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Abstract
Correspondence analysis is introduced for principal compo-
nents ftansformation of multispectral and hyperspectral digital
images. This method relies on squared deviations between
pixel volues and their expected values (joint probabilities
computed as the product of the sum of all pixels in one
spectal band and the sum of pixel values across all bands
at a given pixel position). Correspondence analysis is applied
to o multispectml SPoT High Resolution Visible fnnv) image
of Eleuthera, Bahamas. Correspondence analysis, principa)
components analysis, and factor andysis (standardized pfin-
cipal components) yiel d similar transformations. Cone spon-
dence analysis, however, compresses mote imoge variance
into fewer principal components. For the particular SPOT HRv
scene chosen, correspondence analysis captures g6 percent
of the original image vafiance in its first principal compo-
nent. Used in a lossy image compression algorithm to recon-
struct the original set of three SPOT HRV images, this first
principal component from cofiespondence analysis restores
spectrul content better than does principal components anal-
ysis.

lntroduction
Principal components transformation, also refened to as a
Hotelling transform, of multispectral images is well known
(e.g., Schowengerdt, 1997; Gonzalez and Woods, 1992; Jen-
sen, 1996). The typical application relies on within-band var-
iance/between-band covariance matrices, eigenvectors of
which are used to rotate (transform) original image bands
such that each rotated band is statistically orthogonal to (in-
dependent ofl all other bands. Another application, called
standardized principal components (Singh and Harrison,
1985), uses within- and between-band correlation coeffrcients
to assemble a matrix that is eigen decomposed. Although
called standardized principal components in literature re-
lated to remote sensing, this method is often known as factor
analysis (see reviews in Davis (1s73), Davis (1986), and Carr
(1995)), referred to as such throughout this manuscript to
avoid confusion with principal components analysis. Factor
analysis has been used in digital image processing to mini-
mize the numerical influence of bands having a larger vari-
ance. Realistically, principal components and factor analysis
are similar because (co)variance is directly proportional to
correlation coeffi cient.

A multivariate method of relatively recent advent, corre-
spondence analysis (Benzecri, 1973), differs from principal
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components and factor analysis by using a chi-square metric
for representing inter- and intra-variable relationships. For
certain types of images and/or individual scenes, correspon-
dence analysis may provide better discrimination among in-
tercorrelated spectral bands when compared to principal
components or factor analysis. Correspondence analysis may
be a better method when applied to ratio data, such as pixel
values, or measurements in general (Greenacre, 1984).

Correspondence analysis is more a geometrical method
than a statistical one. Factor analysis and principal compo-
nents analysis, for instance, are statistical methods. Both are
functions of covariance among the multiple variables, where
covatiance is the metric for closeness (similarity). Correspon-
dence analysis uses a different measure of closeness between
variables. A chi-souare metric is used to measure distance
between pixel veciors of order M, where M is the number of
spectral bands. In this sense, conespondence analysis is a ge-
ometric method because its main concern is the orientation
of [pixel] vectors in M-dimensional space, and how close
these vectors are to one another. A d-etailed discussion of the
historical and theoretical background of correspondence
analysis can be found in Greenacre (19s4).

A subsequent application is used to emphasize the simi-
larities and differences among principal components analysis,
factor analysis, and correspondence analysis. The primary in-
tent of this paper is to introduce correspondence analysis for
principal components transformation of multispectral and hy-
perspectral digital images. Depending on the image type and
scene, it may yield results that are superior to those from the
other two methods. An extension of corresoondence analvsis
to digital image compression is also suggesied.

Algotithms

Principal Components Analysis
Given M intercorrelated image bands, principal components
analysis proceeds by assembling a matrix [S], M by M in size
and symmetrical, such that S(i,i) is the variance for band i,
and S(i,il : S(/,t is the covariance between bands i and l.
Variance can be comouted as
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in which N is the total number of pixels, BV, collectively
representing a particular image band. This equation com-
pares to that for covariance between two image bands, BV,
and BVr: i.e.,

1  f . . $
cov(nv, .  BVr)  :  
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BV,. r  BVr. ,

- ,i ,u,,i ,u,,] e)
where N is again the total number of pixels in each image
band.

Suppose the BVs in a Landsat TM scene are to be rotated
(transformed) using principal components analysis of all
seven (M bands. In this case, a matrix S of size 7 by 7 is
computed. Diagonal entries of this matrix consist of the
seven variances for each band. Additionallv. there are 21, off-
diagonal entries, symmetrical above and below the diagonal,
representing the covariances for all possible two-band combi-
nations from the group of seven bands.

Factor Analysis (Standardized Principal Components Analysis)
Again, assume a multispectral image consisting of M spectral
bands. A matrix S of size Mbv M is comouted such that
S(i,, : S(i,t : r, the correlatibn coefficient between bands, j
and i. For consistency with previous equations, let the pixels
in band i be represented by BVi, and those for band j be rep-
resented by BVr. Then

COV (BVJ BV,)t" : (s*rs,J-
In this equation, S represents the standard deviation of a dis-
crete sample. Moreover, if i : i, then r : 1; thus, all diago-
nal entries of S are equal to 1.

Given a seven-band Landsat TM scene, S is a 7 by 7 ma-
trix, The seven diagonal entries are each equal to 1. The 21
unique off-diagonal entries, symmetrical above and below
the diagonal, are equal to correlation coefficients for all pos-
sible two-band combinations (from the original group of
seven bands). These correlation coefficients range numeri-
cally between -1 and 1, inclusive.

Conespondence Analysis
In this development, a hypothetical notion of an image is
used to demonstrate mathematical concepts. Suppose a 512
by SIZ , seven-band Landsat TM image is to be transformed
using correspondence analysis. Each band consists of 512 by
512 pixels, or a total of 262,L44 pixels. Let a matrix Y be
formed that is N by M in size; M in this case, is 262,1.44,
and M is 7. Notice that Y is simplv the total collection of all
pixels involved. Further, Iet theioial sum of all entries in Y
be called u. The following steps are completed to yield a
square, symmetrical matrix S that is eigen decomposed to
yield the image transformation (for more detail and computer
programs, see Carr (1990; 1995; 1998)):

Step 3:

normalize Y by u: Y' = Y/u;
form an N by 1 vector W, each entry of which
represents the sum of each row of Y'; each entry
in W is the total sum of [normalized] pixel val-
ues across all spectral bands considered for a
given pixel position;
form an Mby 1, vector T, each entry of which
represents the sum of each column of Y'; each
entry in T is the sum of all [normalized] pixel
values in a given spectral band;

Step 4: although a matrix S of size Mby M can be
formed from two intermediate matrices. S^ and
S., such that
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This is an inefficient approach with respect to computer
memory; instead, the matrix S can alternatively be formed
as follows, an approach that more directly implies the
chi-square analogy (Davis, 1986; Can, 1995):

,*:i(w)(w) (s)
For example, if i  : i  = k :1, then

q  - ( Y , , - w ' 7 , ) 'v1l  
wrT,

and comparing to the equation for the chi-square statistic:

" 
(O' - E,)'

x " :  E ,

in which O is an observed value and E is the expected value,
the analogy is realized if one considers that Y is observed,
and the product WT is the expected value of Y. When using
the second approach in correspondence analysis for comput-
ing the matrix S, off diagonal entries can become negative.
The second approach for forming S is used in this paper and
in Car (1998). As a ffnal note, correspondence analysis al-
ways reduces the dimensional space by at least one. If M im-
age bands are considered, only M - 1 eigenvalues, at the
most, will be significant. This has important implications for
digital image compression, a concept that is explored later in
this paper.

Application
A portion (400 rows by 400 pixels per row) of a SPOT High
Resolution Visible (nnv) image of Eleuthera, Bahamas (Figure
1) acquired on 21 April 1986 is chosen for an example com-
parison among principal components analysis, factor analy-
sis, and correspondence analysis. The three multispectral
channels of the SPOT HRV sensor are used: channel 1 (0.5 to
0.59 pm), channel 2 (0.61 to 0.68 pm), and channel 3 (0.79 to
0.89 pm). Matrices S, obtained from each multivariate method,
are listed (Table 1), along with their associated eigenvalues
and eigenvectors (Table 2).

Principal components analysis and factor analysis are
identical with respect to the amount of original image vari-
ance captured (represented) in each principal component: 70
percent in the first, 28 percent in the second, and 2 percent
in the third principal component. For this particular SPoT
HRV scene, there seems to be no need to standardize image
variance using correlation coefficients in a principal compo-
nents analysis because the eigen decomposition results ard
identical from principal components analysis and factor
analysis.

Tralr 1. MATRTCES S, ron PnrnclpnL Colponenrs, FAcroR, AND
CoRnesponoeruce Annlysrs

Principal Components Analysis

(4)

(3)

Step 1:
Step 2:

2261.6
1546.1

-  l /  / 5 - 5

Factor Analysis
1.0000
0.8025

-0 .6029
Correspondence Analysis

0.0875
0.0370

-o.7277

1546.1
1641.4
-432.O

0.8025
1.0000

-o .1722

0.0370
o.0267

-0 .0619

_ L / / J . J

-432.O
3834.3

-  0 .6029
-o.7722

1.0000

-o.1211.
-0.0619

0.1  780
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Figure 1' Mosaic of sPor HRV spectral images of Eleuthera, Bahamas acquired on 21 April 1986. These images represent a
sub-sampled, 400 row by 400 pixel section of the original scene. Left: Channel 1 (0.5 to 0.59 pm); center: Channel 2 (o.6I
to 0.68 pm); right: Channel 3 (0.79 to 0.89 pm).

In-comparison, correspondence analysis captures g6 per-
cent of the original image variance in its first principal com-
ponent. The second principal component captures most of
the remaining 4 percent of the total image variance, whereas
the third component represents a negligible amount of vari-
ance. The 1arge amount of variance captured by correspon-
dence analysis in its first principal component is usedlater
in a discussion on digital image compression.

Eigenvectors (Table 2) from all three methods are used
to transform the original suite of three bands to three mutu-
ally orthogonal (statistically independent) bands, mosaics of
which are shown (Figures 2 and 3; a specific figure devel-
oped using factor analysis is not presented because its trans-
formation is visually identical to that from principal
c_omponents analysis). No scaling was used to develop the
displays (Figures 2 and 3), except to transform pixel values
to a range, [0, 255], to facilitate display.

Mathematically, the transformation was implemented as
follows. Each of the SPOT HRV spectral band imases was
loaded as a single column in a matrix O, an N b! M image
where N is the total number of pixels in each band image,
and M is the number of spectral bands. Eigenvectors (Table
2) from each method were loaded as columns into a matrix
E. The transformation was then obtained as a product: T :

OE, and each column in T is one of the transformed images,
N total pixels in size.

Principal components analysis, factor analysis, and cor-
respondence analysis yield visually similar results for the
first principal component. The second principal component
image from correspondence analysis is visuafly similar to the
third principal component image from both piincipal compo-
nents an_alysis and factor analysis, probably becauJe approxi-
mately the _same amount of original image-variance is being
represented. The third principal component image from coi-
respondence analysis is shown, but represents negligible var-
iance and is not comparable to any principal component
image from the other two methods

Extension to Digital lmage Compression
Given that OE : T effects the principal components transfor-
mation, then a reconstruction is afforded by reversing this
process: TE-' : O, in which E I is the inverse of the
eigenvector matrix. If all M columns (principal component
images) in T are used in this process, O is reconstructed ex-
actly with no loss. In this case, T and O have the same infor-
mation content (the same size).

- A- lossy reconstruction (one with error) is possible using
only the most significant principal component, or compo-

TneLE 2. Ereen Decovposrrron Resulrs

Eigenvectors

Vector 1 Vector 2 Vector 3

Principal Components:

Factor Analysis:

Correspondence Analysis:

Eigenvalues:
Variance:

Eigenvalues:
Variance:

Eigenvalues:
Variance:

-o.779
-  0 .435

1.000
5463.7

(7Oo/o)
-  1 .458
-7.230

1.000
2.O9

(7Oo/o)
-0 .687
-o.342

1..000
0.28

(s6%)

0.664
7.172
1.000

2204.3
(28%)

0.063
0.738
1.000
0.84

(28o/o)

3.948
-5 .008

1.000
0.0099

(4%)

2.679
-2.499

1.000
' t57 .8

(2"/.)
7 .970

-1..522

1.000
o.o7
(2%)

o.975
0.968
1.000
5.04E-15
(o%)

Sum = 7825.8

Sum = 3.0

Sum : 0.29
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Figure 2. Mosaic of transformed images obtained using correspondence
ter: second principal component image; right: third principal component
l i ne .

analysis. Left: f irst principal component image; cen-
image. Each image is 400 lines by 400 pixels per

nents, in T. For example, correspondence analysis of the one
SPor HRV image used in this paper resulted in the first prin-
cipal component capturing 96 percent of the original data
variance, An experiment is presented to reconstruct the origi-
nal three images, O, using only the first column in T. In this
case. the second and third columns of T are discarded. Such
a reconstruction is presented (Figure a). This is an example
of a lossy compression, because discarding the second and
third columns in T results in a loss of 4 percent of the origi-
nal data variance. The reconstruction (Figure 4) is visually
similar, but not identical to the original three spectral bands
(Figure 1). For comparison, a reconstruction is attempted us-
ing only the first principal component image from principal
components analysis (Figure 5). In this case, 30 percent of
the original image variance is discarded, and the comparison
to the original spectral images (Figure 1) is less satisfying.

In these reconstructions (Figure 4 contrasted by Figure
5), correspondence analysis restores the vegetation brightness
in the infrared spectral band (spor HRV band 3) better than
does principal components analysis when using only the first

principal component for reconstruction. In this particular
case, the first principal component in correspondence analy-
sis represents more between-band covariance than does the
comparable component in principal components analysis.
Whereas lossy digital image compression may not be satisfy-
ing for many applications, it is used here more to distinguish
the information content in principal components developed
using correspondence analysis from the information content
in principal components developed using principal compo-
nents analysis or factor analysis.

Summary
Corresoondence analvsis is a relativelv new method of multi-
variate analysis. Its metric is a "chi-square" deviation be-
tween a true (normalized) pixel value and its expected value.
In application to a three-band, spor HRV image, the first two
principal component images from correspondence analysis
capture almost all original image variance. In contrast, all
principal component images are necessary from principal
components analysis or factor analysis (standardized princi-

Figure 3. Mosaic of transformed images obtained using principal components analysis. Left: f irst principal component image;
center: second principal component image; right: third principal component image. Each image is 4OO lines by 400 pixels
oer  l ine.
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Figure 4. Mosaic of reconstructed sPoT uRv images using the first principal component image from correspondence analysis.
Channel 1 is on the left; Channel 2 is in the center; and Channel 3 is on the right. Note the restoration of vegetation bright-
ness in  Channel  3.

pal components analysis) to represent the same amount of
original image variance.

Visually, correspondence analysis yields principal com-
ponent images similar to those obtained lrom principal com-
ponents analysis or factor analysis. This statement is con-
firmed by comparing Figures 2 and 3 again and noting that
the second principal component image from correspondence
analysis is almost identical to the third principal component
image from principal components or factor analysis. If ap-
plied for decorrelation stretches, there is no validity to a rec-
ommendation that one of these methods be used rather than
another. But. correspondence analvsis captures more of the
original image variance in fewer piincipal components, an
advantage when the original image data consists of many
spectral bands.

Another advantage to correspondence analysis may be
for digital image compression, especially for spectral com-
pression. Such compression is of two types: lossless (error-
free reconstruction) and lossy (reconstruction with error),
Principal components and factor analysis provide lossless re-

construction if all principal component images are used for
the reconstruction. This, however, represents no compres-
sion. Correspondence analysis will always yield some com-
pression, even for lossless reconstruction, because it always
yields M - 1 significant principal components (recall the
negligible third principal component from correspondence
analysis in the one application reviewed in this paper; Table
2). In the one example of reconstruction that is presented,
correspondence analysis yielded a fair reconstruction using
only its first principal component.
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