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Abstract 
A joint conditional probability model is proposed to represent 
a measure of a future landslide hazard, and five estimation 
procedures for the model are presented. The distribution of 
past landslides was divided into two groups with respect to a 
fixed time. A training set consisting of the earlier landslides 
and the geographical information system-based multi-layer 
spatial data in the study area was used to construct the pre- 
diction maps. The predictions were then cross-validated by 
comparing them with the remaining later landslides. When the 
database falls short of providing sufficient support for the 
prediction, the model allows the introduction of the expert's 
knowledge to modify the observed frequencies of the land- 
slides with respect to the spatial data. The additional in- 
formation should improve the prediction results. A case study 
from the Rio Chincina region in Colombia was used to illustrate 
the methodologies. 

Introduction 
Using spatial data sets based on geographical information sys- 
tems (GIS) quantitative prediction models have been proposed 
for landslide hazard mapping (Wang and Unwin, 1992; Carrara 
et al., 1992; Chung and Fabbri, 1993; van Westen, 1993; Jibson 
et al., 1998). We propose a unified probabilistic framework for 
predictive modeling using GIS-based multi-layer spatial data. 
In the probability models for the prediction of landslide hazard, 
the hazard at each point or pixel is considered as the joint con- 
ditional probability that the pixel will be affected by a future 
landslide given (conditional to) the information from the spa- 
tial input data at the pixel. We present five estimation proce- 
dures for the models and also offer a new strategy for visualiz- 
ing, interpreting, and validating the results of predictions. 

The five procedures are (1) direct estimation of the joint 
conditional probability for every pixel based on the past land- 
slides; (2) estimation of the bivariate conditional probabilities 
for the thematic classes in each layer using the past landslides 
and then, based on them, computation of the joint conditional 
probability at each pixel by the Bayesian formula under the 
conditional independence assumption; (3) estimation as in (2) 
of the bivariate conditional probabilities for the thematic 
classes in each layer but under the assumption that the joint 
conditional probability for every pixel is a linear function of 
the bivariate conditional probabilities (the linear function is 
estimated using regression analysis); (4) estimation identical to 
(2) except that the estimated bivariate conditional probabilities 
using the past landslides are modified using expert's knowledge 
before being used to compute the joint conditional probability; 

and (5) the combination of (3) and (4), again assuming that the 
joint conditional probability for every pixel is a linear function 
of the modified bivariate conditional probabilities (here, too, 
the linear function is estimated using regression analysis). 

Bayesian formulas for geologic prediction models were 
used by Spigelhalter (1986) and Agterberg et al. (1990). Chung 
and Fabbri (1993) have adapted the formulas for geologic haz- 
ard zonation as a part of "favorability function" approaches, 
and the method has been applied to landslide prediction by 
Chung and Leclerc (1994, Leclerc (1994, Luzi (1995), and 
Luzi and Fabbri (1995). Multivariate regression analysis for 
landslide hazard was proposed by Carrara (1983), Carrara et al. 
(1992), and more recently by Chung et al. (1995). 

Although some layers of spatial data represent continuous 
measurements, such as slope angles and distances, as dis- 
cussed by Chung et al. (1995), a map layer containing continu- 
ous measurements is usually converted into a number of 
classes, i.e., "thematic classification," for producing a new map 
representing geologic hazard. In general, we may assume that 
each layer represents a classification map containing a number 
of thematic classes. A case study from a region in central 
Colombia, which is affected by rapid debris avalanches, is used 
to compare these five procedures. 

Study Area and Test Data Set in the Rio Chincina Area in 
Central Colombla 
The catchment of the Rio Chincina, located on the western 
slope of the central Andean mountain range (Cordillera Cen- 
tral) in Colombia, near the Nevado del Ruiz volcano, was used 
as a test for various landslide hazard zonation techniques. Van 
Westen (1993) made an extensive study of the region and con- 
structed the database of the study area. Since then it was made 
available as an "ideal" case-study data set for many kinds of 
exercises and experiments on landslide hazard zoning by van 
Westen et al. (1993), with the name of GISSIZ: training package 
of Geographic Information Systems on Slope Instability Zona- 
tion. It is with that data set that Chung et al. (1995) applied a 
variety of methods of multivariate regression and reviewed 
some of those settings as the basis of the analysis. This study 
broadens the approach to a comparison of other methods in 
which data-driven approaches and knowledge-driven ap- 
proaches are considered in isolation and in combination to 
identify the most successful strategies for hazard prediction. 

The input data for landslide hazard zonation consist of sev- 
eral layers of map information. Each layer may be the result of 
map updating by experts, of field verification, and of interpreta- 
tion of aerial photographs. The prepared maps for the analysis 
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usually describe surficial and bedrock geology, including shear- TABLE 1. FREQUENCY RATIOS OF PRE-1960 OCCURRENCES OF RAPID DEBRIS 

strength measurements for geologic units (Jibson et al., 19981, AVALANCHES IN EACH CWS AS AN ESTIMATOR OF THE BINARY CONDITIONAL 

soil type, slope, land use, geomorphology, mass movements, PROBABILITY FUNCTION (COLUMN 2) AND A MODIFICATION (COLUMN 3) OF THE 

distance from active faults, and other features which are rele- CONDITIONAL PROBABILITY FUNCTION BY EXPERT'S KNOWLEDGE FOR EACH 
CLASS USED I N  THE ANALYSIS (COLUMN 1). 

vant to slope instability. The preparation and the selection of 
input layers for the analysis are obviously a crucial and impor- Pre-1960 Expert's 
tant component of building prediction models for landslide Lithological Units Data Knowledge 

hazard, but these are not the subject of this paper. In addition, unmapped area 0.020 0.010 
the identification of types and dates of landslide phenomena is alluvial sediments 0.015 0.020 
critical to the application of predictive techniques. gneissic intrusives 0.004 0.004 

For the Rio Chincina study area, van Westen (1993 and per- flow materials, alluvial, ashes 0.010 0.010 
sonal communications) has suggested that the seven data lay- lake deposits 0.017 0.020 
ers-(I) bedrock lithological map, ( 2 )  geomorphologic map, (3) weathered debris flow 0.018 0.020 
slope map, (4) land-use map, (5) three maps containing distance gabbro and diorite 0.001 0.001 
from the nearest valley head, (6) road, and (7) fault-are "causal mix Of ~ ~ r r ~ ~ ~ ~ ~ ~ ~ ~ ,  debris *Ow 0.015 0.015 

factors" and are significantly related to landslide hazards metasedimentary 0.020 0.020 
andesitic intrusives 0.000 0.000 

among the many layers described in van Westen (1993). The schists 0.001 0.000 
corresponding classes in each layer are shown in the first col- tertiary sediments 0.016 0.016 
urnn of Table 1. volcanic 0.017 0.017 

In the spatial database, it was assumed that the time of the lahar deposits 0.051 0.050 
study was the year 1960 and that all the spatial data available pyroclastic flow deposits 0.002 0.002 
in 1960 were compiled, including the distribution of the scarps Pre-1960 Expert's 
of the landslides shown in blue in Plate 1, which had occurred Geomorphological Units Data Knowledge 
prior to that year. The occurrences play a pivotal role in con- 
structing prediction models by establishing probabilistic rela- unmapped area 0.020 0.010 
tionships be-tween the pre-1960 landslides and the remainder Western hills 0.011 0.010 
of the input data set. The predictions based on those relation- zone 0.015 0.020 

ships were then evaluated by comparing the estimated hazard 0.010 0.005 

classes with the distribution of the scarps of the landslides that Pre-1960 Expert's 
had occurred after 1960, i.e., during the period 1961 to 1988 Land-Use Units Data Knowledge 
shown in red in Plate 1. We have also used these seven layers baditional farming 0.005 0.006 to develop other predictive models for landslide hazard in technified farming 0.017 0.012 
Chung et al. (1995) and Fabbri and Chung (1996). modern intermediate farming 0.000 0.000 

other crops 0.014 0.010 
Probability Model construction 0.012 0.010 

Let A denote the whole study area. Suppose that we have m lay- bare 0.011 0.010 

ers of spatial map data containing "causal" factors which are fizzt 0.008 0.008 

known to correlate with the occurrences of future landslides in 0.006 0.008 

A. Consider a pixel p in A with m pixel values, v,(p) = c, . a * ,  Slope Pre-1960 Expert's 
v,(p) = c,, one for each layer. The prediction problem can be (degree) Data Knowledge 
represented by the following task: aggregate the m pixel values 0-10 0.005 0.000 
at pixel p in A as a function describing the support for the con- 10-20 0.010 0.010 
dition thatp is likely to be affected by a future landslide. 20-30 0.020 0.020 

To construct a probability model for landslide hazard, con- 30-40 0.025 0.030 
sider the following proposition: 40-50 0.023 0.040 

50-60 0.089 0.050 
60-70 0.005 0.030 

Fp: "p will be affected by a future landslide of 70-80 0.002 0.020 
a given type D." (1) 80-90 0.000 0.010 

Valley Head Pre-1960 Expert's 
We propose that the hazard at each pixel p be expressed as the Distance Data Knowledge 
following joint conditional probability: 

>50m 0.011 0.010 
25-50m 0.023 0.025 

P d ~ ( F ~ l v ~ ( p ) ,  vz(p), vm(p)l (2) 0-25m 0.036 0.050 

Road Pre-1960 Expert's 
that p will be affected by future landslides given the m pixel Distance Data Knowledge 
values, (v,(p) = c,, ..., v,,,(p) = c,). 

At pixel p, the pixel value vl(p) of the first layer is c, which >50m 0.013 0.010 
25-50m 0.012 0.015 

is one of the n, classes (map units), (1,2, ..., n,]. Consider a set 0-25m 0.012 0.020 
of all pixels whose value in the first layer is cl. The set is the 
thematic class in the first layer whose pixel value is cl. The set Fault Pre-1960 Expert's 

is denoted by A,,, and it is one of the non-overlapping n, sub- Distance Data Knowledge 

areas {A,,, A,,, .--, A,,,} in the first layer. Similarly, we have >loom 0.012 0.010 
A,,, for the second layer. Finally, we have m thematic classes 75-loom 0.017 0.014 
A,,,, . . a ,  A,,, one for each layer, which correspond to the m 50-75m 0.013 0.016 
input pixelvalues, vl(p) (=cl), .-., v,(p) (=c,) at p. The pixel 25-50m 0.014 0.018 
p is one of the common pixels contained in all m thematic 0-25m 0.014 0.020 
classes A,,,, . a - ,  A,,,. 
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Plate 1.  Distribution of the scarps of rapid debris avalanches in the Rio Chincina 
study area, Colombia. The landslides that occurred prior to 1960 are shown in blue 
and those that occurred during 1961-1988 are shown in red. The blue, pre-1960, 
occurrences have been used to obtain the bivariate conditional probability functions 
and subsequently to obtain all predictions, including those illustrated in Plates 2a, 
2b, and 2c. They were also used to obtain the success rates in Table 2 and the 
corresponding Plate 3a. The landslides in red, which occurred during 1961-1988, 
have been used to perform the cross-validation test to obtain the prediction rates in 
Table 3 and the corresponding Plate 3b. 

Suppose that F denotes the unknown areas which will be 
affected by future landslides yet to occur within A. The joint 
conditional probability at p is simply given by 

Prob{F,(c,, c,, ..., crnl 

rn rn 

= size of n (F n A ~ ~ ~ ) / s ~ z ~  of n 
k= 1 k= I 

where F n Akck represents the unknown area to be affected by 
future landslides within Akck and "size of B" represents the size 
of the surface area covered by any subarea B in A. We present 
here the five procedures to estimate Prob{F,(c,, c,, .-., c,]. 

To estimate the joint conditional probability, let us first 
introduce the counterpart of Prob{F,lc,, ..., ern] for the past 
landslides. Let 

S,: " p  has been affected by a past landslide of 
a given type D." (4) 

Knowing that the m pixel values at p are (cl, c,, . . a ,  c,), the 
joint conditional probability that p has been affected by a past 
landslide conditional to that p has the m pixel values (cl, -.., c,) 
is simply given by 

m m 

= size of n (S n Akck))/size of n Akck 
k= 1 k=l 

where S represents the areas affected by the past landslides 
within A. In the following procedures, we will make extensive 
use of Pmb{Splcl, . . a ,  c,] to estimate Prob{F,lc,, . . a ,  c,]. 

Direct Estimation 
The simplest estimate for the joint conditional probability in 
Equation 2 is obtained by usingPmbISPJcl, c,, . . a ,  c,) directly. 
The first estimator is 

Although the estimator is simple to compute and does not 
require any mathematical assumption, it fails badly as a pre- 
dictor of the occurrences of future landslides. It is the best de- 
scription of the past landslides, however, in terms of the spatial 
input data, as we will see in the case study. The estimator should 
not be computed as a predictor but it should be used as a bench- 
mark for the performance of the spatial input data as "causal 
factors" of the future landslides. 

Bayeslan Estimation Under the Condltlonal Independence 
Using the Bayesian rules, the joint conditional probability in 
Equation 2 can be shown as 
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When we assume that v,(p), v,(p), ..., vm(p) are condition- Equation 9, by substituting the robabilities in Equation 10 and 
ally independent given the condition F, ( p  will be affected by a replacing Prob{Fp) and Prob{F,Pc*] by Prob{Sp) and Prob{Splck] 
future landslide), we have in Equation 12, we have the second estimate for the joint condi- 

tional probability at each pixel: i.e., 
Prob{vl(p), v2(p), ..., vm(p)lFpl 

Prob{cl] ... Prob{cm) 
= ~ r o b ~ v ~ ( p ) ~ ~ , l ~ r o b ~ v ~ ( p ~ ~ ~ ~ l  ... ~rob{v,(p)lF~l (8) Prob2{Fplcl, ..-, cml = 

Prob{c,, ..., cm) 

Hence, under the above conditional independence as- 
sumption, the joint conditional probability in Equation 7 
becomes 

Prob{Fplv~(p)l . . . P r ~ b I F ~ l v ~ ( ~ ) l  
Prob {Fp) Prob{Fp) 

Under the conditional independence assumption in Equa- 
tion 8, the joint conditional probability in Equation 2 can be 
expressed in terms of three components as shown in Equation 
9. The first component, the ratio of Prob{v,(p)) ... Prob{vm(p)] 
and Prob{vl(p), ..., vm(p)], consists of the probabilities related 
to the input spatial data. The second component, the prior 
probability Prob{Fp), is the probability that a pixel p will be 
affected by a future landslide prior to having any evidence. The 
third component consists of m factors, and each factor, the ratio 
of bivariate conditional probability Prob{Fplvk(p)) and the 
prior probability ProblF 1, indicates a contribution of each 
pixel value to future 1anJslide hazard. We will examine each 
component in detail in Appendix A. 

The first component is easily obtained by computing 

PmbIvk(p1 = ckl = Prob(p E Akck] = size of Akck/size of A; 

m m 

A,} = size of n Akcklsize of A. (10) 
k= 1 

However, not having F, the areas to be affected by future land- 
slides, we cannot compute the two probabilities, ProblF,) and 
Pr0b{FPlck], in Equation 9, which are 

Prob{Fp) = Prob{p E F) = size of Flsize of A, 

PrOb{FplCk) = Prob{p E Flp E Akck] 

= size of F n Ak,/size of Akck 

We may substitute these unknown probabilities by their coun- 
terparts, Prob{Sp) and P I ' o ~ { S ~ ~ C ~ ) ,  for the past landslides: i.e., 

Prob{Sp] = Prob{p E S) = size of Slsize of A, 

PrOb{Spl~k} = Prob{p E SIP E Akck) 

= size of S n Akcklsize of Akck 

where s denotes the size of S and skck denotes the size of 
S n AkCK 

Although the estimator in Equation 13 is one of most (if not 
the most) popular techniques for integrating spatial data (Agt- 
erberg eta]., 1990; Aspinall, 1992; Bonham-Carter, 1994) for 
predicting occurrences, it may not produce "good" predic- 
tions, as we will see in the case studies. It is noted that 
Prob2{Fplc,, ..., cm) is the joint conditional probability 
Prob{Splcl, ..., cm) under the conditional independence 
assumption of v,(p), v2(p), ..., vm(p) given the condition Sp ( p  
has been affected by a past landslide), the counterpart of Equa- 
tion 9 for the past landslides. Advantages of this estimator are 
that it is simple to compute and it depends only on the bivariate 
conditional probabilities of the occurrences of the past land- 
slides given the pixel values at each layer separately. 

Regression Model Based on Bivariate Conditional Probabilities 
A general multivariate linear regression model for the condi- 
tional joint probability in Equation 2 for a pixel p can be postu- 
lated by 

where (Po, PI, ..., Pm) are unknown parameters to be estimated 
and E, is an error associated with the linear approximation of 
the joint conditional probability. The model in Equation 14 may 
be valid only if vl(p), ..., v,,,(p) represent continuous measure- 
ments, however, and not the thematic classification data used 
here. 

To overcome this difficulty, we can proceed in several dif- 
ferent ways. One approach is to transform all thematic classifi- 
cation data into a series of binary variables as proposed by 
Chung and Fabbri (1993). Here we propose another ap roach 
where the bivariate conditional probabilities, P r ~ b { F ~ ~ v k ( ~ ) } s  
are used instead of the vk(p)s in Equation 14. The linear model 
in Equation 14 is modified to 

using the m bivariate conditional probabilities, Prob{FpJvl(p)], 
-., P ~ O ~ { F ~ I V , ( ~ ) I .  

Not knowing the occurrences of future landslides, it is 
impossible to estimate (Po, ..., Pm) in Equation 15 directly. To 
make estimation possible, let us consider the counterpart of 
Equation 15 for the past landslides: i.e., 

For the Colombian study area, using the pre-1960 occur- Prob{Splvl(p, ..., vm(p)) = % + cu, ProblSplvl(p)l 

rences data and the input spatial data, Prob{Splck) was ob- + ... + am Prob{Splvm(p)) + E, (16) 
tained by computing size of S n Akcklsize of Akck which is 
shown in the first column "Pre-1960 Data" of Table 1. From where Sp is defined in Equation 4, the associated probabilities 
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are defined in Equation 12,  and (ao, a,, . - a ,  am) are the unknown 
parameters. 

We use the least-squares method (Draper and Smith, 1981) 
to estimate (a,,, a,, a m - ,  am) in Equation 16, and we may choose 
any subareas in the whole study area as the training area. For 
each pixel p, the third estimator of the joint conditional proba- 
bility, Pmb{Fp(vl(p), a - . ,  vm(p)),  is obtained by 

where (4, kl ,  ..-, km) are the least-squares estimators of (a,, a,, 
. a ,  am) in Equation 16. When the number of pixels in the train- 
ing area is very large (e.g., a wide area with pixels representing 
small areas on the ground), the weighted least-squares estima- 
tors discussed in Appendix B simplify the computational pro- 
cedure. It is based on the unique condition subareas and pro- 
duces results identical to those of the least-squares estimators. 

Modified Bayesian Estimation under the Conditional 
Independence 
For the Colombian study area, using the pre-1960 landslide 
occurrences data and the input spatial data, Pmb{Sp(ck] was 
obtained and is shown in column "Pre-1960 Data" of Table 1. 
We are proposing that the resulting bivariate conditional prob- 
ability functions should be reviewed and modified by experts if 
these probabilities, based on the past landslides, are used as 
estimators of Pmb{F Ivk(p)] for future landslides. The modified 
bivariate conditionaf probability functions by an expert are 
shown in column "Expert's Knowledge" of Table 1. We repeat 
the Bayesian procedure previously studied under conditional 
independence using the modified bivariate conditional proba- 
bility functions instead of the bivariate conditional probability 
functions based on the past landslides. 

Instead of the estimation in Equation 12, where Prob{Fp} 
Equation 9 were estimated by Prob{Sp) 

in Equation 12, here Prob{Fp} and h b { F p I  
by Probe{Fp) and Prob,{F I v ~ ( P ) )  which are 

obtained by expert's knowledge. Hence, we ogtain the fourth 
estimate for the joint conditional probability at each pixel by 

size of ( n A*,) 
k= 1 

where a denotes the size of A, akck denotes the size of Akck, and 

p, = Pmbe{Fpj and ek = Pmbe{Fp(ck] for all k, (19) 

are obtained from the expert's knowledge. The term "expert's 
knowledge'' is used here to indicate modifications of the fre- 
quencies of occurrence of map units of mass movements over 
those units, which represent more closely the mental models 
of experts. For instance, knowledge of the landscape may lead 
the expert to reinterpret the map of slope when it is felt that it 
does not represent satisfactorily the topographic contour lines. 
Some angles may be less frequent than expected due to compu- 
tational limitations. For instance, slope angles and the fre- 
quency of mass movements over different angles may be biased 
for steeper slopes. This can be corrected by modifying the histo- 
gram of the number of landslide occurrences for the steeper 
slopes. 

Furthermore, after some initial predictions, an expert may 
want to reconsider the legend of litho-stratigraphic units into 

more litho-technical units, which may better represent the geo- 
morphologic setting. Such modifications may improve the pre- 
diction results once a prediction validation strategy is set up. 
Although much work is needed in this area of interaction 
expertlprediction, it is clear that the model in Equation 18 is the 
first step toward incorporating expert's knowledge into predic- 
tion models. The introduction of such knowledge is particu- 
larly significant or even necessary whenever a database insuffi- 
ciently represents the observed geomorphologic setting of the 
mass movements. 

Modifled Regression-Combination of Input Data and Expert's 
Knowledge 
From the model in Equation 15, we have used Prob{Spl v ~ ( ~ ) )  
and Pmb{Splvl(p), ..., vm(p)l in Equation 1 2  instead of 
Pmb{Fplvk(p)} and PmbIF I v ~ ( P ) ,  .-., vm(p)) to construct the 
model in Equation 16. In &e following modified model, we 
have also used ProbtS Ivl(p), ..., vm(p)) instead of 
~ m b { ~ ~ v ~ ( p ) ,  -.., v , (~)!  as before, but Pmb{Fplvk(p)l was 
replaced by Probe{Fplvk(p)} in Equation 19 as we have done in 
the modified Bayesian estimation procedure. Hence, a new 
regression model is given by 

To estimate (A, &, pm) inEquation 20, we again use the 
least-squares method or the weighted least-squares method 
discussed in Appendix B, and we may choose any subareas in 
the whole study area as the training area. The fifth estimator of 
the joint conditional probability, ~rob{F, lc~,  e . 0 ,  cml for each 
pixel p is obtained by 

where (A, PI,  m e - ,  Bm) are the least-squares estimators of (&I, PI ,  
e . 0 ,  Pm) in Equation 20. 

Case Study In Rio Chinclna Area In Colombla 
Assumption and Vlsuallzatlon 
For the Colombian study area, described earlier, we have 
assumed that the year of study was 1960. Hence, the set of pix- 
els affected by the pre-1960 landslide occurrences, shown in 
blue in Plate 1, is regarded as the distribution of the occur- 
rences of the past landslides. These pixels are used to compute 
the conditional probabilities, related to Sp in Equations 5 and 
12. The red pixels in Plate 1, indicating the distribution of the 
later landslides, which occurred between 1961 and 1988, are 
considered as indicating the presence of "future" landslides. 
They are used to evaluate the prediction patterns only. The five 
prediction patterns obtained are based on the estimated joint 
conditional probabilities computed from Equations 6,13,17, 
18, and 21, respectively. 

For the visualization of a prediction pattern, two methods 
can be applied to the pattern; one using the estimated probabil- 
ities of the pixels directly and the other using the relative ranks 
of the estimators. To interpret the estimated probabilities 
directly, the assumptions such as Prob{Fplck) = ProblSplck} 
required for Equations 13 and 17  or the linear models for Equa- 
tions 17  or 2 1  must be "absolutely true." If those assumptions 
are only "approximately true," then the use of the relative 
ranks is a more promising way of interpreting the results, 
because the same assumptions are applied to all the pixels. No 
significance is directly attached to gradient of the estimators. 
What matters is the ranking sequence of the estimators. In 
addition, when two different prediction models are compared, 
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the ranks of the pixels, which are independent of the models, 
provide more neutral statistics of the predictions than from the 
estimated values directly. 

To obtain the relative ranks for each prediction pattern, the 
estimated probabilities of all pixels in the study area were 
sorted in descending order. Then the ordered pixel values were 
divided into 11 classes (colored red to blue) as follows. The 
pixels with the highest 5 percent estimated probability values 
were classified as the ''0 to 5 percent" class, shown as "purple- 
r e d  in the illustrations, occupying 5 percent of the study area. 
The pixels with the next highest 5 percent values were repre- 
sented in "red," occupy an additional 5 percent of the study 
area, and were classified as the "5 to 10 percent" class. We 
repeated the classification eight more times, for classes 5 per- 
cent apart, and the resulting ten classes are shown in the ten 
corresponding colors: red-purple, red, orange, yellow, light 
green, green, dark green, light blue, blue, and dark blue. 
Finally, the "purple-blue" color was assigned to the remaining 
50 percent of the area. Only three of the five patterns are shown 
here as Plates 2a, 2b, and 2c. They correspond to the "direct," 

"regression," and "modified Bayesian" procedures, respec- 
tively. 

Success and Prediction Rates 
For each prediction pattern, we first compared, in terms of pro- 
portions of corresponding pixels, the 11 classes obtained with 
the occurrences of the pre-1960 landslides shown as blue in 
Plate 1. There are 5515 blue pixels that indicate the areas 
affected by the pre-1960 landslides. We counted the number of 
those blue pixels present in each class. The cumulative distri- 
bution function of the 5515 pixels with respect to the eleven 
classes is shown in the columns of Table 2. To refer to each col- 
umn, we will use the term, "success rates" for these 11 classes 
with respect to the pre-1960 occurrences. The success rates are 
also illustrated as line-graphs in Plate 3a. 

We applied the above procedure to the landslides which 
occurred later, during the period 1961 through 1988, by com- 
paring the 11 classes obtained with the distribution of the 1961 
to 1988 "future" landslides shown in red in Plate 1. There are 
4589 red pixels in the illustration, indicating the areas affected 
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TABLE 2. SUCCESS RATES OF THE CLASSES (5 PERCENT APART) FOR THE FIVE ESTIMATION PROCEDURES OF THE CONDITIONAL PROBABILITIES ASSOCIATED WITH 
RAPID DEBRIS AVALANCHES IN ME RIO CHINCINA STUDY AREA, COLOMBIA. THE CORRESPONDING EXPRESSIONS AND FIGURES mR THE PROCEDURES ARE 

ALSO ~NDICATED. 

column # I 11 III IV v 

Row # Classes 

Direct Bayesian Regression Modified 
Estimation under Model Bayesian Modified 

(Eq. 6) C.I. (Eq. 17) (Eq. 18) Regression 
Plate 2a (Eq. 13) Plate 2b Plate 2c (Eq. 21) 

RcdlftbaIrtg,ttvcprocalum 
1 

a9 

ad 
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d &' 
0.4 
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03 
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a1 

e a l U U U U u a 7 U a 9 1  
@ 

O U U U U U U M U U 1  Amb~emnm 

A m i . m t s E e  (b) 

(a) 

Plate 3. Success rates of predicting the hazard of rapid debris avalanches in the Rio Chincina study area, Colombia. (a) 
Success rates for pre1960 landslide occurrences (training data) based on the bivariate conditional probability functions 
and the five estimation models using both the pre1960 data and expert's knowledge; the corresponding values are shown 
in Table 2. (b) Prediction rates for the 1961-1988 landslide occurrences based on the bivariate conditional probability 
functions and the five estimation models using both the pre1960 data and the expert's knowledge; the corresponding 
values are shown in Table 3. 

by the later landslides. The cumulative distribution function 
of those 4589 pixels with respect to the 11 classes is shown in 
the columns of Table 3. In contrast to the success rates in Table 
2, to refer to the columns in Table 3, we will use the term, "pre- 
diction rates" of the 11 classes with respect to the later land- 
slides. The prediction rates are illustrated as line-graphs in 
Plate 3b. 

On the one hand, the success rates in Table 2 illustrate how 
well the estimators perform with respect to the pre-1960 land- 
slides used to construct the estimators. The prediction rates in 
Table 3, on the other hand, are used as measurements of how 
well the probability model in Equation 2 and of its estimators 
predict the distribution of future landslides. It is implicit that 
the prediction rates, shown in Table 3, and the corresponding 
graphs, shown in Plate 3b, are the only significant statistics of 
the model and the estimator procedure for the prediction of the 
distribution of future landslides. 

Fhst Predktlon'. Direct Estimation (Equation 6) 
Plate 2a contains the prediction pattern of the 11 classes 
obtained by the "direct" procedure based on Equation 6. Col- 
umn I in Table 2 shows the success rates of the pattern in Plate 
2a with respect to the pre-1960 landslide occurrences. Column 
I in Table 3, shows the prediction rates of the pattern in Plate 2a 
with respect to the 1961 to 1988 landslide occurrences. These 
two columns are represented as black solid lines, in Plates 3a 
and 3b, respectively. 

With respect to the pre-1960 "past" occurrences, obviously 
the success rates of the "direct estimation" using Equation 6, in 
Plate 3a, show the best performance among the five estimation 
procedures considered. The prediction rates with respect to 
the "future" 1961 to 1988 occurrences of "direct estimation," 
however, are the worst among the five procedures (Plate 3b). 
This fact indicates that the direct procedure should not be used 
to estimate the probability model of future landslides. As a pre- 
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TABLE 3. PREDICTION RATES OFTHE CLASSES (5 PERCENT APART) FOR THE FIVE ESTIMATION PROCEDURES OFTHE CONDITIONAL PROBABILITIES ASSOCIATED WITH 
RAPID DEBRIS AVALANCHES IN THE RIO CHINCINA STUDY AREA, COLOMBIA. THE CORRESPONDING EXPRESSIONS AND FIGURES FOR THE PROCEDURES ARE 

ALSO INDICATED. 

Column # I I1 m IV v 
Direct Bayesian Regression Modified 

Estimation under Model Bayesian Modified 
(Eq. 6) C.I. ( ~ q .  17) (Eq. 18) Regression 

Row # Classes Plate 2a (Eq. 131 Plate 2b Plate 2c (Eq. 211 

1 0-5% 0.1385 0.0895 0.15244 0.11672 0.17465 
2 0-10% 0.24477 0.1814 0.29573 0.24456 0.26328 
3 0-15% 0.32709 0.27722 0.38654 0.36476 0.38828 
4 040% 0.38698 0.36106 0.46298 0.49956 0.48563 
5 0-25% 0.4804 0.4412 0.5466 0.62456 0.58145 
6 0-30% 0.5453 0.52134 0.63132 0.68902 0.69686 
7 0-35% 0.59408 0.61999 0.71167 0.77809 0.77091 
8 0-40% 0.62827 0.72801 0.78375 0.84495 0.80183 
9 0-45% 0.63959 0.76089 0.80031 0.85736 0.84647 
10 0-50% 0.70209 0.80618 0.82992 0.89373 0.89721 

diction tool, Plate 2a produced a disappointing result. The rela- 
tively poor performance for future landslides may be caused by 
one of the following three situations: (1) the 1961 to 1988 land- 
slides may not be directly related to the pre-1960 landslides, 
(2) preventive measures were possibly put in place sometime 
after the year 1960, andlor (3) the direct estimation for the joint 
conditional probability in Equation 6 is not a good procedure. 
The last situation was considered the most likely, because the 
types of the pre-1960 and the post-1960 landslides are identical 
(van Westen, personal communication) and it is unlikely that 
preventive measures had been put in place in 1960 considering 
that we had selected the year 1960 arbitrarily. 

Second and fourth predictions: Bayesian Equation 13 and modifled Bayesian 
Equation 18 
The results from the second prediction pattern based on Equa- 
tion 13 are shown in Column I1 of Tables 2 and 3, and appear as 
green lines in Plates 3a and 3b, respectively. As a prediction 
measure, the 0 to 15 percent class in Table 3 (Column IIIRow 3) 
contains 27.72 percent of the 1961 to 1988 occurrences and it 
occupies 15 percent of the study area. The value of 27.72 per- 
cent is better than the 15 percent expected, but the prediction 
rates of 27.72 percent is worse than the 32.71 percent in Table 
3 (Column IIRow 3) from the results of the direct estimation 
procedure. Although the prediction rates for the last four 
classes (0 to 35 percent, 0 to 40 percent, 0 to 45 percent, and 0 to 
50 percent) from Equation 13 are little better than those from 
Equation 6, clearly, the direct procedure produced somewhat 
better results than the Bayesian procedure under the condi- 
tional independence assumption. For the overall perfor- 
mances, Equation 6 is simpler; it requires fewer assumptions, 
and it leads to better results than Equation 13. 

Modification of the bivariate conditional probability func- 
tions by the expert's knowledge is particularly important and 
necessary when the database appears to under-represent the 
natural setting of the mass movements. In this study, the 
expert's knowledge was simulated by analyzing the frequency 
distribution of all pre-1960 input data, shown in Table 1, and 
then fitting a more regular or smoothed distribution of frequen- 
cies. The process is similar to fitting a simple model to a noisy 
distribution. While more geological criteria could be used, this 
simulation tests the influence of elementary changes to weight 
assignment. The modified values are shown in the second col- 
umn of Table 1. Although the improvement of the prediction is 
significant, modifications by expert's knowledge on the bivari- 
ate conditional probabilities are subjective and can be arbi- 
trary. Obviously, much work is required regarding how to 
incorporate subjective expert's knowledge into the prediction 

models. In addition, the conditional independence assumption 
is still imposed by the model. 

Plate 2c shows the fourth prediction patterns based on the 
estimated conditional probabilities by Equation 18. By com- 
paring the 11 classes in Plate 2c with respect to the pre-1960 
landslides and the 1961 to 1988 landslides, we have also con- 
structed Column N in Table 2 and Column N in Table 3. These 
two columns are illustrated as red lines in Plates 3a and 3b, 
respectively. 

Let us compare the new results obtained from Equation 18 
to the ones obtained from Equation 13 using the original bivari- 
ate conditional probability functions. While the two success 
rates (green and red lines) in Plate 3a for the pre-1960 data are 
similar, the two predictions in Plate 3b are very different for the 
1961 to 1988 occurrences from the modified bivariate condi- 
tional probability functions. Obviously, out of the five lines in 
Plate 3b, the prediction rates using the modified Bayesian con- 
ditional probability function provide one of the two best perfor- 
mances. Again, let us compare these new results from Equation 
18 to the results obtained from Equation 13 and consider the 
two prediction rates for the 0 to 20 percent class in Table 3 (Col- 
umns I1 and IVIRow 4). We have 36.1 percent versus 50.0 per- 
cent. As a prediction measure, Equation 18 provides better 
prediction results than those from Equation 13. Hence, we can 
conclude that the expert's knowledge provided a significantly 
better prediction. 

Third and Fifth Predictions: Regression Equation 17 and modified regression 
Equation 21  
The results of the linear regression model in Equation 17  are 
shown in Plate 2b. For this experiment, one pixel from every 4 
by 4 window was systematically selected into atraining data set 
consisting of 1473 pixels. Among the 1473 pixels, 355 pixels 
have been affected by the pre-1960 landslides and the 
remaining 1118 pixels have not been affected by the pre-1960 
landslides. In summary, we apply regression analysis to the 
data set consisting of 1473 pixels, and obtain a set of regression 
estimators (Go, GI, . . a ,  &,) in Equation 17. By comparing the 11 
classes in Plate 2b with respect to the pre-1960 landslides and 
the later 1961 to 1988 landslides, we have constructed Column 
111 in Table 2 containing the success rates and Column 111 in 
Table 3 containing the prediction rates. These two columns are 
shown as brown lines in Plates 3a and 3b, respectively. As a 
prediction measure, for instance, the 0 to 20 percent in Table 3 
class (Column IIIIRow 4) contains 46.3 percent of the 1961 to 
1988 occurrences, while it occupies 20 percent of the whole 
area. The prediction rate of 46.3 percent is much better than the 
rate of 38.7 percent in Table 3 (Column IIRow 4), from the 
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results of the direct estimation procedure, and better than the 
rate of 36.11 percent in Table 3 (Column II/Row 4), from the 
results of the Bayesian estimation procedure. 

To look at the overall prediction performance, let us com- 
pare three lines in Plate 3b, black from the direct procedure in 
Equation 6, green from the Bayesian procedure in Equation 13, 
and brown from the regression procedure in Equation 17. Of 
the three lines, the brown regression line produces the best 
overall performance. 

By comparing the 11 classes from Equation 2 1  with respect 
to the pre-1960 landslides and to the 1961 to 1988 landslides, 
we have constructed Column V in Table 2 and Column V in 
Table 3. These two columns are illustrated as brown lines in 
Plates 3a and 3b, respectively. Let us compare these new results 
obtained from Equation 2 1  to the results obtained from Equa- 
tion 17  using the original bivariate conditional probability 
functions. While the two success rates (brown and blue lines) 
in Plate 3a for the pre-1960 data are similar, the two predictions 
in Plate 3b for the 1961 to 1988 occurrences are slightly differ- 
ent. Obviously, as we have observed earlier, from the five lines 
in Plate 3b, the prediction rates using the modified regression 
provide one of the two best performances among the five con- 
sidered in this paper. The two prediction rates behave in a sim- 
ilar fashion. Hence, we can conclude that the expert's 
knowledge provided a marginally better prediction model 
than the original regression in Equation 13. 

Considerations on the Merit of the Predictions 
The successes and prediction rates in Tables 2 and 3 have been 
expressed in terms of the distribution of landslide pixel pro- 
portions corresponding to the different hazard classes. The 
dynamic character of mass movements, however, shows that, 
while the activity originates at higher elevations and steeper 
slopes, the landslides move in the direction of lower elevations 
and shallower slopes. For this reason, the distribution of pixels 
representing the scarp of a landslide generally covers more than 
one hazard class. This can be easily observed in a three-dimen- 
sional display of the predictions with the image of the later 
landslides draped over the digital elevation image. In our appli- 
cation, the rates in the Tables might seem not to indicate a 
strong predictive power of the estimation procedures. A simple 
count of the cumulative proportion of individual landslides 
per class, however, provides another way of evaluating the 
rates. For instance, the values in Table 4 are the landslide 
counts of success and prediction rates for the modified Bayes- 
ian probability and the regression estimators. These values can 

be used to better interpret the corresponding values in Tables 2 
and 3. For instance, the first two classes in Table 4,0 to 5 per- 
cent and 0 to 10 percent, show prediction values 35.4 percent 
(99 out of 280 "future" landslides to occur) and 52.5 percent 
(147 out of 280) for the modified Bayesian probability model, 
and 38.2 percent and 55.0 percent for the regression model, 
respectively. Those values are more than twice as high as the 
corresponding ones in Table 3. Also, in Table 4 we can observe 
very small differences between success and prediction rates. 

In addition, it must be remarked that: (1) this study does 
not represent a simplified simulation but it is based on a real 
data set which of necessity is a partial representation of a more 
complex situation in nature (and given the database, it is, in 
fact, surprising that the models presented here produce such 
high prediction rates); and (2) the same data set is used to com- 
pare the results of several different estimation procedures. 

Concluding Remarks 
We have used a spatial database for landslide hazard zoning in 
Colombia to compare and validate five different predictive 
methods based on probability models. The results of such a 
comparison allow one to consider general application strate- 
gies for geographical information systems. 

A spatial database for predictive modeling (i.e., with all the 
landslide characteristics, including topographic, geotechnical, 
geological, infrastructural, and temporal settings) must be built 
so that each information layer clearly contributes to the charac- 
terization of the typical setting of one event to be predicted. It 
must be recognized that, no matter how good the information 
available may be, the database will always contain incomplete 
information. In addition, with regard to the predictive methods 
considered here, it is irrelevant whether the data domain is in 
raster or vector form: the computations can be performed on 
the attribute tables in either domain. 
To analyze and compare the results of predictions, it is critical 
to partition the database in time and/or in space. Failing to do 
this, the models will remain poorly known and untested, even 
if we consider the database to be a satisfactory representation. 
It seems that, when the database provides "reasonable" support, 
multivariate regression generates better results than Bayesian 
probability methods and it also avoids the assumption of condi- 
tional independence of the input layers. 
When the database falls short of providing "reasonable" support 
for a prediction, the introduction of the expert's knowledge, to 
modify the observed frequencies of the input data relationships, 
appears to improve the results of the predictions. This can be 
demonstrated by comparative analysis and sensitivity analysis. 

TABLE 4. SUCCESS AND PREDICTION RATES OF THE CLASSES (5 PERCENT APART) FOR TWO ESTIMATION PROCEDURES IN TERMS OF THE CORRESPONDING PROPORTIONS 
OF THE NUMBER OF LANDSLIDES ASSOCIATED WITH RAPID DEBRIS AVALANCHES IN THE RIO CHINCINA STUDY AREA. COLOMBIA. 

Number of Landslides Intersected for the Number of Landslides Intersected for the 
Regression Method in Eq. 17. Modified Bayesian Probability in 

Ratio in Bracket. Plate 2b Eq. 18. Ratio in Bracket. Plate 2c. 

"Success Rate" "Prediction Rate" "Success Rate" "Prediction Rate" 
Out of 177 Out of 280 Out of 177 Out of 280 

Landslides Which Landslides Which Landslides Which Landslides Which 
Occurred Prior to Occurred Between Occurred Prior to Occurred Betweeen 

Classes 1960 1961 and 1988 1960 1961 and 1988 
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This situation will require extensive experimentation with sim- 
ilar data sets and also with more methods and their modifica- 
tions using the same data set. In all cases, the computational 
strategy requires data in the form of hypotheses which can 
be tested. 
Once the preliminary statistical analysis of the database has 
been performed, the statistical results, showing the frequency 
distribution of the occurrences of the past landslides with 
respect to the supporting pieces of evidence, should be re- 
viewed by experts. This is particularly important and necessary 
when the database appears to be under-representing the natural 
setting of the mass movements. 
For the least-squares estimation of the regression coefficients 
in Equations 17 and 21, we have also studied several different 
training data sets ranging from about 1,000 pixels to the whole 
study area (43,7019 pixels) using the weighted least-squares esti- 
mation in Appendix B. The prediction rates with respect to the 
size of the training data set appear to be robust and the study 
on the effect will be a subject to a future contribution. 

Programs of IAMG194, 1994 International Association for Mathe- 
matical Geology Annual Conference, Mont Tremblant, Quebec, 
Canada, 3-5 October, pp. 87-93. 

Draper, N.R., and H. Smith, 1981. Applied Regression Analysis, Second 
Edition, Wiley, N.Y., 709 p. 

Fabbri, A.G., and C.F. Chung, 1996. Predictive spatial data analysis in 
the geosciences, Spatial Analytical Perspectives on GIs in the 
Environmental and Socio-Economic Sciences (M. Fisher, H.J. 
Scholten, and D. Unwin, editors), GISDATA Series No. 3, Taylor & 
Francis, London, pp. 147-159.. 

Jibson, R.W., E.L. Harp, and J.A. Michael, 1998. A Method forproducing 
Digital Probabilistic Seismic Landslide Hazard Maps: An Exam- 
ple from the Los Angeles, California, Area, U.S. Geological Survey 
Open-File Report 98-113, 17p., 2 plates. 

Leclerc, Y., 1994. The Design of FM: Data Integrating Package for 
Zoning Natural Hazards in the Developing Countries, unpub- 
lished M.E. Des. Thesis, Environmental Science, Faculty of Envi- 
ronmental Design, University of Calgary, Canada, 127 p. 

This research provides a unified framework to predictive 
modeling with GIS using probability concepts. The authors of 
this contribution are currently studying the results from sub- 
sets of the spatial database and of inverting the control data in 
time, i.e., using the later landslides to predict the location of the 
older ones. The latter process is expected to lead to poorer 
results. In addition, the application of prediction models based 
on fuzzy set techniques and Dempster-Shafer's evidential the- 
ory has been proposed by Chung and Fabbri (1993). We are cur- 
rently evaluating these models. 
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Appendix A. Three Components 
Using the Bayesian rules under the condition that v,(p), v2(p), 
-.-, vm(p) are conditionally independent given the condition 
that Fp ( p  will be affected by a future landslide), the joint condi- 
tional probability for each pixel p in Equation 2, as shown in 
the last term of Equation 9, is 

Chung, C.F., A.G. Fabbri, and C.J. van Westen, 1995. Multivariate 
regression analysis for landslide hazard zonation, Geographical The first component, as shown in Equation 10, the ratio of 
Information Systems in Assessing Natural Hazards (A. Carrara ProbIvl(p)l ... Prob(vm(p)l and ProbIv,(p), ..., vm(p)), consists 
and F. Guzzetti, editors), Kluwer Academic Publishers, Dordrecht, of the probabilities related to the spatial input, and is easily 
The Netherlands, pp. 107-133. obtained. To clearly understand it, however, we must tempo- 

Chung, C.F., and Y. Leclerc, 1994. A quantitative technique for zoning rarily suppose that the m thematic classes, A,,,, ..., Am, for p 
landslide hazard, Papers and Extended Abstracts for Technical are statistically independent. Then 
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Prob{v1(p), -.., v,(p)) = Prob{v,(p)J Prob{v,(pI), identical, i.e., Prob{Fplvk(p)) = Prob{F ). These arguments for 
the P factor can be applied to each of tLe m factors in the third 

and, hence, the first component, the ratio, is equal to I. A mean- component. 
ing for the independence is that them A,,,, . . a ,  A,,, 
one for each laver, are not "statisticallv related to" each other. Appendix B n  Weighted least-squares method for data from unique 
Hence, they ar;? random patterns, alth;ugh all patterns have condition 
the pixel p in common. Such an assumption of independence is The least-squares estimator (a,,, ~ r , ,  . .., iu,) in Equation 17 is 
certainly unrealistic, however, and should not be made in obtained by 
practice. The independence implies the conditional assump- 
tion made in Equation 8, where the m patterns are independent 
provided that the pixel p will be affected by a future landslide. 
Hence, this is much stronger and stricter than the conditional 
independence assumption. 

Completely opposite to the independence assumption is where the situation if we assume that the m patterns, A,,,, - . a ,  A,,, 
are completely correlated, i.e., A,,,, - a * ,  Amcm, are identical. 1 XI, ... 
Then, "irn), y = ( y ) ,  

xnm Yn Prob{vdp), ..., v,(p)I = Prob{vk(p)} for any k, 

the ratio in the first component is simply P r o b { ~ ~ ( p ) ) ~ - '  which 
becomes very small, nearly zero, whenever the pattern Akc4 is 
reasonably smaller than the whole study area. In this situation, 
the conditional probability in Equation A.l becomes nearly 
zero. 

The second component is the prior probability Prob{Fp): 

Prob{Fp] = Prob{p E F]  = size of Flsize of A, (A.2) 

which is the probability that a pixel p is contained in a future 
landslide prior to that for which we have any evidence. It does 
not depend either on the location of the pixel p or on the pixel 
values at p. It is an identical value for all pixels and, hence, it is 
not critical when we compare the relative significance of pixels 
with respect to the landslide prediction. It can only be deter- 
mined by expert's knowledge where the areas to be affected by 
future landslides in the study will be hypothesized. 

We will examine the m factors in the third component now. 
It is the component showing how each of the m evidences is 
related to the prediction model, i.e., the joint conditional prob- 
ability in Equation A.1. If the areas to be affected by future 
landslides are known (impossible in practice), then the bivari- 
ate conditional probabilities in the component are obtained by 

pi represents the ith pixel, n is the number of pixels in the train- 
ing area, m is the number of data layers, and the size of the 
matrix X is n X (m + 1). 

In the training area, when m layers are overlaid, the area 
becomes divided into h non-overlapping subareas and the pix- 
els in each subarea have m identical pixel values. Such subar- 
eas can be termed "unique-condition subareas" and, in most 
GIS applications, their number is much smaller than that of the 
pixels. The whole Colombian study area consisted of 437,019 
pixels, but after overlaying the seven available data layers, only 
4,728 unique-condition subareas could be identified. 

Suppose that we have h unique condition subareas in the 
training area and nj pixels in the j th unique condition subarea 
(n, + nz + + nh = n). The same regression coefficients, (iu,, 
&,, - . a ,  iu,) in Equation B . l  can be obtained by using a much 
smaller (h x (m + 1)) matrix V rather than the large (n x (m + 
1)) matrix V: i.e., 

where 

. . . 
= size of F r )  Akck/size of Akck. (A.3) v =  

In the P factor of the component, the ratio of Prob{FpIvk(p)} 
and Prob{F 1, let us assume that Prob{F, l~~(~)}  is greater than qk = P r ~ b { S ~ ) v ~ ( ~ ~ ) ]  
Pmb{Fp]. T&S would indicate that the pattern Akck (the evi- 
dence in the layer) corresponding to vk(p) (=ck) can be con- 9 = ~robtSp~lvt(pj), ..., vm(pj)), 
sidered as a positive effect toward having future landslides. 
Hence, the ratio, the Ph factor would be greater than 1. Other- pi represents a pixel in the j th unique-condition subarea, h is 
wise, the bivariate conditional probability has to be smaller the number of unique-condition subareas in the training area, 
than the prior probability. If the pattern Akc does not have any m is the number of data layers, and N is a diagonal matrix with 
effect on future landslides, then the two pro%abilities should be diagonal values (n,, - - a ,  nh). 
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