
Query Optimization for a 
Distributed Geographic Information System 

Abstract 
Distributed geographic information systems (GISS) have advan- 
tages in data sharing, reliability, efficiency, and system growth. 
Query optimization substantially affects the performance of a 
distributed GIS. In developing a system, query optimization is 
one of the technical issues that must first be addressed. A 
distributed GIs is different from a non-spatial distributed 
database and requires special techniques for query optimi- 
zation. 

In this paper, a set of query optimization techniques are 
  resented that were develo~ed in building a distributed GIs. 
'TWO new definitions of spa'tial operations"are introduced that 
enable us to apply the well-developed operation-ordering 
approach for &ategy generation. A petrinet-based strat&- 
modeling method is described that is aimed at facilitating " 
strategy generation and cost estimation. A que$ optimiza2;'on 
algorithm is presented. Cost functions and selectivityfunctions 
for spatial operations are described as well. 

Distributed Geographic information Systems 
In recent years, distributed GIss have attracted increasing inter- 
est. A distributed GIS is a collection of sites connected via a data 
communication network. Each site is an autonomous GIs that 
maintains data and processing functions. A distributed GIS 
provides transparent access to data stored at any of the sites. It 
presents a single database image and hides data distribution 
and connection paths. To the user, all the data and functions 
can be accessed as if they are provided at the local site. 

Compared with isolated/centralized GIss, distributed GIss 
have many advantages. The most obvious advantage is the sup- 
port for data sharing. In many situations, particularly with large 
data processing projects, data sharing dramatically improves 
productivity and reduces costs. Additional advantages include 
improved efficiency, higher reliability, and easier system 
growth. A distributed GIs can reduce response time. By distrib- 
uting data properly, the time required for data transmission is 
minimized. Short response time is also achieved by distribut- 
ing costly operations to multiple sites for parallel processing. 
Higher reliability is achieved by duplicating crucial data and 
functions at multiple sites. In a well-planned system, new 
computers are easily "plugged in" to incorporate more power. 
In a word, integrated with data communication networks, GISS 
may become more accessible, available, and powerful. 

The advantages and importance of distributed GIss have 
been realized by GIs researchers and producers (McGregor, 
1988; NCGIA, 1989; Meredith, 1995). Some organizational and 
institutional issues in developing distributed GISS, including 
the incentives and the impediments, have been addressed by 
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Pinto and Onsrud (1995). Research has been conducted for 
developing distributed GISS, for example, by Edmondson 
(1992), Bernath (1992), Laurini (1993), and Goodman (1994). 
Recent work includes the DGIS project in Australia (DHPC Proj- 
ect Team, 1996), the DISGIS project in Norway (Norwegian Map- 
ping Authority, 1997), and the geodata modeling technique for 
distributed GIss at Berkeley (Gardels, 1997). To facilitate geo- 
graphic data sharing and interoperability, international and 
national standards have been developed, including the Open 
Geodata Interoperability Specification (OGIS) (Buehler and 
McKee, 1996), and the Spatial Archive and Interchange Format 
(SAIF) (British Columbia Survey and Resource Mapping 
Branch, 1994). Since 1995, web server-based systems have 
been developed for geographic data sharing, for example, the 
Alexandria Digital Library (ADL) (Smith et al., 1996) and many 
commercial and non-commercial systems (Plewe, 1997). Most 
of these types of systems support "map-based" queries where a 
query is used to retrieve geographic data (usually the whole or 
part of a map) stored at a single remote site. However, progress 
is slow in building systems that support queries that request 
map features, evaluate spatial relationships, and involve maps 
stored at multiple sites. The slow progress may be due, partly, 
to the special technical problems that must be solved in devel- 
oping distributed GISs, such as query optimization. 

Query Optimization 
Query optimization is the generation of efficient execution 
strategies for queries. Modern information systems, including 
advanced GISS, use non-procedural languages to express que- 
ries. For a non-procedural query, the system must generate a 
procedure of operations to execute it. Such a procedure is 
called a strategy. In a distributed system, the strategy deter- 
mines the sites and order for executing operations, as well as 
the procedure for transmitting the requested data. 

Several strategies may exist for a query, for example, a 
query requesting data about the regions that have a land cover 
of "bare soil" and a slope less than five degrees. If the land- 
cover map and the slope map are stored at two different sites 
and the query is.originated at a third site, we may use at least 
the following two strategies to obtain the result. The first strat- 
egy is to transmit the two maps to the originating site, overlay 
them and select the result there. The second strategy is to select 
the regions with the specified cover type or slope at the sites 
where the maps are stored, transmit the result of one site to the 
other, overlay the intermediate results and transmit the final 
result to the originating site. In most situations, the second 
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strategy is more efficient because it involves transmitting and 
processing less data. 

The performance of two strategies may differ by several 
orders of magnitude, and the use of different strategies sub- 
stantially affects system performance. In developing a distrib- 
uted GIS for practical use, query optimization is among the first 
technical issues to be addressed. 

To date, research on distributed GIs query optimization is 
limited. The most recently published work includes query 
optimization for the Alberta Land Related Information System 
(Igras, 1994) and the spatial join strategies for distributed GIss 
(Abel et al., 1995). However, extensive research has been con- 
ducted on query optimization for ordinary (non-spatial) dis- 
tributed databases, and a rich set of techniques have been 
developed (Yu and Chang, 1984; Ozsu and Valduriez, 1991). 
Previous research on query optimization for isolatedlcentral- 
ized GISS has mainly focused on spatial indexing (Ooi, 1990; 
Laurini and Thompson, 1992; Brinkhoff et al., 1993; Leslie et 
al., 1995; Nabil and Gangopadhyay, 1997). Many techniques 
from these two related fields (especially those for ordinary dis- 
tributed databases) can be used for distributed GISs. 

This paper relates a set of query optimization techniques 
for distributed GISS. First, the key issues in query optimization 
for a distributed G I ~  are identified. Two new definitions of spa- 
tial operations are introduced that enable us to apply the 
existing optimization techniques to a distributed GIS. Second, 
an optimization algorithm is presented, which includes a strat- 
egy generation procedure, a correctness analysis method, and a 
cost model. Cost and selectivity functions of spatial operations 
are described as well. 

A Review and Identification of the Key Issues 
Query Optimization Techniques for Distributed DBs 
Most of the existing query optimization algorithms were devel- 
oped for relational databases. Representative algorithms 
include those for Distributed INGRESS (Epstein et al., 1978), R* 
(Lohman et al., 1985), and the algorithms by Apers et al. (1983). 
The algorithms share the same major steps: query decomposi- 
tion that decomposes a query into subqueries, each of which 
can be executed at a site; data localization that determines the 
data involved in each subquery; global optimization that gen- 
erates a strategy for executing the subqueries; and local optimi- 
zation in which individual subqueries are optimized. Of the 
four steps, the first two are relatively straightforward, and local 
optimization can be performed by using the techniques for iso- 
latedlcentralized systems. Global optimization is the core step 
and is the most complicated. It consists of the tasks of strategy 
generation and cost estimation. 

The above algorithms were developed to optimize join que- 
ries (i.e., queries in which the main operations are sequences 
of joins). The major approaches for strategy generation are oper- 
ation ordering and semijoin. For a query, operation ordering 
involves generating a strategy from permutations of its opera- 
tions. This approach is based on the facts that joins are commu- 
tative, and that joins coupled with some other operations are 
commutative. Semijoin reduces costs by transmitting subsets of 
the relations to be joined instead of the whole relations. Figure 
1 illustrates the five steps in a semijoin procedure, in which the 
symbol II denotes a relational projection operation. When 
using semijoin to join relations R1 and R2 that are stored at sites 
S, and S,, respectively, projection is conducted on R, to select 
the attribute(s) to be compared, the projected attribute values 
(a vertical subset of R, that is denoted as R,) are transmitted to 
S2 and joined with R2, and then the join result (a horizontal 
subset of R, that is denoted as R4) is transmitted to S, to join 
with R,. The final result is R5. 

To select the best from alternative strategies, a cost model 
is needed to estimate total costs or response time. A cost model 

may have the components of CPU costs, disk110 costs, and trans- 
mission costs. To simplify cost estimation, most distributed 
non-spatial database systems (distributed DBS) designed for 
wide area networks ignore the local processing costs (Ozsu and 
Valduriez, 1991). 
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ldentiflcatlon of the Key Issues 
A comparison between a distributed DB and a distributed GIS 
may help us identify and address the key issues in query opti- 
mization for a distributed GIS. It is assumed that the GIS to be 
compared stores vector data and that both systems are based on 
a relational model. The relational model is currently the most 
widely used database model in operational GI%. It is also a 
basis of the "object-relational" model proposed in the forth- 
coming standards of SQL:1999 (ISOIIEC, 1999a) and SQLIMM 
(ISOIIEC, 1999b). A digital map in a vector GIS is created as a 
collection of spatial features. The primary spatial features are 
points, lines, and polygons (Buehler and McKee, 1996). In a 
relational (or object-relational) GIS, a digital map is logically 
represented by the graphical display of its spatial features and a 
relation (table). Each tuple in the relation depicts a spatial fea- 
ture (Aronoff, 1989; Laurini and Thompson, 1992). 

A distributed DB and a distributed GIS have the common 
properties that data are distributed, queries can be decom- 
posed into primary operations, and primary operations can be 
executed at different sites. The common properties suggest 
that query optimization in a distributed GIS can be performed in 
the similar steps (i.e., query decomposition, data localization, 
global optimization and local optimization). 

However, a distributed DB and a distributed GIS are differ- 
ent in many aspects. The major differences that may affect 
query optimization, are with database operations: 

- -> 
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In a distributed DB, primary operations are relational and set 
operations. Relational and set operations are inadequate for GIS 
queries (Egenhofer, 1992). In a distributed GIS, a number of 
spatial operations are needed for overlay, buffering, and evalu- 
ating spatial relationships like adjacency, connection, and over- 
lap, in addition to the above operations. 
The idea of semijoin cannot always reduce costs when applied 
with spatial operations. When a spatial operation is conducted 
on two maps, the "vertical subset" of a map is its spatial data. 
Spatial data of a digital map usually account for a major propor- 
tion of the data volume. 
The major operations in a distributed DB (i.e., join, selection, 
and projection) are commutative. Spatial operations do not 
show explicitly the properties of commutativity. 
Operations in a distributed DB do not create new attributes. 
They construct new relations by combining and re-arranging 
attributes of input relations. However, some spatial operations 
create new spatial features and attributes. For example, a buff- 
ering operation generates buffer zones. The zones are new spa- 
tial features and their properties have to be described by 
new attributes. 
Complexities of spatial operations vary widely. Many spatial 
operations have very costly procedures. For example, in over- 
laying two polygon maps, intersections of polygon boundary 

Figure 1. The five steps in semijoin. 
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lines must be detected. Computing time for the intersection 
detection may be proportional to N, . N, . L, . L, where Nl and 
N2 are the numbers of polygon boundary lines on the two maps, 
and L, and L2 are the average line lengths. Algorithms have 
been developed to improve efficiency, for example, by White 
(1978) and Franklin et al. (1989). However, intersection detec- 
tion is still among the most time-consuming operations. 
A query optimizer needs to estimate the size of the result com- 
puted by an operation on the given input. The output of one 
operation can be the input to another operation. The cost of the 
latter depends on the size of its input. The size of an operation's 
output can be estimated using the operation's selectivity factor, 
which is the ratio of the size of its output to the size of its 
input. In a GIS, each spatial operation has its selectivity factor. 

The differences suggest that in distributed GIss global opti- 
mization and local optimization, which decide how opera- 
tions are performed on data, have to be conducted in special 
ways. While some techniques for isolatedlcentralized G I ~ S  can 
be applied for local optimization, special techniques are 
required for global optimization. The special techniques are 
the major task in developing query optimization techniques for 
distributed GISS. 

Before presenting the algorithm and new techniques, we 
first identify the key issues in the development of them: 

General Deflnltions of Spatial Operatlons 
Before introducing the definitions, it is necessary to describe 
the data structure of digital maps on which the spatial opera- 
tions are conducted. The structure is similar to those applied in 
many existing systems: A digital map essentially consists of 
two components-a spatial data structure and a relation. The 
two components are stored and transmitted together. 

In a "pure" relational GIs, the spatial data structure is usu- 
ally a separate structure, for example, in the topological model 
(Aronoff, 1989). In an object-relational GIs, the spatial data 
structure can be constructed out of the spatial abstract data 
types defined in SQL/MM (ISOIIEC, 1999b). In either of the two 
types of structures, spatial data of a map can be viewed as a col- 
lection of spatial features, denoted as 

where f is the generic representation of spatial features, and the 
bracket pair "{ 1" denotes a set (or collection). Each spatial fea- 
ture has a feature identifier. 

The relation contains non-spatial attribute data, associates 
the spatial features with their attribute data, and specifies 
some integrity constraints. The scheme of a map relation can be 

Commutativity is the basis of operation ordering. To use opera- (Ao, AI, . . ., An) (2) 
tion ordering, we have to explore commutativity of the spatial 
as well as non-spatial operations in GIS queries. where A,, is the feature identifier, and A ,, . . a ,  An are other attri- 
~n developing a model for cost estimation, the following should butes (n 2 11, which may also be feature identifiers. In this 
be taken into consideration: research, we use feature identifiers in this group to represent 

Local processing costs cannot be ignored. The costs of some spatial relationships. This method will be discussed in the 
spatial operations are comparable to the transmission costs next section. A relation is a collection of tuples 
on wide area networks. 
Because complexities of spatial operations vary greatly, the 
cost of each operation should be estimated individuallv. This I t1 
requires a COG function for each spatial operation. 

- 
To estimate sizes for intermediate results, a selectivity func- 
tion should be defined for each spatial operation. 
The cost model should be able to deal with parallel processing. 

Exploring Commutativity of Spatial Operations 

Operations in GIS Queries 
Operations in GIs queries can be classified into non-spatial and 
spatial operations. A query may have operations from both 
classes. A non-spatial operation is conducted on non-spatial 
data only, (i.e., attribute data of digital maps or non-spatial 
relations). In a relational GIS, these operations include join (B 
or natural join), selection, and projection. Operations in this 
class are basically the same as those in non-spatial databases. 

Spatial operations are performed on spatial features and 
their attribute data, and spatial operations produce new maps 
(Tomlin, 1990). In this research, we further classify spatial 
operations into two groups. The first group are operatiins that 
evaluate spatial relationships without creating new features on 
the outpui maps, these are called spatial evaliations. These 
include operations for evaluating adjacency, intersection, con- 
nection, overlap, and so on. The second group are operations 
that manipulate existing spatial features to create new features 
on the output maps; these are called spatial manipulations. 
These include polygon overlay, buffering, viewshed mapping, 
and so on. 

In brief, we mainly deal with join, selection, spatial evalua- 
tions, and spatial manipulations in GIS queries. The key to use 
operation orderingis to explore their commutativity In the fol- 
lowing, we introduce two new definitions of spatial operations. 
Based on them, many spatial operations can be commuted 
with each other and commuted with the non-spatial opera- 
tions. 

where t is the generic representation of relational tuples 
defined by Expression 2. The spatial operations are defined in 
terms of input and output maps. 

Spatial Evaluations 
Spatial evaluations are binary in terms of the number of 
operands. On the spatial side, the input of a spatial evaluation 
is the spatial features of the two input maps and the output is 
the spatial features of a composite map. The composite map 
includes pairs of spatial features that satisfy the spatial relation- 
ship evaluated. The features in a pair are from the two input 
maps. For example, when we have a point map and a polygon 
map and we are evaluating the relationship of "point-within- 
polygon," if a point is within a polygon, the pair is included on 
the composite map. Formally, spatial evaluation can be 
expressed as 

where E is a spatial evaluation, { f ), and { f ), are the spatial fea- 
ture collections of the two input maps, (f ,, f ,) is a pair of spa- 
tial features, and f1 E { f l2 and f2 E { f 1, satisfy the spatial 
relationship evaluated. 

On the non-spatial side, the input is the relations of the 
input maps and t6e output is a combosite relation. A tuple in 
the com~osite relation de~ic ts  a feature  air in Eauation 4. A 
tuple is ionned by concat&ating the twituples &at depict the 
features in the pair. In the above example, a tuple in the com- 
posite relation indicates that a point and a polygon satisfy the 
relationship of "point-within-polygon." On this side, spatial 
evaluation E can be expressed as 

E((t11, {tlz) = I(t1, tz)l (5) 

where It}, and It), are the relations of the two input maps, (t,, t,) 
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is a tuple in the composite relation that is a concatenation of tl 
and t,, and tl E {tIl and t, E {tIZ depict two spatial features that 
satisfy the spatial relationship evaluated. The scheme of the 
composite relation is 

where AiSj ( j  = 0,1, . . . , ni) are attributes of the ith input relation 
(i = 1,2). The values of A , ,  and AzVo in a tuple represent the 
information that two features satisfy the spatial relationship 
evaluated. 

Spatial Manipulations 
A spatial manipulation has one or more input maps. On the spa- 
tial side, the input is the set(s) of spatial features of the input 
map(s) and the output is the spatial features of a composite 
map. The composite map includes the new spatial features cre- 
ated by the manipulation, as well as their "parent" features. An 
example can be found when we conduct a buffering operation 
on a map. The composite map includes buffer zones and also 
the features that are buffered. This group of operations can be 
formally expressed as 

where M is a spatial manipulation, { f Iiis the set of spatial fea- 
tures of the ith input map (i = 1, . . . , m), ( f,, fl, . . . , f,) is a 
group of spatial features on the composite map, f, is a new fea- 
ture created by the operation, fl E { f),, . . . , f, E { f), are the 
parent features off,, and m is the number of input maps. 

On the non-spatial side, the input is the relation of the 
input map(s) and the output is a composite relation. Each tuple 
in the output includes attributes of a new spatial feature and 
also attributes of its parent feature (or features). In the example 
of buffering, each tuple in the composite relation includes attri- 
butes of a buffer zone and attributes of the feature buffered by 
the zone. Formally, the operation can be expressed as 

where is the relation of the ith input map (i = 1, . . . , m), (t,, 
tl, . . . , t,) is a tuple in the composite relation formed by con- 
catenation, tc contains the attributes of a new feature created by 
the operation, and ti E {t),, . . . , t, E {t], are the tuples that 
depict the parent features off,. The scheme of the composite 
relation is formally defined as 

where ACsj ( j  = 0,1, . . . , n,) are attributes of the newly created 
features and AiJ ( j  = 0,1, . . . , ni) are attributes of the ith input 
relation (1 5 i 5 m). 

Commutativity of the Operations 
A comparison between a type of spatial operations and rela- 
tional &join may help us understand the commutativity of the 
former. Formally, relational Bjoin can be expressed as 

where Wgis Bjoin, {t)iis the ith input relation (i = 1,2), and (tl, 
t,) is a tuple in the joined relation formed by concatenating t, E 

It), and tz E (t12 that satisfy 8. The scheme of the joined relation 
is 

where AiSj ( j  = 1, . . . , n J are attributes of the ith input relation 
(i = 1,2). The commutativity properties of Bjoin can be found 
in Ozsu and Valduriez (1991) and Silberschatz et al. (1997). 

By comparing Equations 4 , 5 ,  and 6 with Equations 10 and 
11, we can observe that the spatial evaluations are similar to B 
join in terms of the relationship between the input and output: 
the output is a collection of pairs that include the input objects 
that satisfy a condition. 

By comparing Equations 7,8, and 9 with Equations 10 and 
11, we can observe that, when the newly created features are 
not considered, spatial manipulations &e similar to Bjoin in 
terms of the relationship between the input and output: the 
output is a collection of groups that include the input objects 
that satisfy a condition. Because of the similarity, the spatial 
evaluations and spatial manipulations thus defined have the 
commutativity properties similar to those of Bjoin. In the fol- 
lowing, we list some of the properties that are the most useful in 
strategy generation. A more formal description of the proper- 
ties and the proof of them can be obtained from the author. 

Spatial evaluations have the following properties: 

'Itvo spatial evaluations can be commuted, 
A spatial evaluation and a join can be commuted, and 
A spatial evaluation and a selection can be commuted. 

Spatial manipulations have the following properties when the 
newly created features are not considered: 

A spatial manipulation and a spatial evaluation can be 
commuted, 
A spatial manipulation and a join can be commuted, and 
A spatial manipulation and a selection can be commuted. 

The two definitions provide a conceptual framework for 
query optimization in a distributed GIS. Spatial operations 
implemented on the definitions have the properties of commu- 
tativity. The properties allow us to apply the operation order- 
ing technique. We may order some operations of a query in a 
way such that the query can be executed efficiently. Note that, 
when a spatial evaluation, a join, or a selection is conducted on 
the new features created by a spatial manipulation, we have to 
execute the spatial manipulation first, and then other opera- 
tions. This order cannot be reversed; otherwise, a strategy 
would be invalid. In strategy generation, it is an important task 
to avoid invalid strategies. The classification of spatial opera- 
tions into evaluations and manipulations may ease this task 
considerably. 

A Query Optimization Algorithm 
An Overview of the Algorithm 
The algorithm comprises three major steps: 

(1) Query decomposition, 
(2) Strategy generation, and 
(3) Cost estimation. 

The objective is to minimize response time. It is achieved 
by minimizing the sizes of the data to be processed and trans- 
mitted, and distributing costly spatial operations for parallel 
processing. 

Operation ordering is used for strategy generation in this 
algorithm. Differing from Distributed INGRESS (Epstein et al., 
1978) and R* (Lohman et al., 1985), which are based on opera- 
tion ordering, this algorithm conducts optimization at compi- 
lation time and is not based on the exhaustive search of the 
solution space. The algorithm is aimed at generating a good 
strategy instead of the best. To reduce the number of alternative 
strategies, a set of rules are used. Strategies are represented as 
directed graphs. Petri nets (Peterson, 1981) are used to model 
strategies for correctness analysis and cost estimation. A set of 
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cost functions and selectivity functions are defined for cost 
estimation. 

In describing the algorithm, we use an extended SQL1999 
to express queries. A query in the language is of the form 
"select-hm-where." The relations in the from clause may be 
digital maps or non-spatial relations. To express spatial opera- 
tions, two groups of functions are defined in the language. The 
first group include functions "Overlay" and "Buffer" for spa- 
tial manipulations. The second group includes functions for 
conducting spatial evaluations. In the following discussion, the 
second group is called spatial predicates. The functions in the 
first group are used in from clauses and those in the second 
group used in where clauses. More details about the language 
can be obtained by contacting the author. 

Query Decomposition 
Query decomposition is an indispensable step in query optimi- 
zation for non-spatial and spatial databases (Ozsu and Valdur- 
iez, 1991; Ooi, 1990). In query decomposition. a query is 
decomposed into subqueries. A subquery here refers to an ordi- 
nary query that is decomposed from a user query and can be 
executed independently at a site. It is different from a subquery 
defined in the SQL standards. Query decomposition is con- 
ducted in four steps. 

Step 1: Query Normalization 
The search condition in the where clause is normalized into 
conjunctive normal form 

C, and C, and - - and Cn 

where Ci (1 r i I n) is the ith conjunctive term that is a disjunc- 
1 tive composition of disjunctive terms: 

where p 2 1. A disjunctive term may be a spatial predicate (P), 
a "variable-operator-constant" (VC) predicate, or a "variable- 
operator-variable" (W) predicate. "P" represents a spatial eval- 
uation, "VC" represents a selection operation, and "W" repre- 
sents a join operation. 

Step 2: Creating a Collecting Subquery 
In a distributed GIS, a subquery is needed at the originating site 
for collecting intermediate results. It forms and displays the 
final result. This subquery is called a collecting subquery. Its 
target list is the same as the original query and its where clause 

, is empty. The collecting subquery is created by splitting the 
original query 

select A,, A,, . . . ,AT 
from {R)  
where C 

into a collecting subquery 

select A,, A,, . . . , AT 
from {R}' 

I 

1 and a subquery 

select * 
from {R} 
where C 

where Al, Az, . . . , ATis the target list, {R} denotes a set of rela- 
tions (digital maps or non-spatial relations), and {R)' c {Rl is 
the relations involved in the target list. In the rest of the paper, 
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we use {Rl to denote a set of relations, and we may express a 
condition as C(R,, . ., R,) to indicate that R1, . . -, R, are relations 
involved in the condition. 

Step 3: Separating Subqueries Containing Spatial 
Manipulations 
If the non-collecting subquery has a spatial manipulation func- 
tion in its from clause, a subquery is created to contain the 
function. Such a subquery is termed a manipulating subquery. 
Formally, this step decomposes query 

select * 
from MRl9 . . . , Rm) as R,+,, Rm+,, . . . , Rn 
where C 

into a manipulating subquery 

select * 
fkom MR,, . . . , R,) as R,,, 

and a subquery 

select * 
from Rm+,, Rm+,, . . . , % 
where C 

where Mis a spatial manipulation function; R,, . . . , R, are 
input of the function (1 5 m I 2); R,+l is the derived relation; 
and R,,,, . ., Rn are other relations. Note that the second resul- 
tant subquery has the derived relation but not the function in 
its from clause. 

Step 4: Decomposing the Non-Manipulating Subquery 
In this step, the non-manipulating subquery is decomposed 
into subqueries each of which has one conjunctive term in its 
where clause. Formally, the subquery constructed using the ith 
conjunctive term, denoted by Ci({R]), is 

select * 
fiom {R} 
where Ci ( { R } ) .  

A Sample Query 
The following is a sample query, and the subqueries that are 
decomposed hom it. This query includes a spatial manipula- 
tion function and three spatial predicates. Its where clause has 
all the three types of terms (P, VC, and W ) .  This query can be 
used to display the regions that have a cover type of "bare soil" 
and a drainage class of "poor," and locate within parcels that 
are owned by the province. The parcels are not adjacent to Lake 
Ontario and have distances no less than 10 km to residential 
areas. In this query, the names in the upper case are relation 
names. In each "map" relation, the feature identifier is the 
attribute that has the same name as the relation but is in the 
lower case. 

select REGION.region 
from Overlay(COVER,DRAINAGE) as REGION, 

OWNER, USE, LAKE, PARCEL 
where COVER.cover-type = 'bare soil' and 

DRAINAGE.class = 'poor' and 
PARCEL.0-id = 0WNER.o-id and 
0WNER.ownername = 'province' and 
not Adjacent(PARCEL.parce1,LAKE.lake) and 
LAKE.lake-name = 'Lake Ontario' and 
Distance(PARCEL.parcel,USE.use,'> = 10') and 
USE.use-type = 'residential' and 
Contain(PARCEL.parce1,REGION.region) 

December 1999 1431 



The sample query is decomposed into eleven subqueries. 
Subquery 0 is the collecting subquery and Subquery 1 is a 
manipulating subquery. Each of the rest contains a conjunctive 
term in the where clause of the original subquery. 

qO, select REGION.region 
from REGION 

q l .  select * 
from Overlay(COVER,DRAINAGE) as REGION 

q2, select * 
from COVER 
where COVER.covertype = 'bare soil' 

q3. select * 
from DRAINAGE 
where DRA1NAGE.clas.s = 'poor' 

q4. select * 
from PARCEL, OWNER 
where PARCEL.0-id = 0WNER.o-id 

q5. select * 
from OWNER 
where 0WNER.ownername = 'province' 

q6. select * 
from PARCEL, LAKE 
where not Adjacent(PARCEL.parce1,LAKE.lake) 

q7, select * 
from LAKE 
where LAKE.lake-name = 'Lake Ontario' 

q8. select * 
from PARCEL, USE 
where Distance(PARCEL.parcel,USE.use, '> = 10') 

q9. select * 
from USE 
where USE.use-type = 'residential' 

q10. select * 
from REGION, PARCEL 
where Contain(PARCEL.parce1,REGION.region) 

Strategy Generation 
Strategy generation has three steps. In the first step, query 
graphs are created. In a query graph, data transmissions are 
decided. In the second step, the query graphs are analyzed for 
eliminating the incorrect ones. In the third step, strategies are 
generated from the correct graphs. 

Step 2: Generating Query Graphs 
A query graph is a directed graph G(Q, T) where Q is a set of 
nodes representing subqueries: Q = {q], and Trepresents data 
transmissions between the subqueries, tf E T denotes the 
transmission of relation R from qi to qi. A query graph is actu- 
ally a strategy without considering the sites to execute subque- 
ries. By allocating subqueries to different sites, a query graph 
can be developed into an executable strategy. 

In a query graph, the order for executing subqueries is rep- 
resented by the direction of data transmissions. If qi should be 
executed before qj, the data transmission between them must 
be from q, to qp In other words, in G(Q, T), tf E Tindicates that 
qi E Q should be executed before qj E Q. 

As discussed before, spatial evaluations can be commuted 
with each other and commuted with joins and selections, and 
spatial manipulations can be commuted with other operations 
when only the input maps are concerned. The properties of 
commutativity enable us to apply operation ordering to gener- 
ate strategies. Of the four types of operations, spatial manipula- 
tions need special attention. A spatial manipulation creates 
new features and attributes. In a valid strategy, it must be exe- 
cuted before the new features and their attributes are processed 
by other operations. 

To avoid exhaustive search and to prevent invalid place- 
ment of spatial manipulation functions, the following rules are 
used in an initial step of query graph generation: 

(1) A selection should be conducted before a join, spatial evalua- 
tion, or spatial manipulation. 

(2) A join should be conducted before a spatial manipulation, 
because the join condition may reduce the size of the input 
to the latter. 

(3) A spatial evaluation should be conducted before a spatial 
manipulation, because the spatial relationship to be evaluated 
may reduce the size of the input to the latter. 

(4) When the output of a spatial manipulation is in the input to 
a selection, join, spatial evaluation, or another spatial manipu- 
lation, the spatial manipulation must be conducted first. 

The following is the procedure for query graph generation. 
The input is the subqueries decomposed from a user query. The 
output is a set of query graphs, denoted as {GI. In the following, 
{R], denotes the relations in the from clause of subquery qi: 

I* Create nodes * /  
Create Q = {q]; 
I* Add non-directed edges that represent data sharing * /  
Create ef: for each R E {R], n {R]; 
I* Convert the edges into directed edges that represent 

transmissions */ 
For each ef: 

If ((qj is a collecting subquery) or 
(R is the output of a spatial manipulation function in 

qi)) Then Change g i n t o  tf, 
Else 

If ((R appears in a VC term in qi) or 
(R appears in a VV term in qi and in a spatial 

manipulation function in qj) or 
(R appears in a P term in qi and in a spatial 

manipulation function in qj)) Then 
Change ef into tf, 

EndIf 
EndIf 

EndFor 
{GI = G; 
For each G E {GI that has an ef: remaining 

Remove G from {GI; 
Duplicate G such that one copy has t$ and the other 

has t;; 
Add the two copies into {GI; 

EndFor 
/ *  Remove circles */ 
For each G E {GI with qi E G such 

that there is an R E {RIi that has n > 1 incoming edges 
Remove G from {GI; 
Duplicate G such that each copy has one incoming 

edge for R; 
Add the copies of Ginto (GI; 

EndFor 
For each G E {GI with qi E G such that there is an R E {R], 

that has n > 1 outgoing edges 
Remove G from GI: . .. 
Duplicate G such that each copy has one outgoing edge 

for R; 
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Add the copies of G into {GI; 
EndFor 

Figure 2 illustrates two query graphs that are generated out 
of the subqueries decomposed from the sample query. In the 
graphs, relation names are associated with edges to indicate the 
relations to be transmitted. 

Step 2: Analyzing Graph Correctness Using Petri Nets 
Of the query graphs generated in Step 1, some may not be able 
to produce correct results, for example, the one in Figure 2b. 
Such graphs must be discarded before developing strategies. 
The criterion for a correct query graph is that it must satisfy the 
two conditions: 

Let {Rl be the relations in the from clause of the original query. 
Each R s {Rl must be sequentially transmitted to all the nodes 
that represent the subqueries that have R in their from clauses. 
Each node, except for the one modeling the collecting subquery, 
has at least one outgoing data transmission. 

It can be observed that the graph in Figure 2a satisfies this crite- 
rion but the graph in Figure 2b does not. 

Although directed graphs are useful methods for modeling 
queries (Silberschatz, 1997), they lack certain mechanisms 
required for query analysis. In this research, Petri nets 
(Peterson, 1981) were used to model strategies (that have been 
expressed as query graphs) for correctness analysis and later for 
cost estimation. Petri nets have well-developed methods for 
describing and analyzing the flow of information and control in 
systems, particularly systems like distributed query strategies 
that may exhibit asynchronous and concurrent activities. A 
Petri net is a directed graph. It has two sets of nodes: places and 
transitions. The nodes are connected by arcs from places to 
transitions or from transitions to places. If an arc is directed 
from node i to node j, i is said to be an input of j and j to be an 
output of i. 

In a Petri net, there are tokens that may represent resources, 
data, and so on. The execution of a Petri net is controlled by the 

(b) 

Figure 2. Query graphs generated out of the 
subqueries decomposed from the sample 
cv-"JrY. 

position and movement of tokens in the net. Tokens are initially 
assigned to some places. A marking of a Petri net is an assign- 
ment o5tokens to some places. A marking p i s  represented as a 
vector p = (pl, p,, . . ., pn) where pi ((1 5 i 5 n) is the number 
of tokens in the ith place and n is the number of places in the 
net. Given a Petri net and a m ~ k i n g  z,firinga transition sjpro- 
duces a new markingzl = S(p ,sj). A transition must be enabled 
in order to fire. A transition is enabled when each of its input 
places has a token. The transition fires by removing the 
enabling tokens from the input places and generating new 
tokens. The new tokens are deposited in the output places of 
the transition. 

As described before, a query graph has nodes representing 
subqueries and directed edges representing planned data 
transmissions. In modeling a query graph, we use transitions to 
model subqueries and data transmissions, places to model input 
and output relations of subqueries and transmissions, and 
tokens to model data. To simulate the execution of a strategy, 
we use firings of transitions to model data processing and trans- 
mitting. To reduce analysis costs, we may use a single transi- 
tion to model a subquery and the transmission that moves data 
from the subquery. A transition has one or more input places 
representing the relations in the from clause of the correspond- 
ing subquery and one or more output places representing the 
relations generated by and transmitted from the subquery. If 
there is a tfj in the query graph, the output place of qi labeled 
with R is merged with the input place of qj labeled with R. 

In a Petri net that models a strategy, one token is initially 
created for each base relation and assigned to a place that has no 
input transitions. Such an assignment is called an initial mark- 
ing. Applying a conjunctive search condition term (VC, W, or 
P) or a spatial manipulation function to a relation is modeled by 
passing the relation's token to the corresponding transition (to 
enable it) and firing the transition. If a transition models a 
search condition term, it moves the tokens in its input places 
to its output place when it fires. If a transition models a spatial 
manipulation, it moves the tokens to and creates a new token 
in its output place. The new token models the derived relation. 

Figure 3 illustrates the graphical representation of two 
Petri nets with initial markings. The nets model the two auerv 
graphs in Figure 2. In the gaphical representation, a c i rJe  0 
represents a place, a bar I represents a transition, and a bullet 
represents a token. 

Correctness analysis of query graphs can be converted into 
the well-zudied reachability_problem. In Petri net N with 
marking p , if a n e ~ m a r k i n g  p ' can be produced 2 successive 
transition firings, p r  is said to be reachable from p. All the 
markings of Nthat 5 e  reachable from 2 ,  form the reachability 
set, denoted as %(N,p). The reachability problem can be stated 
as "Given an Nwith marking z and a marking 21, is z' E %(N, + 
p)?". An effective technique for the problem is the reachability 
tree. For a reachability problem, the tree root represents the ini- 
tial marking, the nodes represent markings reachable from the 
initial, the leaves usually represent the "final" markings in 
which no more transitions can fire, and the edge directe5from -+ 
p' to z "  represents the firing of a transition that changes p' into + 
p". A path from the root to a leaf is a sequence that includes 
firings that change the initial marking to a final marking, and 
also includes the initial, final, as well as intermediate 
markings. 

  he criterion for a correct query graph can be translated into 
"given an initial marking, each transition must be able to fire 
and all the tokens must be able to arrive at the output of the 
transition that models the collecting subquery." Take the two 
nets in Figure 3 as examples. It can be observed that all the transi- 
tions in Figure 3a can fire and all the tokens can arrive the output 
of q,. However, the transition in Figure 3b that represents q, may 
not fire because an input place of it will never have a token, and 
the token for OWNER cannot get to the output of q,. 
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Figure 3. Petri nets modeling the query graphs in Figure 2 
(C-COVER, PDRAINAGE, R-REGION, 0-OWNER, U-USE, L- 
LAKE, P-PARCEL.) 

For each G(Q,T) E {GI 
While (There are q's E Q to be allocated) 

For each qi E Q to be allocated 
If (3 (R]' that do not have incoming edges) 

Then 
If (The R's E (R)' are stored at the same site) 

Then 
Allocate qi to that site; 

Else 
If (There is an R E (R]' that has a size much 

larger than the rest) Then 
Allocate qi to the site where R is stored; 

Else I* The R's E (Rl' have similar sizes */ 
Remove G from (G); 
Duplicate G such that each copy has qi allo- 

cated to one of the sites there the R's are 
stored; 

Add the copies of G into {GI; 
EndIf 

EndIf 
Else /*  All the R's E (R)'; have incoming edges */ 

If (The senders of all the R's E (Rli have been 
allocated) Then 
Remove G from (GI; 
Duplicate G such that each copy has qi allo- 

cated to one of the sites there the senders 
are allocated; 

Add the copies of G into (GI; 
EndIf 

EndIf 
EndFor 

EndWhile 
EndFor 

Subqueries in each group are then ordered to schedule 
their execution by the local processor. The subqueries are 
ordered based on the rule that a receiver subquery can be exe- 
cuted only after the execution of all of its sender subqueries. 
Subquery ordering may be considered as an issue of local opti- 
mization. Because different orders of a group may affect the 
cost of a global strategy, we include it in the procedure of global 

In a Petri net that models a query graph, any transition strategy generation. 
has no tokens in its output place until it fires. If a transition From the query graph in Figure 2a, four strategies are gen- 
can fire, we will be able to find a reachable marking that indi- erated. The following is the data distribution and map sizes 
cates that there is a token in the output place. For each net when the strategies are generated: S1 stores COVER (8.5M) and 
we search the reachability tree for a path 9, such that for each LAKE (1.7M); S2 stores PARCEL (3.2M), OWNER (400K), and 
transitJon si in the net, there exists a marking z' on 8 and USE (6.3M); and S3 stores DRAINAGE (4.4M). The query is 
pi E p' is not zero where pi denotes the number of tokens in originated at S4. Figure 4 shows a strategy generated with the 
the output place of si. If such a path can be found, the query subqueries in each group ordered. We use dash lines to indicate 
graph modeled by the net is correct. A reachability tree may subquery allocation and Si (i = 1,2, . . . ,4)  to represent differ- 
have more than one path. For a correct query graph, the paths ent sites. The subquery assignments in the other three strate- 
lead to leaves representing the same marking. That is, the paths gies are 
are equivalent in effect. The difference between two equivalent 
paths is that concurrent transitions have different orders in Strategy 2: S1: ql, q2, q7; S2: q4, q5, q6, q8, qg, qlo; S3: q3; S4: qo. 
them. The creation of reachability trees will not be discussed Strategy 3: S1: ql, qz, q7, qlo; S2: q4, q5, 989 q8, q9; S3: q3; S4: qm 
here. It can be found in the literature on Petri nets, for example, Strategy 4: S1: q2, q7; S2: q4, q5, q61q81 q9; s3: 41, q3, QIO; s4: QO. 

Peterson (1981). 
For the sample query, two correct query graphs are gener- Cost Wlmation 

ated. One is illustrated in Figure 2a. The other one is ((qo, q,, 
OWNER tPARCEL tPARa, dARCEL, The Cost Model q21 q3, 94, 95, 48) q71 489 49, 410)~ (t5A 4,8 , 8,6 ,lo 

tLAKE, 7,6 tCoVER, 2.1 tUSE, 9,a tPPpJ"AGE, t ~ ~ r O N ,  tE$IoN)). To select the best strategy from the alternatives, a cost model is 
needed. Although computational complexity of individual 

Step 3: Generating Alternative Strategies spatial operations has been well studied (Preparata and 
Strategies are generated from the correct query graphs. A strat- Shamos, 1988), so far much less work has been reported on cost 
egy is represented as a query graph G(Q, T) with the q's in Q modeling for GIs queries. In this research, a cost model has been 
grouped. Each group is the subqueries allocated to the same developed to estimate response time. The time is estimated in 
site. The groups can be executed in parallel. The following is terms of computing time of subqueries (including disk 110 time) 
the procedure used for generating alternative strategies from a and data transmission time. The model is based on the Petri 
set of query graphs (GI. nets generated in the correctness analysis. 
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Sl: q7.q2 
a: SS. 44, q6. q9, q8 
S3: q3, q1. q10 
S4: qo 

Figure 4. A strategy generated from the query 
graph in Figure 2a. 

To estimate response time for a strategy (modeled as a Petri 
net), we first identify the starting transitions and ending transi- 
tion. A starting transition does not have any preceding transi- 
tion. An ending transition is the one modeling the collecting 
subquery. 

In the cost model, each transition s has firing time 9 and 
ending time e, each place p has enabling time 7: representing 
the time the data (represented by a token) are available, and 
each token kis associated with a size vkrepresenting the size of 
the corresponding data. 

The response time of a strategy is estimated as 

Transmitting time can be estimated in terms of the network 
speed and the size of the data to be transmitted (Ceri and Pela- 
gatti, 1984). 

I" if the transmission is between two 
subqueries at the same site 

7f = dj + 7 i ; j .  yk if the transmission is between 
sites i and j 

response time = 

where s, is the ending transition. 
As mentioned before, a transition may model a subquery 

and a transmission. The ending time of transition s is 

where 9 is the firing time, r', is the computing time of the 
subquery, and 7: is the time required for the transmission. 

The firing time of transition s is estimated as 

I 
~f = max (T:, max (#I) 

j=1 

where st is the subquery that is executed immediately before s 
at the same site, pj is an input place of s, and I is the number of 
input places of s. 

The enabling time of place p is estimated as 

where T# is the time required to initiating a transmission 
between sites i and j, +ij is the unitary transmission time 
between the two sites, ank y, is the size of the data to be 
transmitted. 

For a token that is initially assigned to a place, its size can 
be directly taken from database statistics. For a token that rep- 
resents an intermediate result, its size is estimated based on 
database statistics and operation selectivity. The estimation is 
discussed in the next section. 

0 if p is initially asigned a token 
72 if p is the output of transition sf. (15) 

Database Statistics and Size Estimation for Intermediate 
Results 
We store statistics information about each digital map and each 
non-spatial relation in its metadata set. The statistics are calcu- 
lated when the map or relation is loaded into the database or 
generated by an operation. The metadata set is attached with the 
map or relation when it is transmitted. 

The statistics about a digital map are extracted from its spa- 
tial data structure and relation. The statistics from the spatial 
data structure include 

the feature cardinality, which is the number of features on 
the map; 
the average data size of the spatial features on the map; 
the density of the features, which is calculated as the number 
of features per unit area; and 
other information, including the average area of polygons, the 
average length of lines, the average number of polygon bound- 
ary lines, the average number of lines that a line may connect, 
the average number of polygons that a polygon may be adjacent 
to, and so on. 

The statistics extracted from the relation include the minimum 
and maximum values and the number of distinct values for each 
attribute, the number of tuples, and the tuple size. A histogram 
is stored for each attribute that may be involved in [relational) 
selections. 

The result of a spatial evaluation is a composite map and a 
relation. The size of the result is the sum of their sizes. The com- 
posite map contains feature pairs that satisfy the spatial rela- 
tionship evaluated. In the following, we use E to represent the 
spatial relationship, A,,, and A z ,  to denote the two operands, 
and A;,,, and A;,,, to denote the features in the result (A;, LA,,, 
and A;,,, A;,o). In most situations, features denoted by A;, or 
A;, are input to other operations. 

The size of one type of features in the result, for example, 
A;,,,, can be estimated as 

The computingtime of a subquery is estimated by using the where V,,,(A;,~) is the average size of A;,~,  which is equal to 
cost function(s) of the subquery's operationb) and the sizes of vev (A,,,,) and can be found in the database statistics, ~ard(A,,~)  
the operands. A subquery may have one or more disjunctive is %e cardinality of A,., and SZ,, is the selectivity function of 
terms (operations). We use the sum to approximate the com- the spatial evaluation for Ewithrespect to i.e., 
puting time: i.e., 

S%,,o (Also, A2,,,) = card(A;,o)l/card(Al,o) (19) 

where card(A;,,) is the cardinality of A;,,,. card(A;,,,) can be esti- 
wheref;. is the cost function of the ith operation. The cost func- mated from dens(AlVo) and ~ard(A,,~)  where dens(A,,,,) is the 
tions will be discussed later. density of that can be found in the database statistics. For 
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example, ~ard(A;,~)  in the result of applying Distan~e(A,,~, AzSo, 
p) can be estimated as 

where buff (Azpo) is the area of some kind of buffers of The 
buffers are defined based on the nature of and p. For exam- 
ple, when A,, represents points andp is ''I 20 km," the buffers 
are circles of 20 krn radii. 

The size of the relation can be estimated as the product of 
its tuple size and the cardinality estimated using Equation 20. 
The tuple size can be calculated from the tuple sizes of A,,, and 
A2,o. 

When the features created by a spatial manipulation are 
input to another operation, the size of the features should be 
estimated when estimating the cost of the latter. For results of 
spatial manipulations, the size estimation is more straightfor- 
ward. The size of the composite map of an overlay operation 
can be estimated as the sum of the two input maps. The size of 
the composite map of a buffering operation can be estimated as 
the product of the cardinality of the input map and the average 
buffer size. The average data size of the buffers can be estimated 
from the average size of the input features. 

Cost Functions for the Spatial Operations 
The cost function for a spatial operation consists of the cost for 
processing spatial features and the cost for processing non-spa- 
tial attribute data. We estimate the two costs in terms of time. 
The cost for processing spatial features is a sum of two 
components 

Cost, + costi, 

where Cost, is a computing cost, and C o s t  is a disk 110 cost. 
Cost, can be estimated in terms of the time required for 

addition, multiplication, and logical comparison operations. 
For each of the three types of operations, the time can be esti- 
mated as the product of the number of the operations and the 
time required to conduct an operation. Therefore, for an opera- 
tion on a collection of spatial features, the cost is expressed as 

where radd, ~ ~ ~ 1 ,  and rcomp are the times required for executing 
an addition, multiplication, and logical comparison operation, 
respectively, and a, ZB, and yare the numbers of the three oper- 
ations required for processing the spatial data. radd, rmul, and 
rcOmp are machine-dependent, while a, P, and yare algorithm- 
dependent and are functions of cardinalities and other statis- 
tics about the features. In the following, we take cu in the cost 
function for s~at ia l  evaluation "Within" as an example to illus- 
trate how we tormulated expressions for the numbeis. 

The operation is expressed as Within(AlSo, in a query. 
A,, represents polygons. When A , ,  represents points, this 
operation evaluates the "point-within-polygon" relationship. 
For a given set of points, this function can be used to find all 
the polygons within which the points are located. To determine 
if a point is within a polygon, we use the "half-line" method 
that is based on the Jordan Curve Theorem (Preparata and 
Shamos, 1988). A half-line starts from this point and extends 
to beyond the extent (the minimum-bounding rectangle) of the 
polygon. The half-line and boundary lines of the polygon may 
intersect. If the number of intersections is odd, the point is 
within the polygon. To determine if the half-line intersects a 
boundary line, we check each segment (straight line) of the 
boundary line. We use algorithm Pavlidis' (1982) for the inter- 
section test. 

The number of addition operations for checking a bound- 
ary segment can be determined from the intersection algo- 
rithm. We use a. to denote it. The number for checking a 
boundary line can be estimated as 

where I, is the average length of the boundary lines. The num- 
ber for applying the half-line method to a point-polygon pair 
can be estimated as 

where navg is the average number of boundary lines per polygon. 
The number of addition operations for a point can be esti- 

mated as 

where nconbin is the average number of polygons whose mini- 
mum-bounding rectangles contain the same point. The total 
number of addition operations for all the points, i.e., the a in 
Equation 22, can be estimated as 

where ~ard(A,,~)  is the cardinality of the points. 
We can estimate pand yin the same way. For a spatial oper- 

ation and a set of spatial data, once a, P, and yhave been esti- 
mated, the total time required for conducting the operation can 
be estimated by using Equation 22. 

C o s t  is the cost for fetching some spatial features from 
disk files into the main memory. In a GIS, spatial features of a 
map are stored in one or more disk files based on a clustering 
strategy. A spatial index may be associated with the files to 
facilitate the search for the features that satisfy certain spatial 
conditions. Usually, before a spatial operation is conducted, 
only a subset of the features are fetched fiomthe files. For exam- 
ple, before the "Within" operation is conducted on a set of 
points, only the polygons whose minimum-bounding rectan- 
gles contain the points are retrieved from the disk file(s). For a 
spatial operation and a map, the time required for disk data 
retrieval, i.e., Costio, is a function of the clustering strategy, the 
page size of the files, the indexing method, the retrieval type 
(containment or intersection), and characteristics of the map 
involved (Wang and Sun, 1997). The characteristics include the 
data size, the feature density, and so on. 

The cost for processing the non-spatial attribute data is 
estimated in terms of the time for disk 110. For each type of the 
features that are included in the output, for example Al,o, we 
estimate the cost as 

where qo is the 110 time for one page, VJA,,,) is the size of the 
relation for and upage is the page size. 

Tests 
The optimization algorithm has been implemented in an exper- 
imental system, which is built on a group of workstations con- 
nected with a local area network. The machines include IBM 
RISC16000 workstations and DEC Alpha workstations. All the 
machines run uNIX operating systems. The system is written in 
C+ + based on the Common Object Request Broker Architec- 
ture (CORBA) (Siegel, 1996). The system communication is 
implemented using the Remote Procedure Call (RPC) system of 
the TCPIP (Transmission Control ProtocolfInternet Protocol). 
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The algorithm was tested when the experimental system 
had 34 digital maps distributed at eight sites. The maps had 
different sizes and statistics. The tests were conducted when 
the machines had no other application workload and there was 
little other traffic on the network. Twenty-five queries were 
used for the test. For each query, the best strategy or strategies 
by the algorithm were executed. For comparison, the best strat- 
egy and a couple of "bad" strategies generated manually were 
also executed. For each strategy, the response time was 
measured. 

The algorithm generated good (not necessarily the best) 
strategies for all the queries except two. For about 65 percent of 
the queries, the algorithm generated the same best strategies as 
did manual optimization. 

Table 1 lists some test results obtained by executing four 
strategies for the sample query, where "s" denotes seconds and 
"ms" denotes milliseconds. The second and third strategies 
were generated by the algorithm. The first and fourth were 
manually generated. The five maps cover an area in southwest- 
ern Ontario. The map scales are 1:50,000. The data distribution 
and map sizes can be found in the section on Strategy Genera- 
tion. The originating site is S4. The four nodes were run on the 
same type of IBM RISC/6000 workstations. Each has a proces- 
sor rated at 32.2 MIPS and 11.7 MFLOPS. The response time was 
measured when the network had speeds between about 600K 
per second and 1M per second. To reduce the effects of the vari- 
ations in network speed, each of the four strategies was exe- 
cuted several times. The response times listed in Table 1 are 
an average. 

The first strategy had a bad distribution of subqueries. All 
the subqueries (operations) were executed sequentially on the 
originating node (S4). All the data needed (five maps and a table 
(OWNER)) were transmitted to S4 before being processed. It was 
determined that more than half of the total time was spent on 
transmitting the data. The second and third strategies used par- 
allel processing and had fewer data transmissions. Both strate- 
gies had four inter-site data transmissions. The difference is 
that the second strategy involved transmitting a subset of 
COVER while the third involved transmitting a subset of 
DRAINAGE. The third strategy had a slightly shorter response 
time, possibly because the subset of COVER was bigger than the 
subset of DRAINAGE. This was the best strategy selected by the 
algorithm. The response time for the second and third strate- 
gies included the time for optimization, which is about 1.13 
seconds. The fourth strategy was a bad strategy because the 
overlay operation (q,) was conducted before the selection oper- 
ations (q, and q,). The long response time was due to the long 
processing time for overlaying the entire maps of COVER and 
DRAINAGE. 

Concluding Remarks 
We have discussed the query optimization techniques devel- 
oped in building an experimental system. The core part is the 
definitions of spatial operations, the strategy modeling method 
based on Petri nets, the model and functions for cost estima- 
tion, and the optimization algorithm. 

Execution sequences Response time 
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The definitions of spatial operations may help bridge the 
gap between distributed GIss and the query optimization tech- 
niques for distributed DBs. Spatial and non-spatial operations 
are quite different. The definitions can unify them so that spa- 
tial queries can be optimized in a way similar to that of non- 
spatial queries. 

The major advantage of using Petri nets for strategy model- 
ing is the facilitation of strategy generation and cost estima- 
tion. By moving correctness analysis out of query graph 
generation, the procedure for graph generation has been 
largely simplified because correctness analysis is a very com- 
plicated step to develop. Cost estimation based on Petri nets is 
straightforward and easy to understand. Another advantage is 
processing efficiency: the reachability trees of Petri nets are 
finite (Peterson, 1981) and have relatively small depths for 
most queries. In addition, using the same nets for both correct- 
ness analysis and cost estimation may reduce optimization 
costs. 

Acknowledgment 
This research was supported by research grants from the Natu- 
ral Sciences and Engineering Research Council (NSERC) of 
Canada. 

References 
Abel, D.J., B.C. Ooi, K. Tan, R. Power, and J.X. Yu, 1995. Spatial Join 

Strategies in Distributed Spatial DBMS, Fourth International Sym- 
posium, Advances in Spatial Databases, Portland, Maine: 
Springer-Verlag, New York, N.Y., pp. 348-367. 

Apers, P.M.G., A.R. Hevner, and S.B. Yao, 1983. Optimization Algo- 
rithms for Distributed Queries, IEEE Transactions of Software 
Engineering, 9(1):57-68. 

Aronoff, S., 1989. Geographic Information Systems: A Management 
Perspective, WDL Publications, Ottawa, 294 p. 

Bernath, T., 1992. Distributed GIs Visualization System, Proceedings 
of GIS/LIS'92, San Jose, California, 1:51-57. 

Brinkhoff, T., H. Horn, H. Kriegel, and R. Schneider, 1993. A Storage 
and Access Architecture for Efficient Query Processing in Spatial 
Database Systems, Third International Symposium, Advances in 
Spatial Databases, Singapore, Springer-Verlag, New York, N.Y., 
1~357-376. 

British Columbia Survey and Resource Mapping Branch, 1994. Spatial 
Archive and Interchange Format: Formal Definition Release 3.1, 
Province of British Columbia. 

Buehler, K., and L. McKee, 1998. The OpenGIS Guide, Third Edition, 
Open GIs Consortium, Inc., Wayland, Massachusetts, 103 p. 

Ceri, S., and G. Pelagatti, 1984. Distributed Databases Principles b 
Systems, McGraw Hill Book Company, New York, N.Y., 393 p. 

DHPC Project Team, 1996. Distributed Geographic Information Sys- 
tems Project Concepts Discussion Document, http://www.dhpc. 
adelaide:ed~.au/~rbjects/d~is. 

Edmondson, P.H., 1992. Managing the Distributed GIs Infrastructure- 
An Organizational Perspective, Proceedings of GIS/LIS'92, San 
Jose, California, 1:196-207. 

Egenhofer, M.J., 1992. Why Not SQL!, International Journal of Geo- 
graphical Information Systems, 6(2):71-85. 

Epstein, R., M. Stonebraker, and E. Wong, 1978. Distributed Query 
Processing in a Relational Database System, Proceedings of the 
ACM-SIGMOD International Conference on Managemen t of Data, 
Austin, Texas, pp. 169-180. 

Franklin, W.R., C. Narayanaswami, M. Kanhanhalli, D. Sun, M. Zhou, 
and P.Y.E Wu, 1989. Uniform Grids: A Technique for Intersection 
Detection on Serial and Parallel Machines, Proceedings, Auto- 
Carto 9, American Society for Photogrammetry and Remote Sens- 
ing, pp. 100-109. 

Gardels, K., 1997. A Comprehensive Data Mode1 for Distributed, Het- 
erogeneous Geographic Information, http://regis.berkeley.edu/ 
gardels. 

December I999 1437 



Goodman, J.N., 1994. Alberta Land Related Information System, a Fed- 
erated Database System Case Study, URISA 1994 Annual Confer- 
ence Proceedings, Washington, D.C.: Urban and Regional 
Information Systems Association, 1:421-431. 

Igras, E., 1994. A Framework for Query Processing in a Federated 
Databased System: A Case Study, URISA 1994 Annual Conference 
Proceedings, Washington D.C.: Urban and Regional Information 
Systems Association, 1:167-178. 

ISOIIEC, 1999a. Database Language SQL-Part 2, SQL Foundation 
(Approval Version), The International Organization for Standard- 
ization, New York, N.Y., 810 p. 

-, 1999b. Information Technology--Database Languages-SQL 
Multimedia and Applications Packages-Part 3: Spatial 
(Approval Version), The International Organization for Standard- 
ization, New York, N.Y., 342 p. 

Laurini, R., 1993. Sharing Geographic Information in Distributed Data- 
bases, Proceedings of the 16th Urban Data Management Sympo- 
sium, Vienna, Austria, pp. 26-41. 

Laurini, R., and D. Thompson, 1992. Fundamentals of Spatial Informa- 
tion Systems, Academic Press Ltd., San Diego, 680 p. 

Leslie, H., R. Jain, D. Birdsall, and H. Yaghmai, 1995. Efficient Search 
of Multidimensional B-Trees, Proceedings of the 21 th VLDB Con- 
ference, Zurich, Switzerland, pp. 710-719. 

Lohman, G.M., C. Mohan, L. Haas, D.J. Daniels, B. Lindsay, P. Selinger, 
and P Wilms, 1985. Query Processing in R*, Query Processing in 
Database systems, (W. Kim, D. Reiner, and D. Batory, editors), 
Springer-Verlag, New York, pp. 31-47. 

McGregor, D., 1988. Geographic Information System Trends, Proceed- 
ings of GIS/LIS'88, San Antonio, Texas, 2915-921. 

Meredith, P.H., 1995. Distributed GIs: If Its Time Is Now, Why Is it 
Resisted?, Sharing Geographic Information, (H.J. Onsrud and G. 
Rushton, editors), Center for Urban Policy Research, New Bruns- 
wick, N.J., pp. 7-21. 

Nabil, R.A., and A. Gangopadhyay, 1997. Database Issues in Geo- 
graphic Information Systems, Kluwer Academic Publishers, Bos- 
ton, 136 p. 

NCGIA (National Center for Geographic Information and Analysis), 
1989. The Research Plan of the National Center for Geographic 
Information and Analysis, International Journal of Geographical 
Information Systems, 3(2):117-136. 

Norwegian Mapping Authority, 1997. Project Summary, Norwegian 
Mapping Authority, http:lhmvw.statkart.noId~ 

Ooi, B.C., 1990. Efficient Query Processing in Geographic Information 
Systems, Springer-Verlag, Berlin, 208 p. 

Ozsu, M.T., and P. Valduriez, 1991. Principles of Distributed Database 
Systems, Prentice Hall, Englewood Cliffs, New Jersey, 562 p. 

Pavlidis, T., 1982. Algorithms for Graphics and Image Processing, 
Rockville, Maryland, Computer Science Press, 416 p. 

Peterson, J.L., 1981. Petri Net Theory and the Modeling of Systems, 
Prentice Hall, Englewood Cliffs, New Jersey, 290 p. 

Pinto, J.K., and H.J. Onsrud, 1995. Sharing Geographic Information 
Across Organizational Boundaries: A Research Framework, Shar- 
ing Geogmphic Information, (H.J. Onsrud and G. Rushton, editors), 
Center for Urban Policy Research, New Brunswick, N.J., pp. 
44-64. 

Plewe, B., 1997. GIs Online: Information Retrieval, Mapping, and the 
Internet, On Word Press, Santa Fe, New Mexico, 311 p. 

Preparata, F.P., and M.I. Sharnos, 1988. Computational Geometry an 
Introduction, Springer-Verlag Inc., New York, 398 p. 

Siegel, J., 1996. CORBA Fundamentals and Programming, John Wiley & 
Sons, Inc., New York, 693 p. 

Silberschatz, A., H.F. Korth, and S. Sudarshan, 1997. Database System 
Concepts, Third Edition, WCBIMcGraw-Hill, Boston, Massachu- 
setts, 821 p. 

Smith, T.R., D. Andresen, L. Carver, R. Dolin, C. Fischer, J. Frew, M. 
Goodchild, 0. Ibarra, R.B. Kemp, R. Kothuri, M. Larsgaard, B.S. 
Manjunath, D. Nebert, J. Simpson, A. Wells, T. Yang, and Q. Zheng, 
1996. The Alexandria Digital Library: Overview and WWW Proto- 
type, IEEE Computer, 29(5):54-60. 

Tomlin, C.D., 1990. Geographic Information Systems and Cartographic 
Modeling, Prentice Hall, Englewood Cliffs, N.J., 249 p. 

Wang, E, and Y. Sun, 1997. Spatial Object Clustering for an Object- 
Relational GIs, Proceedings of GIS/LIS'97,28-30 October, Cincin- 
nati, Ohio. 

White, D., 1978. A Design for Polygon Overlay, Harvard Papers on 
Geographic Information Systems, (G. Dutton, editor), Vol. 6. 

Yu, C.T., and C.C. Chang, 1984. Distributed Query Processing, Comput- 
ing Surveys, 16(4):399-433. 

(Received 02 January 1998; revised and accepted 03 November 1998; 
revised 15 January 1999) 

1438 December 1999 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING 


