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Abstract 
Results from an empirical test, using aerial photographs and 
satellite images of an Edinburgh suburb, show that fuzzy 
boundaries of land cover can be derived by using the three 
criteria of maximum fuzzy membership values, confusion 
index, and measure of entropy, with only small differences, 
and that slicing based on the maximum fuzzy membership 
values provides the easiest and most straightforward solution. 
This result demonstrates the suitability of using both a crisp 
classification and its underlying uncertainty map for deriving 
fuzzy boundaries at different thresholds; together, they provide 
flexible and compact management of categorical map data. 
Distinctions between fuzzy boundaries and probabilistic 
boundaries (such as epsilon error bands) are highlighted, thus 
providing useful insights to exploring heterogeneous spatial 
data of the real world. 

Introduction 
Categorical maps are a fundamental source of spatial informa- 
tion in geographic information systems (GISS), depicting distri- 
butions of discrete or continuous attributes in the form of 
exhaustive, non-overlapping areal units separated by bound- 
ary lines. The boundaries are represented cartographically by 
precisely defined lines of zero width, but it is frequently mis- 
leading and inaccurate to represent adjacent areal units on cate- 
gorical maps in this way (Mark and Csillag, 1989). One alter- 
native is the use of fuzzy boundaries, the subject of this paper. 

On categorical maps, the inaccuracy in boundary positions 
is commonly known as positional error, while the inaccuracy 
in categorical labeling is called attribute error (Chrisman, 
1982). Positional errors in categorical maps are effectively 
described by epsilon error band models, while attribute errors 
are discussed by using the concepts of frequency and, hence, 
probability (Perkal, 1956; Guptill and Morrison, 1995; Good- 
child and Hunter, 1997). Estimation of epsilon error band 
widths has mainly been based on checking test positional data 
against an independent set of reference data, while attribute 
errors are estimated by constructing error matrices, based on 
comparing a classified data set and, again, the reference classi- 
fication data (Chrisman, 1982; Congalton, 1991). 

Conventional categorical mapping assumes an object- 
based view of reality, that is, the real world regarded as being 
occupied by a set of discrete point, line, and areal objects 
(Goodchild, 1989). Clearly, an object-based model is suitable 
for spatial entities whose boundaries are well defined and for 
which attributes are exactly valued (NCDCDS, 1988). For 
example, for individual land parcels, attributes such as owner- 
ship, land price, and tax liability can be exactly evaluated, and 
accurate boundary lines can be drawn. Corresponding to the 
assumption of discreteness underlying object-based models is 
the crisp set theory, by which boundary lines are delineated 
with precision subject to human and machine limitations, and 
only single category memberships are allowed for objects, 
implying that an object is either correctly labeled or totally 
misidentified. Probabilistic concepts and methods are there- 
fore useful for describing attribute errors as well as positional 
errors in object boundaries. 

In the case of well-defined spatial entities, position and 
attribute are discussed separately. But many spatial phenom- 
ena, including for example some of those in lithological, pedo- 
logical, vegetational, and land-cover categories, may be poorly 
investigated and defined, so that position and attribute are not 
easily separable. In these cases, when specific discrete objects 
are being referred to, it is usually only meaningful to discuss 
attribute errors, and, by extension, any discussion of errors for 
poorly defined phenomena is centered on attributes. 

Any land-cover classification should reflect the resolution 
of the sensors collecting the attribute data, as was recognized 
by Anderson et al. (1976) in proposing a four-level hierarchical 
land-cover classification designed with different sensors cho- 
sen to match the level of classification in mind. But even with 
this safeguard, many spatial phenomena have poor areal defi- 
nition at all scales, and are therefore fuzzy (Altman, 1994; Bur- 
rough, 1996). The complexity of geographical phenomena 
such as land cover and soil results, for example, in many mixed 
pixels on remotely sensed images of coarse spatial resolution 
(Campbell, 1987). Even aerial photographs with high resolu- 
tion do not necessarily resolve all the detail required and, how- 
ever much the scale increases, spatial heterogeneity in the real 
world will still exist. Therefore, a model based on discrete 
objects works poorly for fuzzy phenomena; a more general 
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mechanism for depicting the fuzziness inherent in many phe- 
nomena is through fuzzy set theory as opposed to crisp set the- 
ory (Kaufrnann, 1975). For this reason, a more sensible repre- 
sentation scheme for fuzzy phenomena (attributes) is by the use 
of fuzzy categorical maps where each location possesses multi- 
ple, partial memberships of all the candidate classes under 
consideration. 

Fuzzy categorical maps have been promoted by research- 
ers such as Fisher and Pathirana (1989), Berry (1993), and Low- 
ell (1994). The widely recognized superiority of fuzzy over 
crisp categorical maps is due to their representational and ana- 
lytical capability. A disadvantage is the increased requirement 
for storage: in the case of c classes, there are c layers of raster 
data as opposed to one layer of vector data (Zhang, 1996). While 
this extra cost for expanded storage may well be justified by the 
need for information on errors in spatial databases, it is useful 
also to seek as much storage compactness as possible within a 
fuzzy structure, and this may be achieved by reversing the pro- 
cess to define more discrete single-class areas within the gen- 
eral fuzzy structure. More importantly, for fuzzy phenomena 
where attribute uncertainty is of prime concern, there seems to 
be merit in achieving some balance between information rich- 
ness of fuzzy maps and reasoning ability of discrete objects. 
Defining fuzzy boundaries thus serves to transfer uncertainty 
from attribute to positional domains, making it possible to 
compare between probabilistic epsilon error bands and fuzzy 
boundaries, highlighting the differences between them. 

The interesting question arises as to how fuzzy boundaries 
may be derived from fuzzy categorical maps. Fuzzy boundaries 
are referred to here as boundaries of non-zero widths on "defuz- 
zified," i.e., classified, fuzzy categorical maps. Research has 
been carried out in modeling fuzzy boundaries of different 
natures (Edwards and Lowell, 1996; Wang and Hall, 1996; 
Kiiveri, 1997). Two examples of modeling fuzzy boundaries 
based on a more theoretical framework, by Burrough (1996) 
and Lagacherie et al. (1996), advocated the use of continuous 
fields as opposed to discrete objects in an attempt to model 
uncertainties. 

This paper seeks to redefine possible ways by which fuzzy 
boundaries may be derived from fuzzy categorical maps. In the 
next section describing the concepts underlying fuzzy categori- 
cal maps and fuzzy boundaries, emphasis is placed on how 
fuzzy boundaries can be generated quantitatively from a slicing 
process by using three criteria: the maximum fuzzy membership 
values (FMV), confusion index, and measure of entropy. Then 
follows an empirical test in which the value of the proposed 
approaches is illustrated by examples in the context of subur- 
ban land-cover mapping, in which real data sets of both raster 
and vector format over an area of varied land-cover types were 
incorporated. The conclusions stress the difference between 
probabilistic and fuzzy boundaries, and suggest the theoretical 
and practical importance of fuzzy boundaries for categorical 
mapping. 

Concepts and Methods 
Funy Categorical Maps 
The basis for fuzzy categorical maps is the concept of a field- 
based model, which conceives of the real world as a set of sin- 
gle-valued functions defined at all locations. Both numerical 
and categorical variables, commonly known as attributes in 
object domain, are relevant, elevation and rainfall being exam- 
ples of the former, and land cover and soil type being examples 
of the latter (Goodchild, 1989). For categorical variables, every 
point of a field represents a discrete outcome such as a nominal 
or an ordinal label in a classification system. Considering a cat- 
egorical variable to contain c classes, this variable can be viewed 
as a multi-categorical field pi(x), where pi(x) represents the 
probability of point x belonging to a candidate class i (i = 1,2, 
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Figure 1. Two distinctive views of cat- 
egorical mapping: (a) object model, 
and (b) multi-categorical field model. 

. . . , c). It is required that the probabilities range from 0.0 to 1.0, 
and sum to 1.0 across all the classes at any point. As the term 
"fuzzy" is quite realistic, the values of pi(x) are often known as 
fuzzy membership values (FMVS) (Lowell, 1994). 

Figure 1 is a comparative illustration of an object-based 
versus a multi-categorical field-based categorical variable with 
four possible classes: A, B, C, and D. Figure l a  shows a polygo- 
nal categorical map where only a single class is allowed at each 
location: location X belongs to class B with full membership, 
and zero membership in all other classes. On the other hand, 
under a multi-categorical field model (Figure lb), the member- 
ship vector for location X might be {0.5/A, 0.3/B, O.l/C, O.l/DI. 
This latter view provides the basis for fuzzy categorical maps. 

There are different causes of fuzziness, one common cause 
being related to conceptual gradation between classes. Urban- 
ization and rainfall may, for example, each be described impre- 
cisely as low, moderate, or high. Figures 2 and 3 indicate such 
class memberships by isolines and distance-decay curves, 
respectively; the exact function of these obviously useful 
graphical devices is more fully described later. Mixed pixels are 
another cause of fuzziness, especially in remotely sensed 
images of spatial resolution too coarse to resolve the ground 
detail sought, resulting in pixels containing mixtures of 
ground cover types. Mixed pixels are referred to by Franklin 
and Woodcock (1997) as multiscale data with respect to spatial 
and categorical resolution. A final source of fuzziness is where 
areas of one cover type are poorly represented by the training 
data, for example, an unusual roof material in an urban area. 
This source of fuzziness is relevant in Figure 2 where a fuzzy 
pixel p that falls near one class only would probably not be a 
mixed pixel or even a conceptual gradation to one of the other 
classes (assuming that the list of classes displayed is 
exhaustive). 
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Figure 2. An example of fuzzy 3means 
clustering in a two-dimensional spectral 
space with dashed lines representing 
contours of fuzzy membership values 
(DN: digital number). 
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Figure 3. The process of interpolating 
on fuzzy maps. 

The key to the derivation of fuzzy categorical maps is the 
process of fuzzy classification, which, in turn, relies on defin- 
ing appropriate fuzzy membership functions (Klir and Yuan, 
1995). For categorical mapping such as land-cover mapping, 
conventionally used methods include semi-automatic compu- 
terized classifications for digital images and visual interpreta- 
tion and manual classification for graphical images. Various 
methods exist for deriving the fuzzy membership values for 
each type of classification. When using digital images, a typical 
method for fuzzy classification is the so-called fuzzy c-means 
clustering (Bezdek et al., 1984), which seeks to optimize the 
partition of observations (pixels) among target classes by min- 
imizing a certain distance measure adopted. Such a process 
assigns fuzzy membership values for each pixel belonging to 
all the candidate classes in an iterative way. It is illustrated in 
Figure 2, but a detailed discussion can be found in Bezdek et 
al. (1984). 

For graphical images such as aerial photographs in graphi- 
cal, not digital, form, the derivation of fuzzy classification 
takes place in a spatial rather than a spectral domain. Homoge- 
neous areas are easier to identify than heterogeneous, transi- 
tional areas. Therefore, using for reference a set of classified 
attributes located in homogeneous areas, fuzzy mapping for 
graphical images at heterogeneous locations also uses interpo- 
lation methods in a spatial domain for deriving fuzzy member- 
ship values. 

A graphical interpolation process is illustrated in Figure 
3a. The centers C1, C2 and C3 of individual polygons, repre- 
senting classes 1,2 and 3, can be assigned with a membership 
value of 1.0 to their respective classes. At x (Figures 3a and 3b), 
the membership will reflect the component probability of each 
adjacent polygon. The fuzzy membership value will decrease 
when moving from the center towards and beyond the bound- 
aries until it reaches 0.0 in the center of each adjacent polygon. 
Polygon boundaries are seen somewhere within the transi- 
tional zones indicated by dashed lines in Figure 3a. The chang- 
ing pattern of class probabilities along a transect may be 
modelled by some function: for example, fuzzy membership 
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functions for finding 1 or 2 along the transect of C1 to C2 are 
shown in Figure 3b, where p(dl/l) stands for the fuzzy member- 
ship value of class 1 at a distance of d l  away from the center CI, 
while p(d2/2) stands for the fuzzy membership value of class 2 
at a distance of d2 away from the center C2. A theoretically 
more sound approach is via indicator kriging, which is 
described in Bierkens and Burrough (1993a and 1993b) and 
applied in Zhang and Kirby (1997), but not covered further 
here. 

Fuzzy Bwndarles 
Suppose that fuzzy categorical maps are derived by using any 
of the methods for fuzzy classification described in the previ- 
ous section. Then, denote a vector 

wherepi(x) (i = 1,2, . . . , c) are the fuzzy membership values of 
location x belonging to class i and, hence, comprise a set of 
fuzzy maps with a total of c classes. 

To produce a crisp classification, an analogy with the clas- 
sification of raster-based remotely sensed images using the 
maximum likelihood classifier is helpful: the maximum likeli- 
hood classifier assigns pixels to classes to which they have the 
maximum probability of belonging, measured by specific class 
membership functions. Similarly, for fuzzy categorical maps 
with readily available fuzzy membership values for individual 
grid cells, in order to generate a conventional maximum likeli- 
hood classification, vector P(x) is subjected to a maximization 
process, by which cell xis labeled as the class having the maxi- 
mum values. For example, cell xis  to be classified into class j 
on the condition as expressed in Equation 2: i.e., 

pj(x) = maximum (pl(x), p2(x), ..., pc(x)), for j = 1, 2, ..., c 

where class labels j form the classified data layer. 
During a conventional crisp classification, information 

contained in a fuzzy vector P(x) is filtered out, leaving only the 
class labels having the maximum fuzzy membership values for 
individual locations. Boundaries in the resulting categorical 
map are defined where classes are separated, as shown, for 
example, in Figure 3. In order to acknowledge the spatial heter- 
ogeneity of class membership in the classified map, informa- 
tion contained in fuzzy membership values must be further 
explored. 

First, the maximum fuzzy membership values of individ- 
ual locations can be maintained to assist in defining fuzzy 
boundaries. Denote the maximum fuzzy membership values as 
p,. Defining fuzzy boundaries can be done via a slicing pro- 
cess, by which p,, is examined with reference to a prescribed 
threshold 7 (tau) (Zhang, 1996). Specifically, this process 
selects a fuzzy location x if the value of p,, is less than the 
value TI. This is illustrated in Figure 4a where a two-class 
example is developed for the profile of C1 and C2 in Figure 3. 

Second, there is the confusion index criterion for defining 
fuzzy boundaries, which involves two fuzzy membership val- 
ues for each location, and is thus more complex than the previ- 
ous criterion. An uncommon example of deriving fuzzy 
boundaries from a simulated set of fuzzy maps is given by Bur- 
rough (1996). He employed the concept of confusion index, 
evaluated as 1.0 minus the difference between the fuzzy mem- 
bership values of location x belonging to the first most likely 
and the second most likely classes. The assumption underlying 
such an index is that the greater the confusion index, the 
smaller the difference in fuzzy membership values between the 
first most likely and the second most likely classes, the fuzzier 
is location x, and thus the more likely that location x defines a 
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Figure 4. Three criteria applied in slicing for deriving fuzzy boundaries: (a) the maximum FMVs, (b) confusion index, and (c) 
entropy. 

fuzzy boundary. Usually, a pre-defined threshold 72 is applied 
such that location x defines a fuzzy boundary if the confusion 
index is greater than 72, as shown in Figure 4b. 

Finally, there is the measure of entropy for defining fuzzy 
boundaries, which is the most complex criterion, using the 
complete fuzzy membership values for each location. Foody 
(1995) described the use of entropy for evaluating the degree of 
fuzziness for fuzzy maps. Measures of entropy express the way 
in which the probability of class membership is partitioned 
between the classes. It is based on the assumption that in an 
accurate classification each location will have a high probabil- 
ity of membership in only one class. As entropy is a measure of 
disorder, large values indicate low accuracy in classification, 
while small values indicate high accuracy in classification. It is 
thus logical to assert that boundaries usually occur where loca- 
tions have high degrees of fuzziness, that is, big values of 
entropy. Entropy H(p(x)) is measured using Equation 3: i.e., 

where pi(x) is the fuzzy membership value of grid cell xbelong- 
ing to class i, where the index i ranges from 1 to c (the total 
number of classes). Again, a pre-defined threshold 73 is applied 
such that location x defines a fuzzy boundary if its measure of 
entropy is greater than 73, as shown in Figure 4c. 

The distinctions among the three criteria described above 
for defining fuzzy boundaries are now related to the different 
sources of fuzziness mentioned in the earlier section on Fuzzy 
Categorical Maps. First, the maximum FMVs are straightfor- 
ward to interpret and are closely associated with the conceptual 
gradation of class membership. Even so, the maximum FMVs 
may also be related to fuzziness due to mixed pixels, because 
FMVs can come from any possible source of fuzziness. Second, 
the confusion index involves FMVS belonging to the first and the 
second most likely classes. The interpretation of confusion 
index is thus not as straightforward as for maximum FMVs, sug- 
gesting a weaker relation to conceptually gradated fuzziness. 
Confusion index is, however, useful as a measure of fuzziness 
for mixed pixels. Third, there is the measure of entropy, which 
may appear as a measure of fuzziness on its own. However, 
en&opy requires the complex logarithmic calculation of all 
elements of FMV'S vectors. As the selection of the base for loea- " 
rithmic calculation is largely arbitrary, the interpretation of 
entropy is thus not straightforward. Therefore, conceptually 
gradated class memberships are not apparently associated 
with values of entropy, but it is mathematically sound to 
explain, using entropy, fuzziness due to mixed pixels. The 
fuzziness related to certain classes not well represented by the 
training data is often interwoven with the other two sources of 
fuzziness. It is therefore not easy to establish simple relation- 
ships between it and the alternative criteria for defining fuzzy 
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boundaries. This source of fuzziness may be looked at by 
increasing the categorical resolution (Franklin and Woodcock, 
1997). 

It is also worth stressing that fuzzy boundaries, as uncer- 
tain zones of non-zero widths that border adjacent areal units, 
may be considered as supersets of probabilistic epsilon error 
bands. Thus, these fuzzy boundaries should more truly be con- 
ceived of as transition zones of spatial variability, which is 
more complex than could be generalized by epsilon error band 
models. The distinctions between probabilistic and fuzzy 
boundaries are to be examined in the empirical study that 
follows. 

An Empirical Test 
The Test Site and the Data Sources 
Land-cover data were used to compare the performance of dif- 
ferent criteria in defining fuzzy boundaries from fuzzy categor- 
ical maps. The chosen test site is an area of about 2 square 
kilometers, located around Blackford Hill within the city of 
Edinburgh, Scotland. The area includes a wooded valley; resi- 
dential, commercial, and academic buildings; road networks 
and footpaths; recreational areas; a small lake, agricultural 
fields and worked allotments; hills, and flat ground, as shown 
in Figure 5. The suburban residential districts include roads, 
pavements, buildings, walls, gardens, and hedges in dense 
spatial arrangements, creating the usual difficulties in mapping 
from aerial photography over selection of detail of different 
spatial dimensions. Further difficulties arise from the indis- 
tinct nature of boundaries between land-cover types. For 
example, on Blackford Hill, the dispersed individual trees or 
groups of trees merge with shrubs and rough grassland. The 
study area provides a good environment with significant fuzzi- 
ness to test the alternative criteria for defining fuzzy boundaries. 

Ground control points (GCPS) of three types were used: 
field surveyed points, densified points using photogrammetric 
block adjustment based on 1:5,000-scale aerial photographs, 
and points digitized from Ordnance Survey large-scale plans 
(Zhang, 1996). This set of GCPS proved sufficient for photogram- 
metric digitizing from 1:24,000-scale aerial photographs and 
remote sensing image rectification of SPOT HRV and Landsat TM 
data, all of similar dates. Effective pixel sizes for the three data 
sources were 4m, 10m, and 30m, respectively. 

Derlvlng Fuzzy Maps of Land Cover 
In order to provide a layer of reference attribute data, photo- 
grammetric plotting was performed based on a reconstituted 
stereo photographic pair. A land-cover classification system 
was used with the following classes appropriate to the scene: 

grass (grassland and urban parks), 
built-up (built-up and barren land), 
wood (deciduous and coniferous woodland), 
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Figure 5. The test site - Blackford Hill, Edinburgh. 
Scanned aerial photograph enlarged to 1:15,000 
scale. 
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Figure 6. Fuzzy maps created from the SPOT HRV data: (a) 
grass, (b) built, (c) wood, (d) shrub, and (e) water. Darker 
grey levels indicate higher fuzzy membership values. 

shrub (shrub land, including open wooded land), and 
water (water bodies and water works). 

For both SPOT HRV and Landsat TM data, a fuzzy c-means 
clustering algorithm based on Bezdek et al. (1984), pro- 
grammed in FORTRAN 77 on a VAX/VMS, was used, with the 
parameter m set at 2.5, in order to produce fuzzy membership 
vectors across the five target classes pixel by pixel within the 
study area (Zhang, 1996). This resulted in 7133 and 779 grid 
cells for the fuzzy maps based on the SPOT HRV data and the 
Landsat TM data, respectively. As an example, fuzzy maps cre- 
ated from the SPOT HRV data are shown in Figure 6, where (a), 
(b), (c), (d), and (e) correspond to classes of grass, built-up, 
wood, shrub, and water, respectively. In Figure 6, the darker the 
grey scale, the higher the FMVS. 

In order to generate fuzzy maps from 1:24,000-scale aerial 
photographs, indicator kriging was employed, because it has 
proved to be a sound approach for estimating the probabilities 
of all candidate land-cover types occurring at uncertain loca- 
tions (Zhang and Kirby, 1997). Indicator kriging is supported by 
the geostatistical package GSLLB, which was used to generate 
fuzzy maps based on a set of representative and classified sam- 
ples taken from aerial photographs, resulting in a total of 7133 
grid cells of 10m size (Deutsch and Journel, 1992). The outputs 
from both fuzzy clustering and indicator kriging were trans- 
formed to ASCII format files using some original FORTRAN pro- 
grams, and the outputs could then be loaded to ARClINFO GRID 
data files in order to facilitate data management and analysis. 

Deriving Fuzzy Boundaries 
Following production of the three fuzzy maps, based on the 
1:24,000-scale aerial photographs, the SPOT HRV data and the 
Landsat TM data respectively, it is possible to apply the three 
criteria described in the section on Fuzzy Boundaries to derive 
fuzzy boundaries. It is first necessary to apply the process of 
maximization to produce classified maps. Shown in Figure 7 
are classified maps based on (a) photogrammetric data, (b) SPOT 
HRV data, and (c) Landsat TM data, and maps of the maximum 
FMVS (d), (e), and (fl corresponding to the classified maps 
shown in (a), (b), and (c), respectively. 

Because fuzzy boundaries are to be derived following the 
process of maximization, the maximum FMVs, confusion 
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Figure 7. Classified maps based on (a) photogrammetric 
data, (b) SPOT HRV data, and (c) Landsat TM data; (d), (e), 
and (f) are maps of the maximum FMVS corresponding to the 
classified maps shown in (a), (b), and (c), respectively. 
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index, and entropy are output in the classifications, using the 
formulae described in the section on Fuzzy Boundaries. This 
resulted in three versions of each type of fuzzy map mentioned 
above, a total of nine maps. These maps are shown in Figure 8, 
where (a), (b), and (c) correspond, respectively, to the maximum 
FMvs, confusion index, and entropy of the classification based 
on the photogrammetric data; (d), (e), and (0 correspond to the 
classification based on the SPOT HRV data; and (g), (h), and (i) 
correspond to the classification based on the Landsat TM data. 
Note that the presence of fuzzy boundaries is indicated by the 
grey scale in Figure 8, where values of confusion index and 
entropy are illustrated inversely to provide comparable visual- 
ization between the fuzzy boundaries defined by the three 
criteria. 

In order to check numerically if the three criteria produce 
similarly defined fuzzy boundaries, correlation coefficients 
between the maximum FMVs, confusion index, and entropy 
were calculated for the sets of fuzzy maps based on all three 
data sets (Table 1). The correlation coefficients are significant at 
the 5 percent level, indicating the similarity of fuzzy bound- 
aries defined by these three criteria. 

The effects of applying the three criteria can also be tested 
by comparing the fuzzy boundaries defined. For this compari- 
son, it is necessary that the numbers of classified grid cells are 
the same when using different criteria for slicing. Each of the 
nine maps shown in Figure 8 was sliced by setting 29 threshold 
values, systematically increasing for maps of maximum fuzzy 
membership values, systematically decreasing for maps of con- 
fusion index and measure of entropy, so that 30 zones of equal 

( h i  

Figure 8. Maps of the maximum FMVS, confusion index, and 
entropy for the classifications based on (a), (b), and (c) 
photogrammetric data; (d), (e), and (f) SPOT HRV data; and 
(g), (h), and ( i )  Landsat TM data. 

TABLE 1. CORRELATION COEFFICIENTS FOR PAIRS OF MAPS SHOWING VALUES OF 

THE THREE CRITERIA FOR DEFINING FUZZY BOUNDARIES (FMVs = FUZZY 
MEMBERSHIP VALUES) 

Maximum 
FMVs Maximum Confusion 
versus FMVs Index 

Confusion versus versus 
Fuzzy Maps Based on Index Entropy Entropy 

1:24,000-Scale Aerial Photographs -1.00 -0.93 +0.94 
SPOT HRV Data -1.00 -0.89 +0.92 
Landsat TM Data -1.00 -0.99 +0.99 

areas (equal grid cells) were defined on each map. The zones 
were numbered serially from 1 to 30, the total of 30 being suffi- 
cient for statistical analysis. The process created a total of nine 
zoned maps, based on three criteria for each source of fuzzy 
map. Cell-by-cell comparison was then performed for each pair 
of three-zoned maps for each type of fuzzy map, creating a total 
of nine error matrices. As an example, Table 2 shows the 30 by 
30 error matrix for fuzzy maps (d) and (e) of Figure 8, where 
zoned maps of maximum FMVs and confusion index corre- 
spond to the matrix's columns and rows, respectively. For clar- 
ity, diagonal elements are underlined. 

Because there were 30 zones for each map, by applying 
threshold values (r1,72, and 73) ranging from 1 to 30 for each of 
the nine zoned maps, 30 agreements were calculated for each 
pair of three-zoned maps for each type of fuzzy map by re- 
arranging elements, in accordance with the value of rapplied, 
in their respective error matrices. The average agreements 
based on the nine error matrices are reported in Table 3. 

It is shown in Table 3 that the comparisons between fuzzy 
boundaries defined by using the three different criteria in pairs 
are very good, all more than 90 percent, for fuzzy maps based 
on the three data sources. Moreover, confidence limits at the 
level of 95 percent are also listed inTable 3, using the statistical 
techniques described in Rosenfield and Melley (1980). This 
suggests that the three criteria result in fuzzy boundaries with 
similar positions. Varying the number of threshold values 
would have the effect of changing the confidence limits. 

In addition to analysis of correlation coefficients and 
agreements based on error matrices, similarity between fuzzy 
boundaries defined by the three criteria can be examined by 
assessing classification accuracy against independent reference 
data. For this, specific threshold values of 71, 72, and 7-3 are 
introduced to drive the modeling. Fifty percent of all the grid 
cells generated by fuzzy clustering and indicator kriging were 
coded into designed classes. As a result of this partial classifi- 
cation, the threshold values of 71, 72, and 5-3 occur as listed in 
Table 4. 

The slicing process creates a type of categorical map where 
classified locations belong to their named classes with, at least, 
the levels of certainty implied in the thresholds applied. 
Unclassified locations comprise the fuzzy boundaries that 
should be excluded from evaluating classification accuracy. 
Tests for classification accuracy are usually based on an error 
matrix, which is constructed by comparisons between the test 
data and the reference data. From the error matrix, it is possible 
to derive several useful classification accuracy parameters such 
as the overall classification accuracy and the Kappa coefficient 
of agreement (Congalton, 1991). In this test case, classified 
maps were checked against the reference map constructed 
employing photogrammetric digitizing. This process resulted 
in overall classification accuracies for fuzzy classified maps as 
listed in Table 5. As would be expected, the accuracy from 
1:24,000-scale aerial photographs is much higher than from 
the satellite imagery. More importantly, Table 5 shows that the 
three criteria for defining fuzzy boundaries yield very similar 
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TABLE 2. ERROR MATRIX FROM CELL-BY-CELL COMPARISON OF ZONED MAPS FROM SPOT HRV DATA. SEE FIGURES 8d AND 8e. 

15 68 19 - 
56 97 74 96 43 

5 24 21 27 45 20 7 
2 14 49 64 83 70 79 24 2 

9 19 a 15 64 44 9 
2 17 25 19 56 40 33 22 
1 10 20 18 37 29 40 64 3 

11 10 5 23 3 31 70 32 4 
12 7 27 17 16 46 43 48 

5 8 26 12 5 48 30 72 9 
2 21 14 14 54 37 10 83 38 32 1 

1 7 2 23 7 34 26 42 50 10 
4 15 7 29 18 28 58 22 

6 13 18 19 11 52 48 9 
1 2 28 18 19 56 95 70 6 

5 5 7 2 2 3 4 5 8  33 2 
10 40 40 57 86 28 3 

4 21 51 61 85 32 1 
3 15 56 52 74 48 

1 10 39 54 10 21 
4 35 94 71 21 

1 64 61 92 6 
1 31 12 11 6 

11 90 72 
38 12 85 

13 2 70 
4 3 31 

19 83 - 
15 53 
L 

22 - 

TABLE 3. AVERAGE AGREEMENTS BETWEEN FUZZY BOUNDARIES DEFINED BY (I) PAIRS OF CRITERIA AND (11) THEIR CONFIDENCE LIMITS AT THE SIGN~~CANCE LEVEL OF 

5 PERCENT ( N V s  = FUZZY MEMBERSHIP VALUES) (UNIT: PERCENTAGE) 

Maximum FMVs Maximum FMVs Confusion Index 
versus versus versus 

Confusion Index Entropy Entropy 

Fuzzy Maps Based on I 11 I 11 I I1  

1:24,000-Scale Aerial Photographs 99.6 98.1 - 98.7 92.1 91.3 - 94.3 92.1 90.7 - 95.0 
SPOT HRV Data 96.5 93.8 - 98.5 91.8 89.8 - 95.6 93.9 91.1 - 97.3 
Landsat T M  Data 95.2 91.5 - 98.0 90.4 87.5 - 95.0 91.5 89.2 - 97.3 

TABLE 4. THRESHOLD VALUES OF TS FOR DERIVING FUZZY BOUNDARIES 
(FMVs = Fuzzy MEMBERSHIP VALUES) 

Threshold Values T 

Maximum Confusion Measure o f  
FMVs Index Entropy 

Fuzzy Maps Based on  (71) (72) (73) 

1:24,000-Scale Aerial Photographs 0.78 0.22 0.80 
SPOT HRV Data 0.51 0.57 1.67 
Landsat TM Data 0.40 0.67 1.67 

overall classification accuracies, except for the Landsat TM 
data, where some variation is observed. The results using 
Landsat TM data slightly favor the maximum FMV method, 
which is the criterion preferred, given its apparent simplicity. 

Results so far have shown that fuzzy boundaries can be 
derived by using the three criteria with only insignificant dif- 
ferences for fuzzy maps derived from aerial photogrammetric 
data and satellite digital images. Also, the results suggest that 
these three criteria fail to discriminate between various sources 
of fuzziness existing in the land-cover data derived from 
graphical and digital images, which may be due to conceptual 
gradation of cover types, mixed pixels, or lack of training data 

for certain cover types. A possible explanation for this is that 
mixed pixels constitute the dominant source of fuzziness for 
the study area, because mixed pixels are abundant in the SPOT 
HRV and Landsat TM data, and finite sampling size for photo- 
grammetric data also leads, unfortunately, to mixtures. 

As indicated in the section on Fuzzy Boundaries, fuzzy 
boundaries are meant to stand as a superset of all types of 
uncertain zones of non-zero widths in localities of heteroge- 
neous cover types. Figure 8 reveals that fuzzy boundaries 
for photogrammetric land-cover data bear striking resem- 
blance to epsilon error band models (thus termed probabilis- 
tic boundaries) while, for land-cover data based on satellite 

TABLE 5. ACCURACY ASSESSMENT FOR CLASS~FIED MAPS EXCLUDING FUUY 
BOUNDARIES (FMVs = FUZZY MEMBERSHIP VALUES) 

Overall Classification Accuracies 
(Unit: Percentage) 

Maximum Confusion Measure o f  
Fuzzy Maps Based o n  FMVs Index Entropy 

1:24,000-Scale Aerial Photographs 83.7 
SPOT HRV Data 46.7 
Landsat TM Data 36.6 
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images, fuzzy boundaries are hard to generalize by probabilis- 
tic epsilon error band modeling, because they are irregularly 
distributed. The epsilon error bands appearance of fuzzy 
boundaries based on the photogrammetric data is attributed 
to subjectivity and, hence, discreteness imposed in the identi- 
fication and location of "core" and "pure" samples prior to 
the generation of fuzzy maps. Such subjectivity is reduced 
relatively in the derivation of fuzzy maps based on satellite 
images. Moreover, production of fuzzy maps from satellite 
images takes place in spectral rather than geographical space 
(Burrough, 1996). Thus, it is not surprising that irregular 
distribution of uncertain zones in geographical space may 
come out of spectral classes that are outstandingly ellipsoi- 
dal. The relationships between fuzzy and probabilistic bound- 
aries represent a topic for future research. 

Conclusion 
Conventionally used methods for categorical mapping such 
as land-cover mapping include semi-automatic computerized 
classifications of digital satellite images and visual interpreta- 
tion of graphical aerial photographs. Usually, discrete area 
objects, i.e., polygons, are employed in categorical maps to 
represent the two-dimensional distributions under study. To 
extend object-based data models into the domain of fuzzy 
categorical maps, fuzzy boundaries need to be defined 
properly. 

Fuzzy boundaries can be derived quantitatively by using 
different criteria on fuzzy categorical maps. The whole process 
permits a theoretically sound and data-driven solution to esti- 
mating errors in attributes and boundaries of categorical maps, 
which is a substantial benefit. Interpretation is consistent 
between semi-automatic computerized classification of digital 
images and visual interpretation of graphical images. Although 
the three techniques assessed achieve similar performances, 
the direct extension of the maximum likelihood classification 
provides the easiest and most straightforward solution. Overall, 
the results obtained suggest that maintaining both a crisp clas- 
sification and its underlying uncertainty map for deriving fuzzy 
boundaries at different thresholds offers a logical, flexible, and 
compact solution for managing categorical maps and informa- 
tion on the quality of categorical boundaries. 

This research paper considers some of the deeper issues 
underlying the heterogeneous spatial data depicting the real 
world. The methods followed in the empirical study are not 
of universal application, but should be applicable to mapping 
land cover with remotely sensed data of compatible spatial 
resolutions for areas of similar categories of land cover. The 
methods should also be of value for further examining the 
effects of fuzziness for mixtures of scales and resolutions. 
The study has highlighted the distinctions between fuzzy 
and probabilistic boundaries. Probabilistic boundaries are 
relatively familiar and have been widely discussed by using 
models such as epsilon error bands. Fuzzy boundaries, on 
the other hand, have previously been conceived of as an 
extension of probabilistic boundaries and, for this reason, 
have been little investigated. 
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