
Query Optimization for a
Distributed Geographic Information System

Abstract
Distributed geographic information systems (GISS) have advan-
tages in data sharing, reliability, efficiency, and system growth.
Query optimization substantially affects the performance of a
distributed GIS. In developing a system, query optimization is
one of the technical issues that must first be addressed. A
distributed GIs is different from a non-spatial distributed
database and requires special techniques for query optimi-
zation.

In this paper, a set of query optimization techniques are
 resented that were develo~ed in building a distributed GIs.
'TWO new definitions of spa'tial operations"are introduced that
enable us to apply the well-developed operation-ordering
approach for &ategy generation. A petrinet-based strat&-
modeling method is described that is aimed at facilitating "
strategy generation and cost estimation. A que$ optimiza2;'on
algorithm is presented. Cost functions and selectivityfunctions
for spatial operations are described as well.

Distributed Geographic information Systems
In recent years, distributed GIss have attracted increasing inter-
est. A distributed GIS is a collection of sites connected via a data
communication network. Each site is an autonomous GIs that
maintains data and processing functions. A distributed GIS
provides transparent access to data stored at any of the sites. It
presents a single database image and hides data distribution
and connection paths. To the user, all the data and functions
can be accessed as if they are provided at the local site.

Compared with isolated/centralized GIss, distributed GIss
have many advantages. The most obvious advantage is the sup-
port for data sharing. In many situations, particularly with large
data processing projects, data sharing dramatically improves
productivity and reduces costs. Additional advantages include
improved efficiency, higher reliability, and easier system
growth. A distributed GIs can reduce response time. By distrib-
uting data properly, the time required for data transmission is
minimized. Short response time is also achieved by distribut-
ing costly operations to multiple sites for parallel processing.
Higher reliability is achieved by duplicating crucial data and
functions at multiple sites. In a well-planned system, new
computers are easily "plugged in" to incorporate more power.
In a word, integrated with data communication networks, GISS
may become more accessible, available, and powerful.

The advantages and importance of distributed GIss have
been realized by GIs researchers and producers (McGregor,
1988; NCGIA, 1989; Meredith, 1995). Some organizational and
institutional issues in developing distributed GISS, including
the incentives and the impediments, have been addressed by

Del~artment of Computing ancl Information Scicnce, University
of C;uelpll. Guelph, Ontario N l C 2W1. Canada
(fj~~,ang@sno~~l~ite.cis.uoguelph.ca).

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

Iu Wang

Pinto and Onsrud (1995). Research has been conducted for
developing distributed GISS, for example, by Edmondson
(1992), Bernath (1992), Laurini (1993), and Goodman (1994).
Recent work includes the DGIS project in Australia (DHPC Proj-
ect Team, 1996), the DISGIS project in Norway (Norwegian Map-
ping Authority, 1997), and the geodata modeling technique for
distributed GIss at Berkeley (Gardels, 1997). To facilitate geo-
graphic data sharing and interoperability, international and
national standards have been developed, including the Open
Geodata Interoperability Specification (OGIS) (Buehler and
McKee, 1996), and the Spatial Archive and Interchange Format
(SAIF) (British Columbia Survey and Resource Mapping
Branch, 1994). Since 1995, web server-based systems have
been developed for geographic data sharing, for example, the
Alexandria Digital Library (ADL) (Smith et al., 1996) and many
commercial and non-commercial systems (Plewe, 1997). Most
of these types of systems support "map-based" queries where a
query is used to retrieve geographic data (usually the whole or
part of a map) stored at a single remote site. However, progress
is slow in building systems that support queries that request
map features, evaluate spatial relationships, and involve maps
stored at multiple sites. The slow progress may be due, partly,
to the special technical problems that must be solved in devel-
oping distributed GISs, such as query optimization.

Query Optimization
Query optimization is the generation of efficient execution
strategies for queries. Modern information systems, including
advanced GISS, use non-procedural languages to express que-
ries. For a non-procedural query, the system must generate a
procedure of operations to execute it. Such a procedure is
called a strategy. In a distributed system, the strategy deter-
mines the sites and order for executing operations, as well as
the procedure for transmitting the requested data.

Several strategies may exist for a query, for example, a
query requesting data about the regions that have a land cover
of "bare soil" and a slope less than five degrees. If the land-
cover map and the slope map are stored at two different sites
and the query is.originated at a third site, we may use at least
the following two strategies to obtain the result. The first strat-
egy is to transmit the two maps to the originating site, overlay
them and select the result there. The second strategy is to select
the regions with the specified cover type or slope at the sites
where the maps are stored, transmit the result of one site to the
other, overlay the intermediate results and transmit the final
result to the originating site. In most situations, the second

Photogrammetric Engineering & Remote Sensing
Vol. 65, No. 12, December 1999, pp. 1427-1438.

0099-1112/99/6512-1427$3.00/0
O 1999 American Society for Photogrammetry

and Remote Sensing

/ 1 1 1427

strategy is more efficient because it involves transmitting and
processing less data.

The performance of two strategies may differ by several
orders of magnitude, and the use of different strategies sub-
stantially affects system performance. In developing a distrib-
uted GIS for practical use, query optimization is among the first
technical issues to be addressed.

To date, research on distributed GIs query optimization is
limited. The most recently published work includes query
optimization for the Alberta Land Related Information System
(Igras, 1994) and the spatial join strategies for distributed GIss
(Abel et al., 1995). However, extensive research has been con-
ducted on query optimization for ordinary (non-spatial) dis-
tributed databases, and a rich set of techniques have been
developed (Yu and Chang, 1984; Ozsu and Valduriez, 1991).
Previous research on query optimization for isolatedlcentral-
ized GISS has mainly focused on spatial indexing (Ooi, 1990;
Laurini and Thompson, 1992; Brinkhoff et al., 1993; Leslie et
al., 1995; Nabil and Gangopadhyay, 1997). Many techniques
from these two related fields (especially those for ordinary dis-
tributed databases) can be used for distributed GISs.

This paper relates a set of query optimization techniques
for distributed GISS. First, the key issues in query optimization
for a distributed G I ~ are identified. Two new definitions of spa-
tial operations are introduced that enable us to apply the
existing optimization techniques to a distributed GIS. Second,
an optimization algorithm is presented, which includes a strat-
egy generation procedure, a correctness analysis method, and a
cost model. Cost and selectivity functions of spatial operations
are described as well.

A Review and Identification of the Key Issues
Query Optimization Techniques for Distributed DBs
Most of the existing query optimization algorithms were devel-
oped for relational databases. Representative algorithms
include those for Distributed INGRESS (Epstein et al., 1978), R*
(Lohman et al., 1985), and the algorithms by Apers et al. (1983).
The algorithms share the same major steps: query decomposi-
tion that decomposes a query into subqueries, each of which
can be executed at a site; data localization that determines the
data involved in each subquery; global optimization that gen-
erates a strategy for executing the subqueries; and local optimi-
zation in which individual subqueries are optimized. Of the
four steps, the first two are relatively straightforward, and local
optimization can be performed by using the techniques for iso-
latedlcentralized systems. Global optimization is the core step
and is the most complicated. It consists of the tasks of strategy
generation and cost estimation.

The above algorithms were developed to optimize join que-
ries (i.e., queries in which the main operations are sequences
of joins). The major approaches for strategy generation are oper-
ation ordering and semijoin. For a query, operation ordering
involves generating a strategy from permutations of its opera-
tions. This approach is based on the facts that joins are commu-
tative, and that joins coupled with some other operations are
commutative. Semijoin reduces costs by transmitting subsets of
the relations to be joined instead of the whole relations. Figure
1 illustrates the five steps in a semijoin procedure, in which the
symbol II denotes a relational projection operation. When
using semijoin to join relations R1 and R2 that are stored at sites
S, and S,, respectively, projection is conducted on R, to select
the attribute(s) to be compared, the projected attribute values
(a vertical subset of R, that is denoted as R,) are transmitted to
S2 and joined with R2, and then the join result (a horizontal
subset of R, that is denoted as R4) is transmitted to S, to join
with R,. The final result is R5.

To select the best from alternative strategies, a cost model
is needed to estimate total costs or response time. A cost model

may have the components of CPU costs, disk110 costs, and trans-
mission costs. To simplify cost estimation, most distributed
non-spatial database systems (distributed DBS) designed for
wide area networks ignore the local processing costs (Ozsu and
Valduriez, 1991).

1. % = ~ A (R I)

2. R3 --

3.

4. <--

5 . & = R I M F A

Sl

ldentiflcatlon of the Key Issues
A comparison between a distributed DB and a distributed GIS
may help us identify and address the key issues in query opti-
mization for a distributed GIS. It is assumed that the GIS to be
compared stores vector data and that both systems are based on
a relational model. The relational model is currently the most
widely used database model in operational GI%. It is also a
basis of the "object-relational" model proposed in the forth-
coming standards of SQL:1999 (ISOIIEC, 1999a) and SQLIMM
(ISOIIEC, 1999b). A digital map in a vector GIS is created as a
collection of spatial features. The primary spatial features are
points, lines, and polygons (Buehler and McKee, 1996). In a
relational (or object-relational) GIS, a digital map is logically
represented by the graphical display of its spatial features and a
relation (table). Each tuple in the relation depicts a spatial fea-
ture (Aronoff, 1989; Laurini and Thompson, 1992).

A distributed DB and a distributed GIS have the common
properties that data are distributed, queries can be decom-
posed into primary operations, and primary operations can be
executed at different sites. The common properties suggest
that query optimization in a distributed GIS can be performed in
the similar steps (i.e., query decomposition, data localization,
global optimization and local optimization).

However, a distributed DB and a distributed GIS are differ-
ent in many aspects. The major differences that may affect
query optimization, are with database operations:

- ->

E14 = R3 W RZ

--&

s2

In a distributed DB, primary operations are relational and set
operations. Relational and set operations are inadequate for GIS
queries (Egenhofer, 1992). In a distributed GIS, a number of
spatial operations are needed for overlay, buffering, and evalu-
ating spatial relationships like adjacency, connection, and over-
lap, in addition to the above operations.
The idea of semijoin cannot always reduce costs when applied
with spatial operations. When a spatial operation is conducted
on two maps, the "vertical subset" of a map is its spatial data.
Spatial data of a digital map usually account for a major propor-
tion of the data volume.
The major operations in a distributed DB (i.e., join, selection,
and projection) are commutative. Spatial operations do not
show explicitly the properties of commutativity.
Operations in a distributed DB do not create new attributes.
They construct new relations by combining and re-arranging
attributes of input relations. However, some spatial operations
create new spatial features and attributes. For example, a buff-
ering operation generates buffer zones. The zones are new spa-
tial features and their properties have to be described by
new attributes.
Complexities of spatial operations vary widely. Many spatial
operations have very costly procedures. For example, in over-
laying two polygon maps, intersections of polygon boundary

Figure 1. The five steps in semijoin.

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

lines must be detected. Computing time for the intersection
detection may be proportional to N, . N, . L, . L, where Nl and
N2 are the numbers of polygon boundary lines on the two maps,
and L, and L2 are the average line lengths. Algorithms have
been developed to improve efficiency, for example, by White
(1978) and Franklin et al. (1989). However, intersection detec-
tion is still among the most time-consuming operations.
A query optimizer needs to estimate the size of the result com-
puted by an operation on the given input. The output of one
operation can be the input to another operation. The cost of the
latter depends on the size of its input. The size of an operation's
output can be estimated using the operation's selectivity factor,
which is the ratio of the size of its output to the size of its
input. In a GIS, each spatial operation has its selectivity factor.

The differences suggest that in distributed GIss global opti-
mization and local optimization, which decide how opera-
tions are performed on data, have to be conducted in special
ways. While some techniques for isolatedlcentralized G I ~ S can
be applied for local optimization, special techniques are
required for global optimization. The special techniques are
the major task in developing query optimization techniques for
distributed GISS.

Before presenting the algorithm and new techniques, we
first identify the key issues in the development of them:

General Deflnltions of Spatial Operatlons
Before introducing the definitions, it is necessary to describe
the data structure of digital maps on which the spatial opera-
tions are conducted. The structure is similar to those applied in
many existing systems: A digital map essentially consists of
two components-a spatial data structure and a relation. The
two components are stored and transmitted together.

In a "pure" relational GIs, the spatial data structure is usu-
ally a separate structure, for example, in the topological model
(Aronoff, 1989). In an object-relational GIs, the spatial data
structure can be constructed out of the spatial abstract data
types defined in SQL/MM (ISOIIEC, 1999b). In either of the two
types of structures, spatial data of a map can be viewed as a col-
lection of spatial features, denoted as

where f is the generic representation of spatial features, and the
bracket pair "{ 1" denotes a set (or collection). Each spatial fea-
ture has a feature identifier.

The relation contains non-spatial attribute data, associates
the spatial features with their attribute data, and specifies
some integrity constraints. The scheme of a map relation can be

Commutativity is the basis of operation ordering. To use opera- (Ao, AI, . . ., An) (2)
tion ordering, we have to explore commutativity of the spatial
as well as non-spatial operations in GIS queries. where A,, is the feature identifier, and A ,, . . a , An are other attri-
~n developing a model for cost estimation, the following should butes (n 2 11, which may also be feature identifiers. In this
be taken into consideration: research, we use feature identifiers in this group to represent

Local processing costs cannot be ignored. The costs of some spatial relationships. This method will be discussed in the
spatial operations are comparable to the transmission costs next section. A relation is a collection of tuples
on wide area networks.
Because complexities of spatial operations vary greatly, the
cost of each operation should be estimated individuallv. This I t1
requires a COG function for each spatial operation.

-
To estimate sizes for intermediate results, a selectivity func-
tion should be defined for each spatial operation.
The cost model should be able to deal with parallel processing.

Exploring Commutativity of Spatial Operations

Operations in GIS Queries
Operations in GIs queries can be classified into non-spatial and
spatial operations. A query may have operations from both
classes. A non-spatial operation is conducted on non-spatial
data only, (i.e., attribute data of digital maps or non-spatial
relations). In a relational GIS, these operations include join (B
or natural join), selection, and projection. Operations in this
class are basically the same as those in non-spatial databases.

Spatial operations are performed on spatial features and
their attribute data, and spatial operations produce new maps
(Tomlin, 1990). In this research, we further classify spatial
operations into two groups. The first group are operatiins that
evaluate spatial relationships without creating new features on
the outpui maps, these are called spatial evaliations. These
include operations for evaluating adjacency, intersection, con-
nection, overlap, and so on. The second group are operations
that manipulate existing spatial features to create new features
on the output maps; these are called spatial manipulations.
These include polygon overlay, buffering, viewshed mapping,
and so on.

In brief, we mainly deal with join, selection, spatial evalua-
tions, and spatial manipulations in GIS queries. The key to use
operation orderingis to explore their commutativity In the fol-
lowing, we introduce two new definitions of spatial operations.
Based on them, many spatial operations can be commuted
with each other and commuted with the non-spatial opera-
tions.

where t is the generic representation of relational tuples
defined by Expression 2. The spatial operations are defined in
terms of input and output maps.

Spatial Evaluations
Spatial evaluations are binary in terms of the number of
operands. On the spatial side, the input of a spatial evaluation
is the spatial features of the two input maps and the output is
the spatial features of a composite map. The composite map
includes pairs of spatial features that satisfy the spatial relation-
ship evaluated. The features in a pair are from the two input
maps. For example, when we have a point map and a polygon
map and we are evaluating the relationship of "point-within-
polygon," if a point is within a polygon, the pair is included on
the composite map. Formally, spatial evaluation can be
expressed as

where E is a spatial evaluation, { f), and { f), are the spatial fea-
ture collections of the two input maps, (f ,, f ,) is a pair of spa-
tial features, and f1 E { f l2 and f2 E { f 1, satisfy the spatial
relationship evaluated.

On the non-spatial side, the input is the relations of the
input maps and t6e output is a combosite relation. A tuple in
the com~osite relation de~ic ts a feature air in Eauation 4. A
tuple is ionned by concat&ating the twituples &at depict the
features in the pair. In the above example, a tuple in the com-
posite relation indicates that a point and a polygon satisfy the
relationship of "point-within-polygon." On this side, spatial
evaluation E can be expressed as

E((t11, {tlz) = I(t1, tz)l (5)

where It}, and It), are the relations of the two input maps, (t,, t,)

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING December 1999 1429

is a tuple in the composite relation that is a concatenation of tl
and t,, and tl E {tIl and t, E {tIZ depict two spatial features that
satisfy the spatial relationship evaluated. The scheme of the
composite relation is

where AiSj (j = 0,1, . . . , ni) are attributes of the ith input relation
(i = 1,2). The values of A , , and AzVo in a tuple represent the
information that two features satisfy the spatial relationship
evaluated.

Spatial Manipulations
A spatial manipulation has one or more input maps. On the spa-
tial side, the input is the set(s) of spatial features of the input
map(s) and the output is the spatial features of a composite
map. The composite map includes the new spatial features cre-
ated by the manipulation, as well as their "parent" features. An
example can be found when we conduct a buffering operation
on a map. The composite map includes buffer zones and also
the features that are buffered. This group of operations can be
formally expressed as

where M is a spatial manipulation, { f Iiis the set of spatial fea-
tures of the ith input map (i = 1, . . . , m), (f,, fl, . . . , f,) is a
group of spatial features on the composite map, f, is a new fea-
ture created by the operation, fl E { f),, . . . , f, E { f), are the
parent features off,, and m is the number of input maps.

On the non-spatial side, the input is the relation of the
input map(s) and the output is a composite relation. Each tuple
in the output includes attributes of a new spatial feature and
also attributes of its parent feature (or features). In the example
of buffering, each tuple in the composite relation includes attri-
butes of a buffer zone and attributes of the feature buffered by
the zone. Formally, the operation can be expressed as

where is the relation of the ith input map (i = 1, . . . , m), (t,,
tl, . . . , t,) is a tuple in the composite relation formed by con-
catenation, tc contains the attributes of a new feature created by
the operation, and ti E {t),, . . . , t, E {t], are the tuples that
depict the parent features off,. The scheme of the composite
relation is formally defined as

where ACsj (j = 0,1, . . . , n,) are attributes of the newly created
features and AiJ (j = 0,1, . . . , ni) are attributes of the ith input
relation (1 5 i 5 m).

Commutativity of the Operations
A comparison between a type of spatial operations and rela-
tional &join may help us understand the commutativity of the
former. Formally, relational Bjoin can be expressed as

where Wgis Bjoin, {t)iis the ith input relation (i = 1,2), and (tl,
t,) is a tuple in the joined relation formed by concatenating t, E

It), and tz E (t12 that satisfy 8. The scheme of the joined relation
is

where AiSj (j = 1, . . . , n J are attributes of the ith input relation
(i = 1,2). The commutativity properties of Bjoin can be found
in Ozsu and Valduriez (1991) and Silberschatz et al. (1997).

By comparing Equations 4 , 5 , and 6 with Equations 10 and
11, we can observe that the spatial evaluations are similar to B
join in terms of the relationship between the input and output:
the output is a collection of pairs that include the input objects
that satisfy a condition.

By comparing Equations 7,8, and 9 with Equations 10 and
11, we can observe that, when the newly created features are
not considered, spatial manipulations &e similar to Bjoin in
terms of the relationship between the input and output: the
output is a collection of groups that include the input objects
that satisfy a condition. Because of the similarity, the spatial
evaluations and spatial manipulations thus defined have the
commutativity properties similar to those of Bjoin. In the fol-
lowing, we list some of the properties that are the most useful in
strategy generation. A more formal description of the proper-
ties and the proof of them can be obtained from the author.

Spatial evaluations have the following properties:

'Itvo spatial evaluations can be commuted,
A spatial evaluation and a join can be commuted, and
A spatial evaluation and a selection can be commuted.

Spatial manipulations have the following properties when the
newly created features are not considered:

A spatial manipulation and a spatial evaluation can be
commuted,
A spatial manipulation and a join can be commuted, and
A spatial manipulation and a selection can be commuted.

The two definitions provide a conceptual framework for
query optimization in a distributed GIS. Spatial operations
implemented on the definitions have the properties of commu-
tativity. The properties allow us to apply the operation order-
ing technique. We may order some operations of a query in a
way such that the query can be executed efficiently. Note that,
when a spatial evaluation, a join, or a selection is conducted on
the new features created by a spatial manipulation, we have to
execute the spatial manipulation first, and then other opera-
tions. This order cannot be reversed; otherwise, a strategy
would be invalid. In strategy generation, it is an important task
to avoid invalid strategies. The classification of spatial opera-
tions into evaluations and manipulations may ease this task
considerably.

A Query Optimization Algorithm
An Overview of the Algorithm
The algorithm comprises three major steps:

(1) Query decomposition,
(2) Strategy generation, and
(3) Cost estimation.

The objective is to minimize response time. It is achieved
by minimizing the sizes of the data to be processed and trans-
mitted, and distributing costly spatial operations for parallel
processing.

Operation ordering is used for strategy generation in this
algorithm. Differing from Distributed INGRESS (Epstein et al.,
1978) and R* (Lohman et al., 1985), which are based on opera-
tion ordering, this algorithm conducts optimization at compi-
lation time and is not based on the exhaustive search of the
solution space. The algorithm is aimed at generating a good
strategy instead of the best. To reduce the number of alternative
strategies, a set of rules are used. Strategies are represented as
directed graphs. Petri nets (Peterson, 1981) are used to model
strategies for correctness analysis and cost estimation. A set of

1430 December 1999 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

cost functions and selectivity functions are defined for cost
estimation.

In describing the algorithm, we use an extended SQL1999
to express queries. A query in the language is of the form
"select-hm-where." The relations in the from clause may be
digital maps or non-spatial relations. To express spatial opera-
tions, two groups of functions are defined in the language. The
first group include functions "Overlay" and "Buffer" for spa-
tial manipulations. The second group includes functions for
conducting spatial evaluations. In the following discussion, the
second group is called spatial predicates. The functions in the
first group are used in from clauses and those in the second
group used in where clauses. More details about the language
can be obtained by contacting the author.

Query Decomposition
Query decomposition is an indispensable step in query optimi-
zation for non-spatial and spatial databases (Ozsu and Valdur-
iez, 1991; Ooi, 1990). In query decomposition. a query is
decomposed into subqueries. A subquery here refers to an ordi-
nary query that is decomposed from a user query and can be
executed independently at a site. It is different from a subquery
defined in the SQL standards. Query decomposition is con-
ducted in four steps.

Step 1: Query Normalization
The search condition in the where clause is normalized into
conjunctive normal form

C, and C, and - - and Cn

where Ci (1 r i I n) is the ith conjunctive term that is a disjunc-
1 tive composition of disjunctive terms:

where p 2 1. A disjunctive term may be a spatial predicate (P),
a "variable-operator-constant" (VC) predicate, or a "variable-
operator-variable" (W) predicate. "P" represents a spatial eval-
uation, "VC" represents a selection operation, and "W" repre-
sents a join operation.

Step 2: Creating a Collecting Subquery
In a distributed GIS, a subquery is needed at the originating site
for collecting intermediate results. It forms and displays the
final result. This subquery is called a collecting subquery. Its
target list is the same as the original query and its where clause

, is empty. The collecting subquery is created by splitting the
original query

select A,, A,, . . . ,AT
from {R)
where C

into a collecting subquery

select A,, A,, . . . , AT
from {R}'

I

1 and a subquery

select *
from {R}
where C

where Al, Az, . . . , ATis the target list, {R} denotes a set of rela-
tions (digital maps or non-spatial relations), and {R)' c {Rl is
the relations involved in the target list. In the rest of the paper,

PHOTOGRAMMETRIC ENGINEERING 81 REMOTE SENSING

we use {Rl to denote a set of relations, and we may express a
condition as C(R,, . ., R,) to indicate that R1, . . -, R, are relations
involved in the condition.

Step 3: Separating Subqueries Containing Spatial
Manipulations
If the non-collecting subquery has a spatial manipulation func-
tion in its from clause, a subquery is created to contain the
function. Such a subquery is termed a manipulating subquery.
Formally, this step decomposes query

select *
from MRl9 . . . , Rm) as R,+,, Rm+,, . . . , Rn
where C

into a manipulating subquery

select *
fkom MR,, . . . , R,) as R,,,

and a subquery

select *
from Rm+,, Rm+,, . . . , %
where C

where Mis a spatial manipulation function; R,, . . . , R, are
input of the function (1 5 m I 2); R,+l is the derived relation;
and R,,,, . ., Rn are other relations. Note that the second resul-
tant subquery has the derived relation but not the function in
its from clause.

Step 4: Decomposing the Non-Manipulating Subquery
In this step, the non-manipulating subquery is decomposed
into subqueries each of which has one conjunctive term in its
where clause. Formally, the subquery constructed using the ith
conjunctive term, denoted by Ci({R]), is

select *
fiom {R}
where Ci ({ R }) .

A Sample Query
The following is a sample query, and the subqueries that are
decomposed hom it. This query includes a spatial manipula-
tion function and three spatial predicates. Its where clause has
all the three types of terms (P, VC, and W) . This query can be
used to display the regions that have a cover type of "bare soil"
and a drainage class of "poor," and locate within parcels that
are owned by the province. The parcels are not adjacent to Lake
Ontario and have distances no less than 10 km to residential
areas. In this query, the names in the upper case are relation
names. In each "map" relation, the feature identifier is the
attribute that has the same name as the relation but is in the
lower case.

select REGION.region
from Overlay(COVER,DRAINAGE) as REGION,

OWNER, USE, LAKE, PARCEL
where COVER.cover-type = 'bare soil' and

DRAINAGE.class = 'poor' and
PARCEL.0-id = 0WNER.o-id and
0WNER.ownername = 'province' and
not Adjacent(PARCEL.parce1,LAKE.lake) and
LAKE.lake-name = 'Lake Ontario' and
Distance(PARCEL.parcel,USE.use,'> = 10') and
USE.use-type = 'residential' and
Contain(PARCEL.parce1,REGION.region)

December 1999 1431

The sample query is decomposed into eleven subqueries.
Subquery 0 is the collecting subquery and Subquery 1 is a
manipulating subquery. Each of the rest contains a conjunctive
term in the where clause of the original subquery.

qO, select REGION.region
from REGION

q l . select *
from Overlay(COVER,DRAINAGE) as REGION

q2, select *
from COVER
where COVER.covertype = 'bare soil'

q3. select *
from DRAINAGE
where DRA1NAGE.clas.s = 'poor'

q4. select *
from PARCEL, OWNER
where PARCEL.0-id = 0WNER.o-id

q5. select *
from OWNER
where 0WNER.ownername = 'province'

q6. select *
from PARCEL, LAKE
where not Adjacent(PARCEL.parce1,LAKE.lake)

q7, select *
from LAKE
where LAKE.lake-name = 'Lake Ontario'

q8. select *
from PARCEL, USE
where Distance(PARCEL.parcel,USE.use, '> = 10')

q9. select *
from USE
where USE.use-type = 'residential'

q10. select *
from REGION, PARCEL
where Contain(PARCEL.parce1,REGION.region)

Strategy Generation
Strategy generation has three steps. In the first step, query
graphs are created. In a query graph, data transmissions are
decided. In the second step, the query graphs are analyzed for
eliminating the incorrect ones. In the third step, strategies are
generated from the correct graphs.

Step 2: Generating Query Graphs
A query graph is a directed graph G(Q, T) where Q is a set of
nodes representing subqueries: Q = {q], and Trepresents data
transmissions between the subqueries, tf E T denotes the
transmission of relation R from qi to qi. A query graph is actu-
ally a strategy without considering the sites to execute subque-
ries. By allocating subqueries to different sites, a query graph
can be developed into an executable strategy.

In a query graph, the order for executing subqueries is rep-
resented by the direction of data transmissions. If qi should be
executed before qj, the data transmission between them must
be from q, to qp In other words, in G(Q, T), tf E Tindicates that
qi E Q should be executed before qj E Q.

As discussed before, spatial evaluations can be commuted
with each other and commuted with joins and selections, and
spatial manipulations can be commuted with other operations
when only the input maps are concerned. The properties of
commutativity enable us to apply operation ordering to gener-
ate strategies. Of the four types of operations, spatial manipula-
tions need special attention. A spatial manipulation creates
new features and attributes. In a valid strategy, it must be exe-
cuted before the new features and their attributes are processed
by other operations.

To avoid exhaustive search and to prevent invalid place-
ment of spatial manipulation functions, the following rules are
used in an initial step of query graph generation:

(1) A selection should be conducted before a join, spatial evalua-
tion, or spatial manipulation.

(2) A join should be conducted before a spatial manipulation,
because the join condition may reduce the size of the input
to the latter.

(3) A spatial evaluation should be conducted before a spatial
manipulation, because the spatial relationship to be evaluated
may reduce the size of the input to the latter.

(4) When the output of a spatial manipulation is in the input to
a selection, join, spatial evaluation, or another spatial manipu-
lation, the spatial manipulation must be conducted first.

The following is the procedure for query graph generation.
The input is the subqueries decomposed from a user query. The
output is a set of query graphs, denoted as {GI. In the following,
{R], denotes the relations in the from clause of subquery qi:

I* Create nodes * /
Create Q = {q];
I* Add non-directed edges that represent data sharing * /
Create ef: for each R E {R], n {R];
I* Convert the edges into directed edges that represent

transmissions */
For each ef:

If ((qj is a collecting subquery) or
(R is the output of a spatial manipulation function in

qi)) Then Change g i n t o tf,
Else

If ((R appears in a VC term in qi) or
(R appears in a VV term in qi and in a spatial

manipulation function in qj) or
(R appears in a P term in qi and in a spatial

manipulation function in qj)) Then
Change ef into tf,

EndIf
EndIf

EndFor
{GI = G;
For each G E {GI that has an ef: remaining

Remove G from {GI;
Duplicate G such that one copy has t$ and the other

has t;;
Add the two copies into {GI;

EndFor
/ * Remove circles */
For each G E {GI with qi E G such

that there is an R E {RIi that has n > 1 incoming edges
Remove G from {GI;
Duplicate G such that each copy has one incoming

edge for R;
Add the copies of Ginto (GI;

EndFor
For each G E {GI with qi E G such that there is an R E {R],

that has n > 1 outgoing edges
Remove G from GI: . ..
Duplicate G such that each copy has one outgoing edge

for R;

1432 December 1999 PHOTOGRAMMETRIC ENGINEERING 81 REMOTE SENSING

Add the copies of G into {GI;
EndFor

Figure 2 illustrates two query graphs that are generated out
of the subqueries decomposed from the sample query. In the
graphs, relation names are associated with edges to indicate the
relations to be transmitted.

Step 2: Analyzing Graph Correctness Using Petri Nets
Of the query graphs generated in Step 1, some may not be able
to produce correct results, for example, the one in Figure 2b.
Such graphs must be discarded before developing strategies.
The criterion for a correct query graph is that it must satisfy the
two conditions:

Let {Rl be the relations in the from clause of the original query.
Each R s {Rl must be sequentially transmitted to all the nodes
that represent the subqueries that have R in their from clauses.
Each node, except for the one modeling the collecting subquery,
has at least one outgoing data transmission.

It can be observed that the graph in Figure 2a satisfies this crite-
rion but the graph in Figure 2b does not.

Although directed graphs are useful methods for modeling
queries (Silberschatz, 1997), they lack certain mechanisms
required for query analysis. In this research, Petri nets
(Peterson, 1981) were used to model strategies (that have been
expressed as query graphs) for correctness analysis and later for
cost estimation. Petri nets have well-developed methods for
describing and analyzing the flow of information and control in
systems, particularly systems like distributed query strategies
that may exhibit asynchronous and concurrent activities. A
Petri net is a directed graph. It has two sets of nodes: places and
transitions. The nodes are connected by arcs from places to
transitions or from transitions to places. If an arc is directed
from node i to node j, i is said to be an input of j and j to be an
output of i.

In a Petri net, there are tokens that may represent resources,
data, and so on. The execution of a Petri net is controlled by the

(b)

Figure 2. Query graphs generated out of the
subqueries decomposed from the sample
cv-"JrY.

position and movement of tokens in the net. Tokens are initially
assigned to some places. A marking of a Petri net is an assign-
ment o5tokens to some places. A marking p i s represented as a
vector p = (pl, p,, . . ., pn) where pi ((1 5 i 5 n) is the number
of tokens in the ith place and n is the number of places in the
net. Given a Petri net and a m ~ k i n g z,firinga transition sjpro-
duces a new markingzl = S(p ,sj). A transition must be enabled
in order to fire. A transition is enabled when each of its input
places has a token. The transition fires by removing the
enabling tokens from the input places and generating new
tokens. The new tokens are deposited in the output places of
the transition.

As described before, a query graph has nodes representing
subqueries and directed edges representing planned data
transmissions. In modeling a query graph, we use transitions to
model subqueries and data transmissions, places to model input
and output relations of subqueries and transmissions, and
tokens to model data. To simulate the execution of a strategy,
we use firings of transitions to model data processing and trans-
mitting. To reduce analysis costs, we may use a single transi-
tion to model a subquery and the transmission that moves data
from the subquery. A transition has one or more input places
representing the relations in the from clause of the correspond-
ing subquery and one or more output places representing the
relations generated by and transmitted from the subquery. If
there is a tfj in the query graph, the output place of qi labeled
with R is merged with the input place of qj labeled with R.

In a Petri net that models a strategy, one token is initially
created for each base relation and assigned to a place that has no
input transitions. Such an assignment is called an initial mark-
ing. Applying a conjunctive search condition term (VC, W, or
P) or a spatial manipulation function to a relation is modeled by
passing the relation's token to the corresponding transition (to
enable it) and firing the transition. If a transition models a
search condition term, it moves the tokens in its input places
to its output place when it fires. If a transition models a spatial
manipulation, it moves the tokens to and creates a new token
in its output place. The new token models the derived relation.

Figure 3 illustrates the graphical representation of two
Petri nets with initial markings. The nets model the two auerv
graphs in Figure 2. In the gaphical representation, a c i rJe 0
represents a place, a bar I represents a transition, and a bullet
represents a token.

Correctness analysis of query graphs can be converted into
the well-zudied reachability_problem. In Petri net N with
marking p , if a n e ~ m a r k i n g p ' can be produced 2 successive
transition firings, p r is said to be reachable from p. All the
markings of Nthat 5 e reachable from 2 , form the reachability
set, denoted as %(N,p). The reachability problem can be stated
as "Given an Nwith marking z and a marking 21, is z' E %(N, +
p)?". An effective technique for the problem is the reachability
tree. For a reachability problem, the tree root represents the ini-
tial marking, the nodes represent markings reachable from the
initial, the leaves usually represent the "final" markings in
which no more transitions can fire, and the edge directe5from -+
p' to z " represents the firing of a transition that changes p' into +
p". A path from the root to a leaf is a sequence that includes
firings that change the initial marking to a final marking, and
also includes the initial, final, as well as intermediate
markings.

 he criterion for a correct query graph can be translated into
"given an initial marking, each transition must be able to fire
and all the tokens must be able to arrive at the output of the
transition that models the collecting subquery." Take the two
nets in Figure 3 as examples. It can be observed that all the transi-
tions in Figure 3a can fire and all the tokens can arrive the output
of q,. However, the transition in Figure 3b that represents q, may
not fire because an input place of it will never have a token, and
the token for OWNER cannot get to the output of q,.

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING December 1999 1433

(b)

Figure 3. Petri nets modeling the query graphs in Figure 2
(C-COVER, PDRAINAGE, R-REGION, 0-OWNER, U-USE, L-
LAKE, P-PARCEL.)

For each G(Q,T) E {GI
While (There are q's E Q to be allocated)

For each qi E Q to be allocated
If (3 (R]' that do not have incoming edges)

Then
If (The R's E (R)' are stored at the same site)

Then
Allocate qi to that site;

Else
If (There is an R E (R]' that has a size much

larger than the rest) Then
Allocate qi to the site where R is stored;

Else I* The R's E (Rl' have similar sizes */
Remove G from (G);
Duplicate G such that each copy has qi allo-

cated to one of the sites there the R's are
stored;

Add the copies of G into {GI;
EndIf

EndIf
Else /* All the R's E (R)'; have incoming edges */

If (The senders of all the R's E (Rli have been
allocated) Then
Remove G from (GI;
Duplicate G such that each copy has qi allo-

cated to one of the sites there the senders
are allocated;

Add the copies of G into (GI;
EndIf

EndIf
EndFor

EndWhile
EndFor

Subqueries in each group are then ordered to schedule
their execution by the local processor. The subqueries are
ordered based on the rule that a receiver subquery can be exe-
cuted only after the execution of all of its sender subqueries.
Subquery ordering may be considered as an issue of local opti-
mization. Because different orders of a group may affect the
cost of a global strategy, we include it in the procedure of global

In a Petri net that models a query graph, any transition strategy generation.
has no tokens in its output place until it fires. If a transition From the query graph in Figure 2a, four strategies are gen-
can fire, we will be able to find a reachable marking that indi- erated. The following is the data distribution and map sizes
cates that there is a token in the output place. For each net when the strategies are generated: S1 stores COVER (8.5M) and
we search the reachability tree for a path 9, such that for each LAKE (1.7M); S2 stores PARCEL (3.2M), OWNER (400K), and
transitJon si in the net, there exists a marking z' on 8 and USE (6.3M); and S3 stores DRAINAGE (4.4M). The query is
pi E p' is not zero where pi denotes the number of tokens in originated at S4. Figure 4 shows a strategy generated with the
the output place of si. If such a path can be found, the query subqueries in each group ordered. We use dash lines to indicate
graph modeled by the net is correct. A reachability tree may subquery allocation and Si (i = 1,2, . . . ,4) to represent differ-
have more than one path. For a correct query graph, the paths ent sites. The subquery assignments in the other three strate-
lead to leaves representing the same marking. That is, the paths gies are
are equivalent in effect. The difference between two equivalent
paths is that concurrent transitions have different orders in Strategy 2: S1: ql, q2, q7; S2: q4, q5, q6, q8, qg, qlo; S3: q3; S4: qo.
them. The creation of reachability trees will not be discussed Strategy 3: S1: ql, qz, q7, qlo; S2: q4, q5, 989 q8, q9; S3: q3; S4: qm
here. It can be found in the literature on Petri nets, for example, Strategy 4: S1: q2, q7; S2: q4, q5, q61q81 q9; s3: 41, q3, QIO; s4: QO.

Peterson (1981).
For the sample query, two correct query graphs are gener- Cost Wlmation

ated. One is illustrated in Figure 2a. The other one is ((qo, q,,
OWNER tPARCEL tPARa, dARCEL, The Cost Model q21 q3, 94, 95, 48) q71 489 49, 410)~ (t5A 4,8 , 8,6 ,lo

tLAKE, 7,6 tCoVER, 2.1 tUSE, 9,a tPPpJ"AGE, t ~ ~ r O N , tE$IoN)). To select the best strategy from the alternatives, a cost model is
needed. Although computational complexity of individual

Step 3: Generating Alternative Strategies spatial operations has been well studied (Preparata and
Strategies are generated from the correct query graphs. A strat- Shamos, 1988), so far much less work has been reported on cost
egy is represented as a query graph G(Q, T) with the q's in Q modeling for GIs queries. In this research, a cost model has been
grouped. Each group is the subqueries allocated to the same developed to estimate response time. The time is estimated in
site. The groups can be executed in parallel. The following is terms of computing time of subqueries (including disk 110 time)
the procedure used for generating alternative strategies from a and data transmission time. The model is based on the Petri
set of query graphs (GI. nets generated in the correctness analysis.

1434 December 1999 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

Sl: q7.q2
a: SS. 44, q6. q9, q8
S3: q3, q1. q10
S4: qo

Figure 4. A strategy generated from the query
graph in Figure 2a.

To estimate response time for a strategy (modeled as a Petri
net), we first identify the starting transitions and ending transi-
tion. A starting transition does not have any preceding transi-
tion. An ending transition is the one modeling the collecting
subquery.

In the cost model, each transition s has firing time 9 and
ending time e, each place p has enabling time 7: representing
the time the data (represented by a token) are available, and
each token kis associated with a size vkrepresenting the size of
the corresponding data.

The response time of a strategy is estimated as

Transmitting time can be estimated in terms of the network
speed and the size of the data to be transmitted (Ceri and Pela-
gatti, 1984).

I" if the transmission is between two
subqueries at the same site

7f = dj + 7 i ; j . yk if the transmission is between
sites i and j

response time =

where s, is the ending transition.
As mentioned before, a transition may model a subquery

and a transmission. The ending time of transition s is

where 9 is the firing time, r', is the computing time of the
subquery, and 7: is the time required for the transmission.

The firing time of transition s is estimated as

I
~f = max (T:, max (#I)

j=1

where st is the subquery that is executed immediately before s
at the same site, pj is an input place of s, and I is the number of
input places of s.

The enabling time of place p is estimated as

where T# is the time required to initiating a transmission
between sites i and j, +ij is the unitary transmission time
between the two sites, ank y, is the size of the data to be
transmitted.

For a token that is initially assigned to a place, its size can
be directly taken from database statistics. For a token that rep-
resents an intermediate result, its size is estimated based on
database statistics and operation selectivity. The estimation is
discussed in the next section.

0 if p is initially asigned a token
72 if p is the output of transition sf. (15)

Database Statistics and Size Estimation for Intermediate
Results
We store statistics information about each digital map and each
non-spatial relation in its metadata set. The statistics are calcu-
lated when the map or relation is loaded into the database or
generated by an operation. The metadata set is attached with the
map or relation when it is transmitted.

The statistics about a digital map are extracted from its spa-
tial data structure and relation. The statistics from the spatial
data structure include

the feature cardinality, which is the number of features on
the map;
the average data size of the spatial features on the map;
the density of the features, which is calculated as the number
of features per unit area; and
other information, including the average area of polygons, the
average length of lines, the average number of polygon bound-
ary lines, the average number of lines that a line may connect,
the average number of polygons that a polygon may be adjacent
to, and so on.

The statistics extracted from the relation include the minimum
and maximum values and the number of distinct values for each
attribute, the number of tuples, and the tuple size. A histogram
is stored for each attribute that may be involved in [relational)
selections.

The result of a spatial evaluation is a composite map and a
relation. The size of the result is the sum of their sizes. The com-
posite map contains feature pairs that satisfy the spatial rela-
tionship evaluated. In the following, we use E to represent the
spatial relationship, A,,, and A z , to denote the two operands,
and A;,,, and A;,,, to denote the features in the result (A;, LA,,,
and A;,,, A;,o). In most situations, features denoted by A;, or
A;, are input to other operations.

The size of one type of features in the result, for example,
A;,,,, can be estimated as

The computingtime of a subquery is estimated by using the where V,,,(A;,~) is the average size of A;,~, which is equal to
cost function(s) of the subquery's operationb) and the sizes of vev (A,,,,) and can be found in the database statistics, ~ard(A,,~)
the operands. A subquery may have one or more disjunctive is %e cardinality of A,., and SZ,, is the selectivity function of
terms (operations). We use the sum to approximate the com- the spatial evaluation for Ewithrespect to i.e.,
puting time: i.e.,

S%,,o (Also, A2,,,) = card(A;,o)l/card(Al,o) (19)

where card(A;,,) is the cardinality of A;,,,. card(A;,,,) can be esti-
wheref;. is the cost function of the ith operation. The cost func- mated from dens(AlVo) and ~ard(A,,~) where dens(A,,,,) is the
tions will be discussed later. density of that can be found in the database statistics. For

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING December 1999 1435

example, ~ard(A;,~) in the result of applying Distan~e(A,,~, AzSo,
p) can be estimated as

where buff (Azpo) is the area of some kind of buffers of The
buffers are defined based on the nature of and p. For exam-
ple, when A,, represents points andp is ''I 20 km," the buffers
are circles of 20 krn radii.

The size of the relation can be estimated as the product of
its tuple size and the cardinality estimated using Equation 20.
The tuple size can be calculated from the tuple sizes of A,,, and
A2,o.

When the features created by a spatial manipulation are
input to another operation, the size of the features should be
estimated when estimating the cost of the latter. For results of
spatial manipulations, the size estimation is more straightfor-
ward. The size of the composite map of an overlay operation
can be estimated as the sum of the two input maps. The size of
the composite map of a buffering operation can be estimated as
the product of the cardinality of the input map and the average
buffer size. The average data size of the buffers can be estimated
from the average size of the input features.

Cost Functions for the Spatial Operations
The cost function for a spatial operation consists of the cost for
processing spatial features and the cost for processing non-spa-
tial attribute data. We estimate the two costs in terms of time.
The cost for processing spatial features is a sum of two
components

Cost, + costi,

where Cost, is a computing cost, and C o s t is a disk 110 cost.
Cost, can be estimated in terms of the time required for

addition, multiplication, and logical comparison operations.
For each of the three types of operations, the time can be esti-
mated as the product of the number of the operations and the
time required to conduct an operation. Therefore, for an opera-
tion on a collection of spatial features, the cost is expressed as

where radd, ~ ~ ~ 1 , and rcomp are the times required for executing
an addition, multiplication, and logical comparison operation,
respectively, and a, ZB, and yare the numbers of the three oper-
ations required for processing the spatial data. radd, rmul, and
rcOmp are machine-dependent, while a, P, and yare algorithm-
dependent and are functions of cardinalities and other statis-
tics about the features. In the following, we take cu in the cost
function for s~at ia l evaluation "Within" as an example to illus-
trate how we tormulated expressions for the numbeis.

The operation is expressed as Within(AlSo, in a query.
A,, represents polygons. When A , , represents points, this
operation evaluates the "point-within-polygon" relationship.
For a given set of points, this function can be used to find all
the polygons within which the points are located. To determine
if a point is within a polygon, we use the "half-line" method
that is based on the Jordan Curve Theorem (Preparata and
Shamos, 1988). A half-line starts from this point and extends
to beyond the extent (the minimum-bounding rectangle) of the
polygon. The half-line and boundary lines of the polygon may
intersect. If the number of intersections is odd, the point is
within the polygon. To determine if the half-line intersects a
boundary line, we check each segment (straight line) of the
boundary line. We use algorithm Pavlidis' (1982) for the inter-
section test.

The number of addition operations for checking a bound-
ary segment can be determined from the intersection algo-
rithm. We use a. to denote it. The number for checking a
boundary line can be estimated as

where I, is the average length of the boundary lines. The num-
ber for applying the half-line method to a point-polygon pair
can be estimated as

where navg is the average number of boundary lines per polygon.
The number of addition operations for a point can be esti-

mated as

where nconbin is the average number of polygons whose mini-
mum-bounding rectangles contain the same point. The total
number of addition operations for all the points, i.e., the a in
Equation 22, can be estimated as

where ~ard(A,,~) is the cardinality of the points.
We can estimate pand yin the same way. For a spatial oper-

ation and a set of spatial data, once a, P, and yhave been esti-
mated, the total time required for conducting the operation can
be estimated by using Equation 22.

C o s t is the cost for fetching some spatial features from
disk files into the main memory. In a GIS, spatial features of a
map are stored in one or more disk files based on a clustering
strategy. A spatial index may be associated with the files to
facilitate the search for the features that satisfy certain spatial
conditions. Usually, before a spatial operation is conducted,
only a subset of the features are fetched fiomthe files. For exam-
ple, before the "Within" operation is conducted on a set of
points, only the polygons whose minimum-bounding rectan-
gles contain the points are retrieved from the disk file(s). For a
spatial operation and a map, the time required for disk data
retrieval, i.e., Costio, is a function of the clustering strategy, the
page size of the files, the indexing method, the retrieval type
(containment or intersection), and characteristics of the map
involved (Wang and Sun, 1997). The characteristics include the
data size, the feature density, and so on.

The cost for processing the non-spatial attribute data is
estimated in terms of the time for disk 110. For each type of the
features that are included in the output, for example Al,o, we
estimate the cost as

where qo is the 110 time for one page, VJA,,,) is the size of the
relation for and upage is the page size.

Tests
The optimization algorithm has been implemented in an exper-
imental system, which is built on a group of workstations con-
nected with a local area network. The machines include IBM
RISC16000 workstations and DEC Alpha workstations. All the
machines run uNIX operating systems. The system is written in
C+ + based on the Common Object Request Broker Architec-
ture (CORBA) (Siegel, 1996). The system communication is
implemented using the Remote Procedure Call (RPC) system of
the TCPIP (Transmission Control ProtocolfInternet Protocol).

1436 December 1999 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

The algorithm was tested when the experimental system
had 34 digital maps distributed at eight sites. The maps had
different sizes and statistics. The tests were conducted when
the machines had no other application workload and there was
little other traffic on the network. Twenty-five queries were
used for the test. For each query, the best strategy or strategies
by the algorithm were executed. For comparison, the best strat-
egy and a couple of "bad" strategies generated manually were
also executed. For each strategy, the response time was
measured.

The algorithm generated good (not necessarily the best)
strategies for all the queries except two. For about 65 percent of
the queries, the algorithm generated the same best strategies as
did manual optimization.

Table 1 lists some test results obtained by executing four
strategies for the sample query, where "s" denotes seconds and
"ms" denotes milliseconds. The second and third strategies
were generated by the algorithm. The first and fourth were
manually generated. The five maps cover an area in southwest-
ern Ontario. The map scales are 1:50,000. The data distribution
and map sizes can be found in the section on Strategy Genera-
tion. The originating site is S4. The four nodes were run on the
same type of IBM RISC/6000 workstations. Each has a proces-
sor rated at 32.2 MIPS and 11.7 MFLOPS. The response time was
measured when the network had speeds between about 600K
per second and 1M per second. To reduce the effects of the vari-
ations in network speed, each of the four strategies was exe-
cuted several times. The response times listed in Table 1 are
an average.

The first strategy had a bad distribution of subqueries. All
the subqueries (operations) were executed sequentially on the
originating node (S4). All the data needed (five maps and a table
(OWNER)) were transmitted to S4 before being processed. It was
determined that more than half of the total time was spent on
transmitting the data. The second and third strategies used par-
allel processing and had fewer data transmissions. Both strate-
gies had four inter-site data transmissions. The difference is
that the second strategy involved transmitting a subset of
COVER while the third involved transmitting a subset of
DRAINAGE. The third strategy had a slightly shorter response
time, possibly because the subset of COVER was bigger than the
subset of DRAINAGE. This was the best strategy selected by the
algorithm. The response time for the second and third strate-
gies included the time for optimization, which is about 1.13
seconds. The fourth strategy was a bad strategy because the
overlay operation (q,) was conducted before the selection oper-
ations (q, and q,). The long response time was due to the long
processing time for overlaying the entire maps of COVER and
DRAINAGE.

Concluding Remarks
We have discussed the query optimization techniques devel-
oped in building an experimental system. The core part is the
definitions of spatial operations, the strategy modeling method
based on Petri nets, the model and functions for cost estima-
tion, and the optimization algorithm.

Execution sequences Response time

PHOTOGRAMMETRIC ENGINEERING 81 REMOTE SENSING

The definitions of spatial operations may help bridge the
gap between distributed GIss and the query optimization tech-
niques for distributed DBs. Spatial and non-spatial operations
are quite different. The definitions can unify them so that spa-
tial queries can be optimized in a way similar to that of non-
spatial queries.

The major advantage of using Petri nets for strategy model-
ing is the facilitation of strategy generation and cost estima-
tion. By moving correctness analysis out of query graph
generation, the procedure for graph generation has been
largely simplified because correctness analysis is a very com-
plicated step to develop. Cost estimation based on Petri nets is
straightforward and easy to understand. Another advantage is
processing efficiency: the reachability trees of Petri nets are
finite (Peterson, 1981) and have relatively small depths for
most queries. In addition, using the same nets for both correct-
ness analysis and cost estimation may reduce optimization
costs.

Acknowledgment
This research was supported by research grants from the Natu-
ral Sciences and Engineering Research Council (NSERC) of
Canada.

References
Abel, D.J., B.C. Ooi, K. Tan, R. Power, and J.X. Yu, 1995. Spatial Join

Strategies in Distributed Spatial DBMS, Fourth International Sym-
posium, Advances in Spatial Databases, Portland, Maine:
Springer-Verlag, New York, N.Y., pp. 348-367.

Apers, P.M.G., A.R. Hevner, and S.B. Yao, 1983. Optimization Algo-
rithms for Distributed Queries, IEEE Transactions of Software
Engineering, 9(1):57-68.

Aronoff, S., 1989. Geographic Information Systems: A Management
Perspective, WDL Publications, Ottawa, 294 p.

Bernath, T., 1992. Distributed GIs Visualization System, Proceedings
of GIS/LIS'92, San Jose, California, 1:51-57.

Brinkhoff, T., H. Horn, H. Kriegel, and R. Schneider, 1993. A Storage
and Access Architecture for Efficient Query Processing in Spatial
Database Systems, Third International Symposium, Advances in
Spatial Databases, Singapore, Springer-Verlag, New York, N.Y.,
1~357-376.

British Columbia Survey and Resource Mapping Branch, 1994. Spatial
Archive and Interchange Format: Formal Definition Release 3.1,
Province of British Columbia.

Buehler, K., and L. McKee, 1998. The OpenGIS Guide, Third Edition,
Open GIs Consortium, Inc., Wayland, Massachusetts, 103 p.

Ceri, S., and G. Pelagatti, 1984. Distributed Databases Principles b
Systems, McGraw Hill Book Company, New York, N.Y., 393 p.

DHPC Project Team, 1996. Distributed Geographic Information Sys-
tems Project Concepts Discussion Document, http://www.dhpc.
adelaide:ed~.au/~rbjects/d~is.

Edmondson, P.H., 1992. Managing the Distributed GIs Infrastructure-
An Organizational Perspective, Proceedings of GIS/LIS'92, San
Jose, California, 1:196-207.

Egenhofer, M.J., 1992. Why Not SQL!, International Journal of Geo-
graphical Information Systems, 6(2):71-85.

Epstein, R., M. Stonebraker, and E. Wong, 1978. Distributed Query
Processing in a Relational Database System, Proceedings of the
ACM-SIGMOD International Conference on Managemen t of Data,
Austin, Texas, pp. 169-180.

Franklin, W.R., C. Narayanaswami, M. Kanhanhalli, D. Sun, M. Zhou,
and P.Y.E Wu, 1989. Uniform Grids: A Technique for Intersection
Detection on Serial and Parallel Machines, Proceedings, Auto-
Carto 9, American Society for Photogrammetry and Remote Sens-
ing, pp. 100-109.

Gardels, K., 1997. A Comprehensive Data Mode1 for Distributed, Het-
erogeneous Geographic Information, http://regis.berkeley.edu/
gardels.

December I999 1437

Goodman, J.N., 1994. Alberta Land Related Information System, a Fed-
erated Database System Case Study, URISA 1994 Annual Confer-
ence Proceedings, Washington, D.C.: Urban and Regional
Information Systems Association, 1:421-431.

Igras, E., 1994. A Framework for Query Processing in a Federated
Databased System: A Case Study, URISA 1994 Annual Conference
Proceedings, Washington D.C.: Urban and Regional Information
Systems Association, 1:167-178.

ISOIIEC, 1999a. Database Language SQL-Part 2, SQL Foundation
(Approval Version), The International Organization for Standard-
ization, New York, N.Y., 810 p.

-, 1999b. Information Technology--Database Languages-SQL
Multimedia and Applications Packages-Part 3: Spatial
(Approval Version), The International Organization for Standard-
ization, New York, N.Y., 342 p.

Laurini, R., 1993. Sharing Geographic Information in Distributed Data-
bases, Proceedings of the 16th Urban Data Management Sympo-
sium, Vienna, Austria, pp. 26-41.

Laurini, R., and D. Thompson, 1992. Fundamentals of Spatial Informa-
tion Systems, Academic Press Ltd., San Diego, 680 p.

Leslie, H., R. Jain, D. Birdsall, and H. Yaghmai, 1995. Efficient Search
of Multidimensional B-Trees, Proceedings of the 21 th VLDB Con-
ference, Zurich, Switzerland, pp. 710-719.

Lohman, G.M., C. Mohan, L. Haas, D.J. Daniels, B. Lindsay, P. Selinger,
and P Wilms, 1985. Query Processing in R*, Query Processing in
Database systems, (W. Kim, D. Reiner, and D. Batory, editors),
Springer-Verlag, New York, pp. 31-47.

McGregor, D., 1988. Geographic Information System Trends, Proceed-
ings of GIS/LIS'88, San Antonio, Texas, 2915-921.

Meredith, P.H., 1995. Distributed GIs: If Its Time Is Now, Why Is it
Resisted?, Sharing Geographic Information, (H.J. Onsrud and G.
Rushton, editors), Center for Urban Policy Research, New Bruns-
wick, N.J., pp. 7-21.

Nabil, R.A., and A. Gangopadhyay, 1997. Database Issues in Geo-
graphic Information Systems, Kluwer Academic Publishers, Bos-
ton, 136 p.

NCGIA (National Center for Geographic Information and Analysis),
1989. The Research Plan of the National Center for Geographic
Information and Analysis, International Journal of Geographical
Information Systems, 3(2):117-136.

Norwegian Mapping Authority, 1997. Project Summary, Norwegian
Mapping Authority, http:lhmvw.statkart.noId~

Ooi, B.C., 1990. Efficient Query Processing in Geographic Information
Systems, Springer-Verlag, Berlin, 208 p.

Ozsu, M.T., and P. Valduriez, 1991. Principles of Distributed Database
Systems, Prentice Hall, Englewood Cliffs, New Jersey, 562 p.

Pavlidis, T., 1982. Algorithms for Graphics and Image Processing,
Rockville, Maryland, Computer Science Press, 416 p.

Peterson, J.L., 1981. Petri Net Theory and the Modeling of Systems,
Prentice Hall, Englewood Cliffs, New Jersey, 290 p.

Pinto, J.K., and H.J. Onsrud, 1995. Sharing Geographic Information
Across Organizational Boundaries: A Research Framework, Shar-
ing Geogmphic Information, (H.J. Onsrud and G. Rushton, editors),
Center for Urban Policy Research, New Brunswick, N.J., pp.
44-64.

Plewe, B., 1997. GIs Online: Information Retrieval, Mapping, and the
Internet, On Word Press, Santa Fe, New Mexico, 311 p.

Preparata, F.P., and M.I. Sharnos, 1988. Computational Geometry an
Introduction, Springer-Verlag Inc., New York, 398 p.

Siegel, J., 1996. CORBA Fundamentals and Programming, John Wiley &
Sons, Inc., New York, 693 p.

Silberschatz, A., H.F. Korth, and S. Sudarshan, 1997. Database System
Concepts, Third Edition, WCBIMcGraw-Hill, Boston, Massachu-
setts, 821 p.

Smith, T.R., D. Andresen, L. Carver, R. Dolin, C. Fischer, J. Frew, M.
Goodchild, 0. Ibarra, R.B. Kemp, R. Kothuri, M. Larsgaard, B.S.
Manjunath, D. Nebert, J. Simpson, A. Wells, T. Yang, and Q. Zheng,
1996. The Alexandria Digital Library: Overview and WWW Proto-
type, IEEE Computer, 29(5):54-60.

Tomlin, C.D., 1990. Geographic Information Systems and Cartographic
Modeling, Prentice Hall, Englewood Cliffs, N.J., 249 p.

Wang, E, and Y. Sun, 1997. Spatial Object Clustering for an Object-
Relational GIs, Proceedings of GIS/LIS'97,28-30 October, Cincin-
nati, Ohio.

White, D., 1978. A Design for Polygon Overlay, Harvard Papers on
Geographic Information Systems, (G. Dutton, editor), Vol. 6.

Yu, C.T., and C.C. Chang, 1984. Distributed Query Processing, Comput-
ing Surveys, 16(4):399-433.

(Received 02 January 1998; revised and accepted 03 November 1998;
revised 15 January 1999)

1438 December 1999 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

