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Abstract tween spatial resolution and mean local variance of image 
The variance of a remotely sensed image is determined by data at different scales. The spatial resolution at which local 
the interaction of scene properties with the spatial character- variance reaches a maximum is considered closely to match 
istics of the sensor. Image variance is related to infomation the characteristic scale of scene variation. The latter study 
content, and therefore determines the ability to extract useful and others (Markham and Townshend, 1981; Cushine, 1987) 
information about scene conditions. We describe a technique discuss the relevance of resolution-dependent effects to the 
to estimate image variance at  multiple spatial resolutions. accuracy of mdtis~ectral image classification. Specifically, 
The is useful for comparing the capabilities of sen- spatid resolution determines the relative variability between 
sors with differing spatial responses. and within land-cover classes, influencing spectral separabil- 

The point-spread function (PSF) and the variogmm quan- ity- Marceau et al. (1994a; 1994b) use the resolution depend- 
ti& the spatial characteristics of the sensor and image, re- ence of classification accuracy to assess optimum spatial 
spectively. A geostatistical model based on these two resolutions for feature extraction. 
elements relates the punctual variogram of a scene with the Fried1 et al. (1995) and Fried1 (1997) describe the use of 

variogram of an image.  hi^ model forms the ba- a Scene simulation model to investigate the precision with 
sis for a numerical approach to approximate the punctual which biophysical properties can be inverted from remotely 
mriopm from observations. ~ y , ~  esti- sensed data. This precision is shown to depend on sensor 
mate of the punctual van'ogram allows analytical determina- characteristics. Hu and Islam (1997) present a model which 
tion of image variance at different spatial resolutions. explicitly relates the error of such biophysical models to the 

Analysis of simulated images confirms the utility of this variance of the input data, which is determined by the spa- 
algorithm. Variance of coarse-resolution images may be esti- tial 
mated reliably from fine-resolution data. Simulations of mul- Many studies of scale dependence take an empirical ap- 
tiscale variability show that the method handles more proach in which a multiresolution data set is created by ag- 
complex types of scene variability as well. The geostatistical pegating successivel~ larger blocks of fine-resolution pixels 
variance estimation algorithm better the (Chou, 1991; Wielicki and Parker, 1992; Peuch, 1994; Qi and 
tionship between variance and spatial resolution than do WUI 1996; Hay et al., 1997). Empirical analysis of a small 
simpler methods, such as averaging blocks of pixels. Specifi- number scenes is if the data set at hand is the pri- 
cally, methods which do not account for overlap of adjacent mary object for if One wishes to charac- 
placements of the sensor PSF tend to overestimate the vari- terize the spatial properties of a particular geographic area* 
ance of the resulting images. The algorithm presented here However, empirical analysis gives only limited insights into 
can be used to evaluate the utility of different sensors for the scaling properties of spatial data in general- Results of 
particular applications, when the relationship between spa- any analysis have widespread utility if the 
tial resolution and image infomation content is important. under which they can be stated explicitly. These con- 

ditions are difficult or impossible to define by analysis of a 

Introduction 
particular scene. 

Additionally, creating coarse-resolution data by averag- 
Investigations of scale dependence in digital images often fo- ing blocks of fine-resolution pixels is, at best, a rough ap- 
cus on changes in information content as a function of the proximation of the way in which remote devices 
spatial interval over which masurements are taken. Infoma- operate. Remotely sensed measurements are not simple aver- 
tion content is associated with the second-order properties of ages of radiance within a field of view, and this field 
an image, including the variance and autocovariance fwzc- of view may not be rectangular (as is often implicitly as- 
tion. These properties are hfhenced by all components of sumed when averaging pixels). Instead, sensor optical and 
the underlying scene, including the spatial arrangement electronic effects cause scene radiance to be weighted differ- 
scene objects, their spectral properties, variability in atm0- ently according to its relative position. The way in 
spheric conditions, and view and ill~mination angles. The which a sensor weights scene radiance when making a mea- 
measurement interval, or measurement scale, is associated surement is described by the sensorss point spread function 
with sensor spatial resolution. The effect of measurement (PSF) (or equivalently, by its frequency-domain representa- 
scale on the amount and quality of information which can be tion, the modulation transfer function). Using a simple aver- 
extracted from a digital image is recognized as a fudamental aging process is equivalent to assuming that the PSF has the 
issue in remote sensing (Quattrochi and Goodchild, 1997). 

Woodcock and Strahler (1987) present relationships be- 
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form of a simple square wave. Few if any studies have ex- 
plicitly assessed the impact of modeling the remote sensing 
process using such assumtions. 

This article takes a more deterministic approach to the 
problem of relating image variance to sensor spatial proper- 
ties. We describe a model of the relationship between image 
variance and sensor spatial resolution which explicitly iden- 
tifies the relevant components of the sensor and of the scene. 
Making use of the sensor PSF implies that the remote sensing 
process can be modeled as a shift-invariant linear system, in 
which a measurement of scene radiance is obtained by a 
convolution process. This is still an approximation to the 
true operation of remote sensing devices, but it is an im- 
provement over methods based on averaging blocks of pixels. 
In addition to the spatial properties of the sensor (as mea- 
sured by the PSF), the other relevant consideration is the spa- 
tial structure of the scene. The latter can be summarized by 
its autocovariance function or variogram. The variogram has 
been applied extensively in analysis of remotely sensed im- 
ages (Woodcock et al., 1988a; Woodcock et al., 1988b; Cur- 
ran, 1988; Jupp et al., 1988; Jupp et al., 1989). The key 
element of the model to be discussed here is the geostatisti- 
cal theory of regularization, which describes the way in 
which statistical properties of data are affected by the mea- 
surement process. 

In the remote sensing context, the sensor PSF is associ- 
ated with the geosatistical notion of support, or interval over 
which measurements are made. Predictable relationships be- 
tween variance and support size have long been noted 
(Smith, 1938). In fact, determination of such relationships is 
a standard problem in geostatistics (Jupp et al., 1989; Zhang 
et al., 1990) and in analysis of random fields (Vanmarcke, 
1983). Graphs illustrating such relationships are often called 
auxiliaryfinctions, and have been tabulated by several au- 
thors (for example, Rendu (1978)). This article reviews these 
results with emphasis on identifying the support with the 
PSF of a remote sensing device. The observations, variance, 
and variogram are said to be regularized. This term distin- 
guishes the measured quantities from the underlying proper- 
ties of the scene, which are said to be punctual (i.e., 
occurring at the scale of points rather than over finite areas). 

Theoretical results indicate how the variance and vario- 
gram of punctual data are modified by a sensor PSF. These 
relationships lead to an algorithm to estimate the punctual 
variogram from regularized observations. The problem has 
been addressed by Atkinson and Curran (1995), making use 
of developments in Journel and Huijbregts (1978). A similar 
approach is presented in this article. Furthermore, a simple 
relationship between punctual and regularized variance re- 
lates the regularized variance of two different images of the 
same scene. The basic mathematical results leading to these 
analysis techniques are well-known. But this particular com- 
bination of approaches - estimating the punctual variogram 
and relating the variance of two different images of the same 
scene - allows the use of a single observation to character- 
ize the statistical properties of observations made by differ- 
ent sensors. An image simulation study is presented in order 
to investigate the conditions under which the algorithm pro- 
duces acceptable results. The algorithm has potential appli- 
cations in modeling studies to determine required spatial 
resolutions for particular applications. 

Linear Systems and Statistical Image Models 
A remotely sensed image can be modeled as the output of a 
shift-invariant linear system. The radiance sensed at a point t 
in an image Y(t) is the convolution of scene radiance Z(t) 
with the system point spread function r(u) (Rosenfeld and 
Kak, 1982): i.e., 

All parameters are vectors representing position in two-di- 
mensional space. Such a convolution integral can also be 
written [Z * r](t). In geostatistics, the spatially varying radi- 
ance Z(t) is modeled as a realization of a regionalized vari- 
able. The field Z(t) and the output Y(t) have second-order 
properties described by their autocovariance functions ~ , (h)  
and ~yIh), respectively. The two are related as follows (Van- 
marcke, 1983, p. 107): 

A more convenient form results from the change of variables 
u = u' + h: i.e., 

The function r,,(u) = r(u - h) is a translation of the PSF r(u) 
by the vector h. 

The variogram is a more familiar tool in remote sensing 
than is the autocovariance function. One may derive a rela- 
tionship between the variograms of the input and output pro- 
cesses corresponding to the relationship for autocovariance 
functions in Equation 3. Using the identity yJh) = KJO) - 
K J ~ )  and substituting Equation 3 for K, gives 

y ~ h )  = l r(u) r(v) KAU - v) dv du 

- l rh(u) T(V) K ~ ( U  - V) dv du. (4) 

Making the substitution K,(U - v) = KJO) - yz(u - v) and 
noting that terms involving ~ ~ ( 0 )  cancel gives the result 

YAW = J: J rh(u) r(v) yZ(u - v) dv du 

- 1 J r(u) r(v1 yJu - v) dv du. (5) 

Each of the terms on the right is an average of variogram val- 
ues at lag u - v, weighted by the product r,(u) r(v) (for the 
Erst term) and by r(u) r(v) (for the second term). The nota- 
tion adopted for integrals of this form will be 

Similar notation has been used elsewhere to denote average 
variogram values between two supports and between indi- 
vidual points and supports (Webster et al., 1989; Atkinson 
and Curran, 1995). Equation 5 can be written as 

This relates the variograms of the input and output processes 
with the system PSF. This result has been shown by other au- 
thors for the case in which r is an indicator function repre- 
senting membership in a support (Rendu, 1978). The above 
derivation indicates that results are similar when one specifi- 
cally considers the spatial weighting characteristics of the 
PSF. 

Variance of linear Processes 
The variance of the output process Y(t) is the value of its au- 
tocovariance function at a lag of zero, which can be related 
to the autocovariance function of Z by Equation 3: i.e., 

Once again, making use of the identity relating K, and 
Yz* 
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Using the fact that ~ ~ ( 0 )  = u;, the definition r(u) du = 
I r I ,  and Equation 6, this becomes 

Suppose a second remotely sensed image is made of 
Z(s). Denote this as 

where s(u) is the PSF of the system producing a t ) .  The vari- 
ance of this process is given by Equation 10: i.e., 

a; = uj l s l Z  - g s ,  s). 

Combining Equations 10 and 1 2  shows 

If both PSFs are normalized to have unit volume, the I s lZ/ 
I rlZ term drops out of Equation 13. This result gives the rela- 
tionship between the variance of two different processes cre- 
ated by convolution of the same input process with different 
PSFs. If two satellite images with different spatial resolutions 
(and hence different PSFS) are made of the same scene, Equa- 
tion 13 shows how their variances are related to each other, 
and to the underlying spatial structure of the scene. 

An Algorithm for Punctual Variogram Estimation 
Equation 10 shows that the regularized variance of the out- 
put process depends on yJh), the punctual variogram of the 
input process. For a given application, if a model of the 
punctual variogram is available or may be assumed, Equation 
10 may be used directly for determination of variance for 
any image with a known PSF. Such a punctual variogram 
may be available if, for example, measurements are made on 
supports small enough to be considered points. A regularized 
variogram, however, corresponding to y,(h), may be the only 
available information on the image's spatial structure. Some 
approximation to the punctual variogram must be derived 
f&m the regularized data. 

Variograms used in practice are mathematical models fit 
to observed values. A number of standard models meet the 
requirement of being conditionally negative semi-dehite. 
Two such models are the exponential 

and the spherical 

Each model has two parameters, the sill c and the range a. 
The sill is the value which the variogram approaches at large 
lags, and the range is related to the lag at which the sill is 
reached, or the distance within which observations are corre- 
lated. In the following discussion, it will be necessary to 
specify the form and parameters of arbitrary variogram mod- 
els. For this purpose, the notation Exp(c, a) will denote an 
exponential variogram model with sill c and range a. The 
notation Sph(c, a) will denote a spherical model. 

To determine a functional form for the variogram, the 
typical approach is to choose a model or sum of models 
based on intuition or experience as to which form is most 
appropriate. Then one optimizes the fit between the model 

and observations with respect to the variogram parameters. 
This fit can be described by the sum of squared deviations, 
or by more complicated weighting schemes (Cressie, 1985). 
Denote a vector of parameters A, and a resulting variogram 
model as yJh; A) (i.e., the inclusion of the parameter indi- 
cates a modeled quantity). Assuming that the fit of the model 
is evaluated by a sum of squared differences, one finds a 
value for A which minimizes 

where ?Ah,) is a variogram value estimated from the available 
data, and n is the number of lags hi for which the variogram 
is calculated. 

Numerical methods can be used to determine a model 
for the punctual variogram y,(h, A) directly from the regular- 
ized data&(h). Approaches to the problem have been pre- 
sented by Atkinson and Curran (1995) and by Collins and 
Woodcock (1996). These methods are based on (1) fitting a 
model to regularized observations, then (2) adjusting the 
parameters of an assumed punctual model until its regulari- 
zation closely matches the model fitted to the data. The ap- 
proach described here is similar, but does not require initial 
fitting of a model to observations. 

Equation 7 is the key to determining a punctual model 
directly from regularized observations. Given a model punc- 
tual variogram, its counterpart regularized by the PSF r is 

yJh; A) = YZ(rh, r ;  A) - %(r, r;  A). 

The punctual model is determined by the value for A 
which minimizes the difference between this regularized 
model and the regularized observations.jrJh,): i.e., 

These developments allow estimation of a punctual var- 
iogram and, hence, estimation of image variance at arbitrary 
spatial resolutions, based on analysis of a single image. Data 
required for input to the algorithm are (1) a remotely sensed 
image, (2) the PSF of the sensor used to create the image, and 
(3) the PSF for a sensor whose image variance is to be esti- 
mated. 

Applications of Variance Estimation 
The algorithm presented above relies on numerical approxi- 
mation of the punctual variogram &om regularized observa- 
tions. Because numerical approximations are not exact 
solutions, the performance of the algorithm should be 
checked. Image simulation is an ideal tool for preliminary 
analysis of algorithm performance because it allows concen- 
tration on image and sensor spatial attributes, while ignoring 
extraneous differences to be expected in actual remotely 
sensed images (Kerekes and Landgrebe, 1989). Certain quali- 
ties of actual images, however, are important for this type of 
analysis. So follokng assessment of algorithm 
employing simulated images, an example based on an actual - - -  
image is presented. 

Image Simulation 
A set of simulated images was created by first generating a 
grid of autocorrelated values, then degrading it by convolu- 
tion with a series of PSFS. The punctual data were generated 
on a grid of 1024 by 1024 points, at a nomind spacing of 
one meter. (Note the distinction between punctual data at a 
spacing of one meter and regularized data at a one-meter res- 
olution.) The simulated values were calculated by a two-di- 
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Figure 1. Gaussian Point Spread Functions for spatial resolutions of (A) 5 meters, (B) 10 meters, and (C) 20 
meters, all normalized to have unit volume. Note the change of scale of the vertical axis. 

mensional autoregressive process simulator, summarized by ages created by convolving modeled PSFS with the punctual 
the following formula: data are shown in Figure 2. 

where Z(x, y) is the simulated value at spatial location (x, y), 
F and F-I are the forward and inverse Fourier transform op- 
erators, respectively, N(x, y) is a grid of unit-variance nor- 
mally distributed random numbers, and f(j, k) is a frequency 
response function of a point ( j ,  k) in frequency space. 3 de- 
notes selection of the real part of a complex number. The 
frequency response function is parameterized such that the 
resulting process exhibits spatial autocorrelation. Specifi- 
cally, its value is 

Here, n is the dimension of the image (1024 in this case), 
and a is the parameter controlling the degree of autocorrela- 
tion. The value of a is constrained to the interval [O, 0.25), 
with larger values implying greater autocorrelation. A value 
of a = 0.2495 was used to simulate the punctual data. Pixel 
values were scaled to the arbitrary range of (0, 100). 

Images were created by a discrete approximation to the 
convolution integral (Equation 1). That is, the PSF model was 
sampled at a nominal one-meter spacing, to match the sam- 
pling interval of the simulated data. This approach causes 
smaller PSFS to be sampled with less relative density than 
larger ones. But for even the smallest PSF used here, this re- 
sults in a sample of 121 points (on an 11 by 11 grid), which 
is sufficient to characterize the PSF's shape. 

The PSF of a remote sensing system is actually a combi- 
nation of PSFs associated with several system components, 
such as lenses, detectors, and amplifiers. The combination of 
PSFs is usually approximated well by a Gaussian function 
(Billingsley et al., 1983): i.e., 

r(x, yl = K exp (s}. 
The "radius" of the function is given by the parameter 

R. In this study, we identify the spatial resolution of the sim- 
ulated sensor as the diameter (2R) of the PSF. The factor K is 
determined by the system gain. When processing remotely 
sensed data, however, one usually accounts for the system 
gain by converting digital counts to at-sensor radiances. In 
such a case, K can be taken to equal 1. Examples of PSFs of 5 
meters, 10 meters, and 20 meters are shown in Figure 1. In 
all cases, the PSFs were constrained to the interval -2R I x I 
ZR, -2R < y I 2R. That is, the full width of a PSF model is 
twice its nominal resolution. This accounts for radiance inte- 
grated from outside the sensor's nominal field of view. Im- 
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Variance Estimation from Simulated Images 
For an initial validation of the algorithm, the 5-meter data 
served as the base from which variance at all other resolu- 
tions was estimated. The 5-meter data were used to estimate 
the punctual variogram (Figure 3). Values of the regularized 
variogram were calculated from the data to a lag of 100 me- 
ters, and are shown in the graph. The sill and the range of a 
spherical variogram model were determined by minimizing 
the sum of squared differences between the observed vario- 
gram and the variogram as regularized by a 5-meter Gaussian 
PSF. The punctual variogram shown in Figure 3 is given by 
y(h) = Sph(152, 39.5). There is no particular closed-form ex- 
pression for the corresponding regularized model, because it 
is calculated using Equation 7. Also shown in Figure 3 are 
values of the punctual variogram determined from the l-me- 
ter data. The numerical procedure succeeded in choosing 
parameters for the punctual variogram such that when it is 
regularized, the resulting function closely matches observed 
values. However, this close match does not imply as close a 
match between the punctual model and the punctual data. 
The punctual sill is slightly overestimated, and the estimated 
range is too small. 

Using this punctual model, variance was estimated for 
all spatial resolutions of the simulated data, assuming a 
Gaussian PSF for the regularized images (Figure 4). The vari- 
ances for the 5-meter data match by definition. For the re- 
maining resolutions, variance is estimated with reasonable 
precision. The relatively close match between the observed 
and estimated variances, in spite of errors in estimation of 
the punctual variogram, indicates that the algorithm is robust 
with respect to the punctual variogram parameters. Clearly, 
the magnitude of the error evident in Figure 3 does not cause 
serious errors in variance estimation. The relatively large dis- 
crepancy between observed and estimated variance for the 
100-meter data may be due to the small number of pixels 
available for calculating variance at this spatial resolution. 

Figure 5 illustrates attempts to estimate the punctual 
variogram from the 10-meter, 20-meter, and 50-meter images. 
Results become increasingly worse as spatial resolution be- 
comes coarse. Estimation of the punctual variogram from the 
10-meter data is fairly precise (Ah) = Sph(147, 39.4)), but 
use of either the 20-meter data ($h) = Sph(l30, 49.0)) or the 
50-meter data (Ah) = Sph(78, 81.3)) results in unacceptably 
large errors. Figure 6 shows the effect of such erroneous esti- 
mates. For the 10-meter data, estimation of variance at all 
resolutions is acceptable. Both of the coarser spatial resolu- 
tions result in incorrect estimates for finer resolutions, with 
the magnitude of the error proportional to the error in esti- 
mation punctual parameters. But in both cases, estimates at 
coarse resolutions remains precise. 
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spatial resolutions are 5, 10, 20, 50, 75, and 10 meters. 
Figure 2. Images simulated by convolution of punctual data with Gaussian PSFS. Nominal 

The simulated scene in Figure 2 has a fairly simple three component images were summed, and the resulting im- 
structure. In an attempt to investigate the utility of the vari- age was scaled to the range [O, 1001. As is shown in Figure 8, 
ance estimation algorithm for more complex scenes, a mul- the variance estimation algorithm is able to deal with the ex- 
tiscale scene was simulated (Figure 7). To create the tra spatial complexity. This figure suggests that knowledge of 
multiscale scene, single-scale images were calculated using the regularized variograrn allows estimation of resolution-de- 
three different values of the autocorrelation parameter a. The pendent variance regardless of the spatial structure of the un- 

derlying scene. 
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Figure 3. Numerical estimation of the punctual variogram 
ykh) from M e t e r  regularized data. Punctual variogram 
data are shown for reference. 
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Figure 4. Comparison of calculated and estimated vari- 
ance of the simulated images shown in Figure 2. 
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Figure 5. Estimation of the punctual variogram yAh) from 
la, 20-, and 50-meter data. Punctual variogram data are 
shown for reference. 

Cornpallson With Other Appmmhes 
The algorithm for estimating variance for arbitrary sensors 
with Gaussian PSFS is both complex and computationally ex- 
pensive. Examination of possible alternatives is worthwhile. 
The computational cost of the algorithm may be reduced by 
assuming a simpler model for the sensor PSF. Specifically, a 
PSF can be modeled as an indicator-type function, for exam- 
ple, a disk (Figure 9). Another alternative to the algorithm 
outlined above is to degrade a fine-resolution image by aver- 
aging blocks of pixels, and then to calculate the variance of 
the degraded image. 

A comparison of such alternative approaches is pre- 
sented in Figures 10 and 11. Figure 10 shows attempts to es- 
timate the punctual variogram from the 5-meter image 
(Figure 2) by assuming a disk model. Results are fairly good 
- at least no worse than results obtained from assuming a 

XI Actualvariance 
- - EsHmated Vruiance - -  - 

0 

0 
Resolution meteta 

!loo 

3 50 - - - - -  - - _ _  - - - _  *----  ---*------ 
20 40 60 80 100 

Resolution (meters) 

Figure 6. Estimation of variance at all resolutions 
based on (A) 10-meter data, (B) 20-meter data, and 
(C) 50-meter data. 

a = 0.2450 

Figure 7. Simulation of a multiscale data set. Compo- 
nents created using three different values of the autocor- 
relation parameter (a) were added in order to produce a 
multiscale scene. 

Gaussian PSF. The variogram model shown in the figure is 
y(h) = Sph(142, 41.6), very close to the estimate obtained us- 
ing the Gaussian PSF model (y(h) = Sph(147, 39.4)). Figure 
11, on the other hand, shows that estimation of variance at 
other resolutions by these alternative approaches is problem- 
atic. Using a disk PSF, or estimating variance by block aver- 
aging, results in overestimation of the variance of the 
degraded images. Also shown in Figure 11 is the expected 
variance for a white-noise process for which variance is in- 
versely proportional to spatial resolution. This curve corre- 
sponds to estimated variance under the assumption that the 
data have no spatial structure. Results for the random case 
plot as a straight line on double logarithmic plots, as shown 

Actual Variance 
- - Estimated Variance 

80 I. 

2b 40 8b 80 l o o '  
Resolution (Meters) 

Figure 8. Variance estimation for a multiscale image. 
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Figure 9. Two different Point Spread Function models. (A) 
Gaussian model. (B) Disk model. Both PSFS have a nomi- 
nal spatial resolution of 5 meters. 
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Figure 10. Estimation of punctual variogram yAh) using 
the disk PSF model. The estimation is based on the 5 m e  
ter image shown in Figure 2. 

in the lower portion of the figure. Contrasts between curves 
in the lower plot highlight the effects of spatial structure. 

Another alternative is to use a frequency-domain ap- 
proach to determining variance as a function of sensor PSF. 
Consider two images a t )  and Y(t) which are functions of a 
spatial variable t. These images may be, considered convolu- 
tions of a scene Z(t) with some PSF: i.e., 

a t )  = [Z * rl(t), (22) 
Y(t) = [Z * s](t). 

The convolution theorem (Jenkins and Watts, 1968) 
states that the Fourier transform of an image becomes the 
product of the Fourier transform of the two functions in- 
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(A) 

--, = .= .--- - - - I --_ 
................ 
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volved in the convolution: i.e., 

Faw) = FZ(w) Fr(w), variance of an image can be determined directly from its 

FY(w) = FZ(w) Fs(w). (23) transform, as follows: 

In these equations, FX denotes the Fourier transform of u# = ~IFY(U)IZ. (25) 
0 

X, parameterized by the spatial frequency w. Combining 
these equations and solving for FY shows that The method outlined above was applied to the simulated 

data shown in Figure 2. The results, shown in Figure 12, in- 
Fs(4 FY(w) = - FX(w). (24) dicate that the method performs well. Its level of accuracy is 
Fr(w) comparable to that obtained using variograms, which indi- 

cates that the approaches essentially make use of equivalent 
So, given an image a t ) ,  its PSF r(t), and the PSF s(f) of infomation. 

another image Y(t), one can determine the frequency-domain 
representation of Y. The important implication is that the ~ ~ ~ l ~ ~ l ~  ~~~l lmagm - A,, ~~~~~l~ 

Analysis of simulated images codhms the theory behind the 
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Figure 11. Variance estimation by several alternate meth- 
ods. The lower portion shows the same information as 
the top portion, using logarithmic scaling. 

variance estimation algorithm. But analysis of real scenes 
raises a number of important issues. Figure 13 shows part of 
a Landsat TM scene, Band 3 (0.63 to 0.69 p). The image, 
taken on 16 August 1985, shows a conifer forest in Oregon. 
The area covered by this image is subject to frequent logging, 
and the bright patches are recent clearcuts. It is possible to 
use the spatial information contahied in this image to esti- 
mate how much information (variance) would be present for 
such a scene in images of other spatial resolutions. 

Figure 14 shows the image variogram. A qualitative dif- 
ference between this variogram and those observed for simu- 
lated data is the presence of a small nugget variance. The 
model shown in Figure 14 is yih) = 4.05 + Exp(31.1, 211). 
where 4.05 is the nugget. Atkinson (1997) argues that a nug- 
get effect in remotely sensed data is due to measurement er- 
ror, and should be discarded. Such action could be taken in 
this example, because measurement error for the original im- 
age does not affect estimated variance for other sensors. 

The nugget effect in Figure 14 was subtracted, and the 
resulting zero-nugget variogram was used to estimate the 
punctual variogram, assuming a 30-meter Gaussian PSF. Fig- 
ure 15 shows estimated variance for other sensors with Gaus- 
sian PSFs of various spatial resolutions. Even at fairly coarse 
resolutions of about 300 meters, roughly half of the variance 
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Figure 12. Variance estimation based on the Fourier 
transform of the 5-meter image data. 

obtained at 30 meters could be expected. This is apparently 
due to the relatively large size of objects in this scene, and 
the large range of the observed variogram. Because the nug- 
get effect of the target sensors is not included, the plotted 
values represent what the variance of such a scene would be 
in the absence of sensor noise. 

Discussion 
Algorithm Performance 
Variance estimation for simulated images was highly suc- 
cessful, in spite of the fact that an intermediate step - esti- 
mation of the punctual variogram - is error-prone. A 
possible explanation lies in Equation 13. This Equation con- 
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Figure 14. Observed and modeled variograms dh) for the 
test image. The obsewed variogram is indicated by the 
'x' marks, and the model is shown by the dashed line. 

tains the difference between the average variogram for two 
PSFs, one associated with the original image and the other as- 
sociated with a sensor whose attributes are to be described. 
Both averages are calculated from a punctual model y,(h, A). 
So errors in the estimate of y,lh,h) cause errors of similar 
magnitudes for both YJr, r) and y,(s, s). Taking the differ- 
ence of these two quantities tends to minimize the error. 
This is not to say that arbitrary values could be chosen for 
the punctual variogram parameters. On the contrary, the ap- 
proach assures that punctual parameters are such that the 
variogram at a 30-meter resolution is estimated correctly. In- 
formation at the original scale, and presumably at coarser 
scales, is preserved. 

There is nothing inherent in the algorithm to prevent es- 

Figure 13. Subset of a Landsat TM image. The scene 
measures approximately 24 by 24 km. 
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Figure 15. Estimated variance for images with Gaussian 
PSFS. Calculations are based on the variogram for the 
test image. The lower portion of the figure shows the 
same information as the upper portion, using logarithmic 
scaling. 
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tirnation of variance for spatial resolutions finer than the The first is when a shift-invariant linear system is an unsuit- 
original data. In fact, if the punctual variogram is known, able model. Shift invariance implies a constant PSF for aII 
variance at any resolution can be determined accurately. The pixels. All systems violate this assumption to some degree, 
problem is the greater difficulty of estimating the punctual due to the effects of scan angles. The magnitude of the error 
variogram from coarse data. Estimates of variance at h e  is small for sensors with narrower swath widths (SPOT, TM, 
scales are affected by such problems, as can be seen in Fig- hiss). But the suitability of the shift-invariance assumption is 
ure 6. In practice, there is no way to tell whether the punc- badly violated for some of the more synoptic sensors (e.g., 
tual variogram has been estimated precisely. This uncertainty AVHRR) and for most airborne sensors (e.g., TMS). Analysis of 
undermines coddence in be-scale estimates made from such systems could be undertaken, but the results would be 
coarse-scale data. At best, such estimates constitute reason- limited in applicability to areas over which the PSF could be 
able guesses based on the available information, but their considered constant. 
accuracy can not be confirmed in practice. The results pre- A second potential problem is violation of the assump- 
sented here indicate that the quality of estimates at spatial tions implicit in statistical analysis of random fields, namely 
resolutions closer to that of the original image are better than stationarity and ergodicity. A variogram can always be esti- 
those for much finer resolutions. More experience may lead mated from image data, but this estimation is only valid if 
to a general rule regarding the range of resolutions over the necessary assumptions are met. If the available image 
which estimates remain valid. data contain major gradients in land surface characteristics 

Comparison of the variance estimation algorithm with (elevation, soil moisture, solar radiation, etc.), the parameters 
other approaches reveals the importance of accounting for of the random field could not be regarded as stationary. Any 
the spatial characteristics of both the sensor and the ground variogram models, and conclusions drawn from them, would 
scene. The existence of spatial structure in the simulated im- be invalid. 
ages causes the large discrepancy between the observed vari- In summary, the algorithm illustrates the relationship be- 
ances and that which would be expected in the case of tween spatial resolution and variance, given a pattern of at- 
random spatial structure (Figure 11). When high correlation sensor radiance. The requirements of shift invariance and 
exists between nearby values, there is less variability within stationarity exclude a number of images and systems from 
pixels than between them. So image variance decreases analysis. Existing sensors differ enough in their characteris- 
slowly with changes in spatial resolution, resulting in higher tics that rarely, if ever, will a set of images be sufEciently 
variance than for the random case. similar that these methods can be used to determine accu- 

Aggregating blocks of pixels implicitly accounts for the rately the variance of one by analysis of another. This is an 
spatial structure of a scene, but still does not lead to accurate unfortunate situation, but it does not render the algorithm 
variance estimation of coarse-resolution images. Interestingly, useless. On the contrary, it is quite useful for simulation 
this approach corresponds to methods used in a number of studies for examination of spatial resolution changes. 
studies of spatial resolution effects in remotely sensed data. In some situations, the error arising through image pro- 
Essentially, a multiresolution data set created by averaging cessing can be related directly to the variance of the input 
blocks of pixels does not have the same second-order proper- data. Key (1994) discusses determination of accuracy of 
ties as one created using realistic models of sensor spatial re- thresholding operations in estimation of the area coverage of 
sponse. The discrepancy in estimated variances is similar to geophysical fields. The error made in a binary classification 
that obtained by using the simpler PSF model. Both of these of a remotely sensed image can be explicitly related to the 
alternate approaches result in overestimates of variance. A variance of the cover fraction within pixels. Thus, it can be 
probable reason is that neither accounts for overlap in the related to a description of the spatial structure of the field 
spatial response of adjacent pixels. The PSF of Landsat TM, (i.e., the variogram) and to the spatial response of the remote 
for example, integrates some radiance from outside the norni- sensing system. 
nal 30-meter instantaneous field of view (IFOV) when making Another application involves the assessment and correc- 
a measurement (Markham, 1985). This tends to make adja- tion of error in ecological process models using remotely 
cent pixel values more similar and, thus, lowers variance. sensed inputs. Error in such models can be related to the 
Most empirical studies based on block averaging, in particu- variance and covariance of input terms by using linearization 
lar, do not take such overlap into account. of the statistical expectation operator (Rastetter et al., 1992). 

Hu and Islam (1997) combine this concept with the modeling 

Algorithm Applicability of within-pixel variance to create scale-invariant remote 

There are a number of important factors in the remote sensing sensing 'gorithms. The can determine the 

process which are not considered in the variance estimation al- suitability of different sensors and different model parameter- 

gorithm. The only components considered are the spatial re- ization schemes for driving physical models. 
Variance is found to be estimated more precisely by us- 'POnse of the sensor* and the smuctur. the at-sensor 

ing realistic models of the remote sensing process than by radiation. In some environments, viewing and illumination con- using simplified approaches. But it is not immediately clear ditions can have a signi£icant impact on the scene spatial struc- how the magnitude of the errors in Piwe 11 affect applied ture, affecting both the magnitude and isotropy of spatial 
dependence. Another major factor which is not considered is results. Sensitivity of applications to the error introduced 

the influence of the atmosphere, which can affect image vari- employing simplified methods could be investigated in a fu- 

ance by altering the magnitude or spatial pattern of upwelling ture study. 
radiation. Spatial effects induced by the atmosphere can be 
modeled by considering an atmospheric PSF in addition to the C O ~ C ~ U S ~ O ~  
sensor PSF (Billingsley et al., 1983). But accurate determination The relationship between variance and spatial resolution of 
of the magnitude of upwelling radiances requires more detailed satellite images is described by a geostatistical model. The 
consideration of atmospheric constituents. model accounts for the spatial structure of the scene using its 

Even with a constant pattern of at-sensor radiances, ac- variogram, and accounts for the sensor spatial response using 
tual remotely sensed images have characteristics which re- the PSF. Given a satellite image and a sensor PSF, one may 
duce the utility of the proposed methods. Two situations estimate the parameters of a punctual variogram for the un- 
limiting the applicability of the algorithm can be identified. derlying scene. The estimated punctual variogram may be 
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used to determine variance for other sensors. The algorithm 
performs well for simulated images. Comparison with results 
obtained by simpler methods indicate the importance of ac- 
counting for scene and sensor spatial properties when infer- 
ring variance at coarse resolutions. 

Some complications arise if spatial structure is inferred 
from an actual remotely sensed image. The existence of sen- 
sor noise leads to a nugget effect in the observed variogram, 
which must be subtracted prior to further analysis. Also, the 
failure of the algorithm to account for various cross-sensor 
differences makes it difficult to confirm the accuracy of 
coarse-resolution variance estimates. Nonetheless, the meth- 
ods show promise for studying the impact of sensor charac- 
teristics on the ability to retrieve land-surface parameters 
from remotely sensed data when employing particular pro- 
cessing strategies. 
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