, 1997). 

Testing Stage 
The utility of a thematic map is largely dependent on its 
quality. Typically, this is expressed in terms of the classifica- 
tion accuracy. The significance of this stage of the classifica- 
tion process is evident in the large literature devoted to it, 
particularly on the methods of accuracy assessment and com- 
parison. Typically, the accuracy of an image classification is 
assessed using a global measure such as the percentage correct 
allocation or kappa coefficient of agreement, which provide a 
valuable summary of the overall quality of a classification. 
There has been considerable research undertaken on this stage 
of the classification to help the analyst derive an appropriate 
index of classification quality. Studies have focused on a 
range of issues beyond the index of accuracy itself to include 
factors such as the testing set composition and sampling de- 
sign (Congalton, 1988; Campbell, 1996). There are many prob- 
lems, however, with this stage, some of which are related to 
the fuzziness associated with mixed pixels. 

Fuzziness may be accommodated in this stage and used 
to resolve some major problems in evaluating the quality of a 
classification (e.g., Gopal and Woodcock, 1994). For example, 
the ground data can rarely be assumed to be error-free. For 
this reason, the terms such as "ground truth" and even "ac- 
curacy" should be used and interpreted carefully. Testing a 
classification is rarely a matter of quantifying the accuracy 
of the class allocation with reference to a set of actual class 
labels. It is instead typically an evaluation of the level of 
agreement or correspondence between two sets of class allo- 
cations, both of which have their own error characteristics. 
Furthermore, in recognition of mixed pixels and the ability 
to extract more than just one class label for a pixel, ap- 
proaches to accommodate secondary class labels have been 
investigated (Woodcock and Gopal, 1995; Woodcock et al., 
1996). These are required because the "hard" allocation for a 
mixed pixel must to some extent be erroneous. Because the 
magnitude of error may vary from negligible to complete er- 
ror, approaches which can allow for the continuous nature of 
the class allocation to all classes may be most preferable. By 
using techniques that account for fuzziness in both the clas- 
sification output and ground data, a more appropriate mea- 
sure of classification quality may be derived (Foody, 1996). 

A major problem with the testing stage of many classifi- 
cations is that the accuracy measures used are typically 
global, with little if any information derived for individual 
locations. These measures, therefore, provide little informa- 
tion on the spatial structure of uncertainty within the de- 
rived classification (Canters, 1997). Often the user of a 
thematic map would benefit from the inclusion of per-pixel 
uncertainty information which can be derived. With a fuzzy 
classification output, for example, the magnitudes of the 
class memberships for a pixel provide the basis for the mea- 
surement and representation of features such as the con& 
dence that may be placed with an individual class allocation 
(Comes and Place, 1994). A range of measures may be de- 
rived. For instance, the magnitudes of the measure of class 
membership a pixel displays to all classes could be used to 
derive indices to represent the uncertainty (Maselli et al., 
1994; Gong et al., 1996; van der We1 et al., 1997). Although 
this provides a useful indication of per-pixel classification 
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quality, a global measure of accuracy is generally required as 
a summary statistic. The methods generally used, such as the 
percentage correct allocation or kappa coefficient of agree- 
ment, are not without problems. It is, for instance, typically 
assumed that the classes are unordered (van Deusen, 1996). 
In many instances, however, the classes may be ordered yet 
the conventional accuracy assessment techniques are used 
(e.g., Joria and Jorgenson, 1996). In such circumstances, the 
use of a conventional accuracy assessment measure, designed 
for application to nominal level data, will not make full use 
of the information content of the data and may not provide 
an appropriate index of classification quality. It may some- 
times be preferable to use approaches that can accommodate 
the ordinal nature of the data set such as the weighted kappa 
coefficient (Cohen, 1968; Foody et al., 1996). The analyst 
may at times be constrained to use a conventional measure 
of accuracy, for example, if evaluating the results against 
previously published work to maintain consistency, but the 
possibility that the measure does not fully use the data 
should be recognized and its implications considered. 

The Continuum of Classification Fuulness 
Through a consideration of fuzziness applying to all three 
stages of the supervised classification, it is possible to d e h e  
a continuum of classification fuzziness. With this continuum, 
it is apparent that there is not a simple distinction between 
"hard" and fuzzy classifications, but, rather, a range of clas- 
sification approaches of variable fuzziness (Figure 1). To 
avoid confusion in terminology and because, for example, a 
"hard" classification may be applied (incorrectly) to fuzzy 
data, the continuum may be defined upon the nature of the 
data sets in terms of belonging to crisp or fuzzy sets (Klir 
and Folger, 1988). 

Crisp sets are assumed throughout a "hard" classifica- 
tion. Thus, at the "hard" end of the continuum are what 
may, for the want of a better expression, be termed com- 
pletely crisp classifications. These are based on the conven- 
tional approach to classification in which a pixel is associ- 
ated with a single class at each stage of the classification. 
Most supervised classifications of remotely sensed data adopt 
or assume this approach, but its application may be inappro- 
priate due to the presence of mixed pixels. At the other ex- 
tremity of the continuum are fully fuzzy classifications. In 
these, fuzziness is accommodated in all three stages of the 
classification. This type of approach may provide a more re- 
alistic and accurate representation of the land cover of a site 
and use more fully the information content of the remotely 
sensed data. Between these extremes lie classifications of 
varying fuzziness. This includes those generally referred to 
in the literature as fuzzy classifications, in which only the 
class allocation stage actually accommodates fuzziness. 

Although more difficult to derive than a completely 
crisp classification, a number of approaches exist for produc- 
tion of classifications of variable fuzziness. For instance, the 
conventional approach to maximum-likelihood classification 
can be modified to accommodate fuzziness in any or all 
three stages of the analysis (Foody and Arora, 1996). Neural 
networks are, however, particularly attractive, especially as 
they may accommodate the fuzziness of the training data 
directly into the classification (Foody, 1995; Foody et al., 
1997); the accommodation of fuzziness into the testing stage 
of the classification is effectively independent of the ap- 
proach used to generate the fuzzy classification. Neural net- 
works are also capable of providing a classification at any 
point along the continuum of classification fuzziness. They 
can, therefore, be used in the derivation of classifications 
varying from the completely crisp (Kanellopoulos et al., 
1992), through classifications of intermediate fuzziness 
(Foody, 1996), to fully fuzzy (Foody, 1995; Foody, 1997). 

Completely Fully 

Training 

Allocation 

Testing 1 t t 
"Hard" 'Fuzzy" *Soft" 

Figure 1. The continuum of classification fuzziness. 
Stages using crisp data are shown in black and 
those using fuzzy data in white; the distinction is 
less apparent in reality as  the fuzziness of each 
stage is actually variable (see text for discussion). 
Because each stage of the classification may be 
based upon crisp or fuzzy data sets, a series of 
classifications of variable fuuiness may be defined 
ranging from those in which crisp data are used 
throughout (completely crisp classification) to those 
in which fuzzy data are used throughout (fully fuzzy 
classification). The traditional "hard" approaches 
to mapping are represented here at the completely 
crisp end of the continuum. Note also that the 
classifications termed as being "fuzzy" or "soft" 
in the literature generally lie between these ex- 
tremes as typically only the class allocation stage 
accommodates fuzziness. 

Because the fuzziness of each stage of the classification 
is itself variable, the classifications are arranged along a con- 
tinuum of fuzziness and are not a small number of classifica- 
tions that may be listed in order of fuzziness defined by the 
number of crisp and fuzzy stages. This can be illustrated 
briefly with reference to each stage. In training, the data may 
be crisp if the pixels are pure but for mixed pixels the train- 
ing stage may vary in fuzziness. For instance, the training 
data used may vary from the code of the dominant class to 
individual class proportions. In the class allocation stage, a 
pixel could be allocated to a single class or the output might 
also contain the second most likely class through to the pro- 
vision of membership grades to all classes. Lastly, the data 
used in testing the classification may, like the training data, 
vary from the code of the dominant class to individual class 
proportions and techniques which utilize the available infor- 
mation to variable extents adopted. In each stage there are, 
therefore, different ways of accommodating the fuzziness, 
which may use the information to differing extents. For ex- 
ample, in evaluating the accuracy of the output from a fuzzy 
classification, the analyst could degrade the data to enable 
the calculation of a conventional measure of classification ac- 
curacy (Foody, 1996), use, for instance, the two most likely 
classes of membership (Woodcock and Gopal, 1995; Zhang 
and Foody, 1998), or use all the data on class membership 
derived in comparison against the ground data set (Kent and 
Mardia, 1988; Foody, 1996). Therefore, two classifications 
that may accommodate for fuzziness in the same number of 
stages of the classification may still differ in their respective 
fuzziness. 

Lastly, it may initially seem that fuzzy classifications, 
particularly the fully fuzzy ones, require more precise 
ground data for their application than would a conventional 
"hard" classification. This is not, however, the case. In a 
"hard" classification, the actual class of membership for each 
training and testing pixel must be determined to the same 
degree as in a fuzzy classification. The only difference is that 
in a "hard" classification each pixel should represent an area 
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characterized by homogeneous cover of a single class whereas 
in the fuzzy classification each pixel may represent an area 
comprising any number of classes. In both, the analyst has to 
know the class composition of the entire area represented by 
each pixel; in any classification, the ground data for a pixel 
are supposed to represent the actual class cover observed on 
the ground. Thus, the fundamental requirement of ground 
data precision is exactly the same for classifications at any 
point along the continuum of classification fuzziness. So, 
while fuzzy classifications do require precise ground data for 
their application, it must be noted that the same level of 
ground data detail or precision is actually required for the 
correct application of a "hard" classification. The analyst 
may, of course, use less precise ground data in training or 
testing a classification but must accept that this could de- 
grade the real and apparent accuracy of the classification. 
Using imprecise ground data in training a "hard" classifica- 
tion is, for instance, possible but, as this will cause the class 
training statistics to be contaminated by other classes, it may 
be a source of misclassification. It may also indicate that the 
analyst is prepared, or constrained, to ignore the presence of 
mixed pixels and so accept error in ground data when using 
a "hard" classification. 

An Illustrative Case Study 
The ability to classify a data set at various positions along 
the continuum of classification fuzziness can be illustrated 
with a small case study. This study focuses on the classifica- 
tion of land cover from airborne thematic mapper (ATM) data 
of suburban Swansea, UK. The test site is small and well de- 
fined, limiting complicating factors. For the study, detailed 
ground data were required on the class composition of all 
the pixels used in the analysis. There are two commonly 
used approaches to estimating the class composition of im- 
age pixels in the absence of detailed ground data. In both, 
the class composition of the pixels in the image to be classi- 
fied is derived from a classification of imagery with a sub- 
stantially finer spatial resolution in which the pixels may 
more reasonably be assumed to be pure. The first approach 
uses imagery acquired at two spatial resolutions. For in- 
stance, Landsat TM data may be used to derive the reference 
or ground data on class composition for an analysis of NOAA 
AVHRR data (e.g., Hlavka and Spanner, 1995; Foody et al., 
1997). A major problem with this approach is that even mi- 
nor coregistration errors could result in considerable error in 
the land-cover composition estimates. The alternative ap- 
proach is based on spatial degradation of a single image. The 
original undegraded image is used to derive the class compo- 
sition of the spatially degraded image pixels. With this ap- 
proach, the two data sets are coregistered, but it must be 
recognized that the method does not provide, particularly in 
terms of radiometry, an accurate simulation of a coarse spa- 
tial resolution image. This is not usually a problem, unless 
the analyst is trying to simulate data from a specific sensor 
when a more carefully defined degradation approach may be 
required. Although both approaches are not ideal, they do 
provide a means to estimate the class composition of pixels 
and thereby evaluate the quality of products such as fuzzy 
classifications. Here the spatial degradation approach was 
used in mapping three classes, trees, grass and asphalt. The 
data acquired in the 605- to 625-, 695- to 750-, and 1550- to 
1750-nm spectral wavebands, which provide a high degree of 
inter-class separability, were used. These data were then de- 
graded spatially with an 11 by 11 low-pass (mean) filter. 
From the resulting coarse resolution image, a sample of 50 
pixels was extracted. This sample, while small, was re- 
stricted to pixels in which the class composition could be es- 
timated with confidence (i.e., areas contaminated by other 
classes were avoided, etc.) from a visual classification of the 

TABLE 1. ACCURACIES OF THE CLASSIFICATIONS DERIVED AT VARIOUS POINTS 
ALONG THE CONT~NUUM OF CLASSIFICATION FUZZINESS. ACCURACY IS EXPRESSED 
AS THE RMS ERROR BETWEEN THE ESTIMATED AND ACTUAL CLASS COMPOSITION 

OF THE 3 5  PIXELS IN THE TESTING SET DEFINED; IT IS NOT THE ERROR OF 

NETWORK LEARNING. A LOW RMS ERROR INDICATES A CLOSE CORRESPONDENCE 
BETWEEN THE CLASSIFICATION OUTPUT AND GROUND DATA AND HENCE AN 

ACCURATE CLASSIFICATION. THE AVERAGE RMS VALUE INDICATES THE OVERALL 
ACCURACY OF THE CLASSIFICATION WHILE THE NUMBER OF CASES IN THE TESTING 

SET WITH LOW (<0.2) AND HIGH (>0.5) RMS ERRORS INDICATE THE 

MAGNITUDE OF INDIVIDUAL ERRORS WITHIN THE TESTING SET. IN THE TRAINING AND 

TESTING STAGES, THE FUZZY DATA WERE IN THE FORM OF CLASS PROPORTIONS 
WHEREAS THE CRISP DATA COMPRISED ONLY THE CODE OF THE DOMINANT CLASS. 

SIMILARLY, THE STRENGTH OF CLASS MEMBERSHIP, EXPRESSED BY THE 

MAGNITUDE OF THE OUTPUT UNIT ACTIVATION LEVELS, REPRESENTS THE FUZZY 
CLASS ALLOCATION WHEREAS THE CODE OF THE CLASS ASSOCIATED WITH THE 

MOST ACTIVATED OUTPUT UNIT FORMED THE CRISP CLASS ALLOCATION. 
INTERPRETATION AND COMPARISON OF THE ACCURACY STATEMENTS IS DIFFICULT. 

FOR EXAMPLE, BECAUSE THE TESTING SET CONTAINED MIXED PIXELS, THE 

ACCURACY ASSESSMENTS DERIVED USING CRISP DATA IN THE TESTING STAGE 
MUST TO SOME EXTENT BE FALSE. NOTE, THEREFORE, THAT THE APPARENT 

ACCURACY MAY DIFFER FROM THE ACTUAL. THE KEY ISSUE, HOWEVER, IS THAT THE 

ACCURACY STATEMENTS SHOWN WERE ALL EFFECTIVELY DERIVED FROM THE SAME 
DATA SETS BUT ARE DIFFERENT. 

Classif ication Accuracy 

Data U s e d  in Classif ication Stage Number  o f  
Average Cases 

Tra in ing  A l loca t ion  Testing R M S  c0.2 >0.5 

Fuzzy Fuzzy Fuzzy 0.150 29 1 
Crisp Fuzzy Fuzzy 0.108 2 5 1 
Fuzzy Fuzzy Crisp 0.204 2 7 5 
Cr isp Fuzzy Crisp 0.100 29 3 
Fuzzy Crisp Fuzzy 0.150 22 4 
Crisp Cr isp Fuzzy 0.135 2 2 2 
Fuzzy Crisp Cr isp 0.116 30 5 
Cr isp Crisp Cr isp 0.070 3 2 3 

spatially undegraded data. This data set contained pixels of 
varying class membership properties, from pixels containing 
all three classes to pure pixels of each class. For the pur- 
poses of this investigation, 15 mixed pixels were selected to 
form a training set. Because the analyst would in practice 
generally attempt to use pure pixels as far as possible, the 15 
training pixels were selected in such a fashion that there 
were five pixels that were strongly dominated by each class 
(>50 percent cover). The remaining 35 pixels formed the 
testing set upon which classification accuracy was assessed; 
further details on the data are given in Foody (1995; 1997). 

A series of classifications was performed using a feedfor- 
ward neural network. For these classifications, the data used 
in each stage of the classification were either in the form of 
fuzzy (e.g., class proportions) or crisp (e.g., dominant class 
label) sets, with a variety of classification scenarios, in terms 
of the three stages, being performed. In each classification, 
the network architecture (three input units, four hidden 
units, and three output units) together with the learning algo- 
rithm and its parameters were the same. To allow classifica- 
tion accuracies to be compared directly, a basic measure of 
accuracy was employed that may be used at any point along 
the continuum of classification fuzziness. This was the ~ w S  
error between the estimated and actual class composition of 
the pixels in the testing set. Thus, in each classification, ex- 
actly the same data and methods have been used to train and 
test the classifications; all that differed was whether the data 
used were fuzzy or had been hardened into crisp sets. 

The results are presented in Table 1, which reveals a 
large variation in the measured accuracy. These accuracy 
statements are, however, difficult to evaluate and compare; 
markedly different results also may be obtained for a testing 
data set comprising different proportions of pure and mixed 
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pixels andlor with a different degrees of mixing (Foody, 
1996). The interpretation of the classification accuracy state- 
ments is also difficult as the quoted or apparent accuracy 
may be a poor indicator of the actual quality of the classifica- 
tion. This is particularly apparent when comparing results 
derived from classifications that were only dissimilar in the 
testing stage; here the accuracy statements derived with the 
fuzzy data may generally be considered a fairer indication of 
the real accuracy than the hardened data because the crisp 
class labels may hide error. The concern of this investiga- 
tion, however, was not with issues such as the absolute ac- 
curacy but simply the variability between the derived classi- 
fications. The key point is that vastly different accuracies 
were derived from different points along the continuum. The 
ability to extract information, as indicated by the classifica- 
tion accuracy, varies along the continuum. Visual compari- 
sons of hard and fuzzy classifications also reveal differences 
in the information on class membership and its distribution 
that may be derived (Figure 2). 

The methods that may be used in each stage of the clas- 
sification vary in their appropriateness along the continuum. 
This has numerous important implications for later users of 
the classification. Their use of the classification may, for in- 
stance, be enhanced by careful reporting of the whole classi- 
fication process. This will help gain an appreciation of the 
real as opposed to apparent accuracy and standards of the 
data derived. Users will therefore, for instance, require a de- 
tailed documentation of the quality of the classification. This 
must go well beyond the provision of a conventional state- 
ment of classification accuracy or even a classification confu- 
sion matrix, as both may be highly inappropriate for the data. 
Instead, users will require information on the nature of the 
data sets and methods used to evaluate the classification and 
associated accuracy statement. There are also implications to 
the setting of and evaluation relative to data standards. As a 
basic example, how useful is a target standard for a classifi- 
cation of a kappa coefficient of 0.85 if the data comprise 
mixed pixels and the classes are ordered? This "hard" index 
of classification accuracy designed for nominal classifications 
cannot provide a universally appropriate basis for the evalua- 
tion of classification accuracy. 

Discussion and Conclusions 
Image classification, like many analyses of digital remote 
sensor data, is based generally on an assumption that the im- 
age pixels are pure. This assumption underlies the whole 
classification process even though pure pixels may comprise 
only a small proportion of the image. Despite this, conven- 
tional "hard" classification methods are often applied to re- 
motely sensed data. The application of such methods can be 
a source of numerous problems. At a very basic level, using 
techniques that assume pure pixels on imagery dominated by 
mixed pixels may be very inappropriate and erroneous. 

Mixed pixels cannot be accommodated sensibly in any 
of the three stages of a conventional supervised classifica- 
tion. Much of the effort directed at resolving this problem 
has focused on the second stage of the classification process 
with aim of deriving fuzzy or soft classifications which may 
represent the fuzzy theme more appropriately than would a 
"hard" classification. The realization of the effect and signifi- 
cance of mixed pixels was the driving force for the deriva- 
tion and application of a range of fuzzy classifications. How- 
ever, the term "fuzzy classification" has often been used in 
the literature to describe an analysis in which a fuzzy or soft 
classification output is derived, but no explicit reference is 
made usually to the training and testing stages. Indeed, the 
training data are often selected from large homogeneous 
regions in order to maintain training sample purity. The ac- 
curacy of a classification is also generally assessed with con- 

a b 

c d 
Figure 2. Outputs from hard and fuzzy classifications. (a) 
An extract of spatially degraded ATM data in the 6 9 5  to 
750-nm waveband. (b) A conventional hard classification 
derived in which the light, medium, and dark tones repre- 
sent the trees, asphalt, and grass classes, respectively. 
(c) A fuzzy classification output for the asphalt class in 
which the lightness of tone is positively related to the 
strength of membership to asphalt. (d) The original (unde- 
graded) ATM data in the 6 9 5  to 750-nm waveband. Note 
that in the hard classification large areas have been com- 
missioned into the asphalt class (e.g., the top left corner 
which actually comprises untrained classes (e.g., sandy 
beach)) which is shown to have low membership to as- 
phalt in the fuzzy classification. Furthermore, the fuzzy 
classification indicates clearly the main road network and 
large car parks which are apparent in the fine spatial reso- 
lution image (d). 

ventional accuracy assessment procedures which require 
pure pixels. In such an analysis, therefore, only one of the 
three stages of the classification is fuzzy; the training and 
testing stages may be considered to be "hard." The use of 
such a fuzzy classification does not, therefore, fully resolve 
the mixed-pixel problem, because their effects on the train- 
ing and testing stages have not been considered. The accom- 
modation of mixed pixels outside the class allocation stage 
is, however, required because the mixed pixels will contami- 
nate the training data, and cannot be appropriately repre- 
sented or evaluated by conventional methods. 

The key issue is that the whole classification process, 
and not just the class allocation stage, is constrained by the 
scale of the pixel. In the training and testing stages, the 
ground data on class membership are, for example, generally 
related to the remotely sensed data at the scale of the pixel 
and so may be fuzzy. As such, if mixed pixels are abundant 
and the analyst requires the use of a fuzzy classification algo- 
rithm to obtain a realistic representation of the classes, then 
mixed pixels may be a major problem in the training and 
testing stages. Put another way, it is highly unlikely that 
mixed pixels present a problem in the class allocation stage 
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only, particularly as the training and testing sets are suppos- 
edly representative of the classes over the whole image area. 
Although mixed pixels are undesirable in both the training 
and testing stages of a conventional supervised classification, 
they may be unavoidable and so their effects must accommo- 
dated if a theme such as land cover is to be mapped accu- 
rately and the map evaluated appropriately. The inclusion of 
mixed pixels, deliberately or not, into any of the three stages 
of the conventional "hard" supervised classification is inap- 
propriate and likely to be a major source of error. Similarly, 
the inclusion of mixed pixels in the training and/or testing 
stages of a fuzzy classification algorithm may be inappropri- 
ate (Foody, 1999). 

A variety of approaches may be used to reduce the effect 
of mixed pixels. In training and testing the classification, for 
instance, the analyst may deliberately use pixels located in 
large homogeneous blocks of a class to exclude as far as 
practicable mixed pixels, or at least the most mixed of pix- 
els. But such pure, or at least near-pure, pixels may be un- 
representative of the rest of the image and be a poor base for 
training and testing a classification. 

Recognizing that fuzziness may require accommodation 
in the training and testing stages of the classification, as well 
as in the allocation stage, enables a continuum of classifica- 
tion fuzziness, from completely crisp to fully fuzzy, to be de- 
fined. The analyst should be able to use this continuum to 
help identify techniques appropriate for the data sets and in- 
vestigation in-hand. A range of possible approaches for clas- 
sification along this continuum have been indicated; note 
also that techniques may be applied inappropriately at posi- 
tions other than those to which they are suited. Techniques 
to accommodate fuzziness range from rectifying data [e.g., 
training statistics) to ensure that they are appropriate for use 
in a conventional methods, to accommodating fuzziness di- 
rectly into the whole classification process. 

The case study illustrated the potential to classify data at 
various points along the continuum. It used a neural network 
to derive a series of classifications of varying fuzziness. Re- 
sulting accuracy assessments varied markedly even though 
based on the same data sets and classification approach. The 
results emphasize the need to recognize the existence of the 
continuum and for the selection of techniques appropriate to 
the point along it, within the scope and constraints of a par- 
ticular investigation. 

Finally, the implications to users of the classification, 
particularly within a GIs, warrant brief attention. Remote 
sensing is a major source of environmental data for many 
GISs, yet "hard" techniques are commonly used in extracting 
the derived information. With much concern in GIS address- 
ing issues such as uncertainty and error propagation (Can- 
ters, 1997), the requirement for accurate class labels is 
evident. Although the mixed-pixel problem has been recog- 
nized for a long period, relatively little work has been at- 
tempted to address it despite its significance in remote 
sensing and in linking spatial data sets (Fisher, 1997). To re- 
alize the full potential of remote sensing, greater explicit ac- 
tion on this problem is required. Perhaps by embracing more 
explicitly the issues within a fuzzy geographic paradigm 
(Openshaw, 1996), strides to realizing more fully the poten- 
tial of remote sensing may be made. For thematic mapping, 
fuzzy classification approaches may be an important contri- 
bution. The extent to which fuzziness is accommodated, 
however, can vary and this may affect the real and apparent 
accuracy of products derived from remotely sensed data. 
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