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Abstract 
Analyses of the fractal dimension of Normalized Difference 
Vegetation Index (NDVI] images of homogeneous land covers 
near Huntsville, Alabama revealed that the fractal dimension 
of an image of an agricultural land cover indicates greater 
complexity as pixel size increases, a forested land cover 
gradually grows smoother, and an urban image remains 
roughly self-similar over the range of pixel sizes analyzed (10 
to 80 meters). A similar analysis of Landsat Thematic Map- 
per images of the East Humboldt Range in Nevada taken 
four months apart show a more complex relation between 
pixel size and fractal dimension. The major visible difference 
between the spring and late summer NDvI images is the ab- 
sence of high elevation snow cover in the summer image. 
This change significantly alters the relation between fractal 
dimension and pixel size. The slope of the fractal dimension- 
resolution relation provides indications of how image classi- 
fication or feature identification will be affected by changes 
in sensor spatial resolution. 

Introduction 
For as long as computers have been used to analyze geo- 
graphical data sets, spatial data have placed heavy demands 
on the data processing and storage capabilities of hardware 
and software. As the geographical and temporal coverage, the 
spectral and spatial resolution, and the number of individual 
sensors increase, the sheer volume and complexity of avail- 
able data sets will continue to tax hardware and software. 
The increasing importance of networking with the require- 
ment to move data sets between different servers and clients 
makes the data volume problem particularly acute. Analyti- 
cal techniques such as stochastic simulation, wavelet decom- 
position of images into different space and scale compo- 
nents, and geostatistics, which all require large amounts of 
storage as well as fast processors and networks, also tax 
available hardware, software, and network services. Mitigat- 
ing this problem requires using data efficiently, that is, using 
data at the appropriate scale and resolution to adequately 
characterize phenomena, thus providing accurate answers to 
the questions being asked. 
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Generalization 
Maps and other models of physical phenomena are simpli- 
fied abstractions of reality and necessarily involve some de- 
gree of generalization. When performed correctly, generaliza- 
tion both reduces the volume of data that must be stored and 
analyzed and clarifies the analysis itself by separating signal 
from noise. For geographical analyses, a key concept in the 
generalization process is scale (Quatttochi, 1993). Cao and 
Lam (1997) outline various measures of scale: 

Cartographic scale - proportion of distance on a map to the 
corresponding distance on the ground 
Geographic (observational) scale - size or spatial extent of 
the study 
Operational scale - the spatial domain over which certain 
processes operate in the environment 
Measurement (resolution) scale - the smallest distinguish- 
able object or parts of an object 

Landscape processes are generally hierarchical in pattern 
and structure, and the study of the relation between the pat- 
terns at different levels in this hierarchy may provide a bet- 
ter understanding of the scale and resolution problem (Batty 
and Xie, 1996; Cao and Lam, 1997). Thus, an analyst must 
first understand the research question and the spatial domain 
of the process being measured (including the spatial organi- 
zation of the features of interest) in order to determine the 
extent of the required input data and the cartographic scale 
of the output maps. The research question and the support- 
ing inputs and outputs necessary to address the question, to- 
gether with the availability of data and the capabilities of the 
analyst (knowledge, hardware, and software), then determine 
what resolution is needed in the input data. 

Fractals 
Quantifying the complex interrelation between these notions 
of size, generalization, and precision has proven to be a diffi- 
cult task, although several measures such as univariate and 
multivariate statistics, spatial autocorrelation indices such as 
Moran's I or Geary's C, and local variance within a moving 
window (Woodcock and Strahler, 1987) provide some under- 
standing of these interactions under given assumptions and 
within limits of certainty. An important area of research on 
this topic employs the concept of fractals (Mandelbrot, 1983) 
to determine the response of measures to scale and resolu- 
tion (Goodchild and Mark, 1987; Goodchild and Klinkenberg, 
1993; Lam and Quattrochi, 1992; Mark and Aronson, 1984). 
Fractals embody the concept of self-similarity, in which the 
spatial behavior or appearance of a system is largely inde- 
pendent of scale (Burrough, 1993). Self-similarity is defined 
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as a property of curves or surfaces where each part is indis- 
tinguishable from the whole, or where the form of the curve 
or surface is invariant with respect to scale. It is impossible 
to determine the size of a self-similar feature from its form; 
thus, photographs of geological strata usually include some 
object of known size for reference. An ideal fractal (or mono- 
fractal) curve or surface has a constant dimension over all 
scales (Goodchild, 1980), although it may not be an integer 
value. This is in contrast to Euclidean or topological dimen- 
sions, where discrete one, two, and three dimensions de- 
scribe curves, planes, and volumes, respectively. 

Theoretically, if the digital numbers of a remotely sensed 
image resemble an ideal fractal surface, then, due to the self- 
similarity property, the fractal dimension of the image will 
not vary with scale and resolution. However, most geograph- 
ical phenomena are not strictly self-similar at all scales 
(Goodchild and Mark, 1987), but they can often be modeled 
by a stochastic fractal in which the scaling and self-similarity 
properties of the fractal have inexact patterns that can be de- 
scribed by statistics such as trail lengths, area-perimeter ra- 
tios. s~a t ia l  autocovariances. and rank-order or freauencv 
dis&idutions (Burrough, 199.3). Stochastic fractal sets r e f a  
the monofractal self-similiarity assumption and measure 
many scales and resolutions ih order io represent the varying 
form of a phenomenon as a function of local variables across 
space (De Cola, 1993). 

Multifractal fields are those in which the scaling proper- 
ties of the field are characterized by a scaling exponent func- 
tion. Rather than being described by a single fractal dimen- 
sion, a multifractal field can be thought of as a hierarchy of 
sets corresponding to the regions exceeding fixed thresholds 
(De Cola, 1993). If E,(x) is a value in a multifractal field, then 
the probability of finding the a value of E, greater than a 
given scale-dependent threshold A is expressed as 

where y is the order of singularity (Pecknold et al., 1997). A 
is a resolution (as expressed as the square root of the ratio of 
the two-dimensional area to the areas of the smallest object 
represented in the image). -c(y) is the codimension function, 
which describes the sparseness of the field intensities. This 
equation describes how histograms of the density of interest 
vary with map resolution. 

Pattern and Texture 
In image interpretation, pattern is defined as the overall spa- 
tial form of related features, and the repetition of certain 
forms is a characteristic pattern found in many cultural ob- 
jects and some natural features. Texture is the visual impres- 
sion of coarseness or smoothness caused by the variability or 
uniformity of image tone or color (Avery and Berlin, 1992). 
A potential use of fractals concerns the analysis of image tex- 
ture (De Cola, 1989; de Jong and Burrough, 1995). In these 
situations, it is commonly observed that the degree of rough- 
ness, or large brightness differences in short spatial intervals, 
in an image or surface is a function of scale and not of ex- 
perimental technique. Very often, attempts to increase the 
precision of measurements by working at greater detail only 
result in the discovery of additional features that complicate 
analysis at the new scale (Burrough, 1993). The fractal di- 
mension of remote sensing data could yield quantitative in- 
sight on the spatial complexity and information content 
contained within these data (Lam, 1990). Thus, remote sens- 
ing data acquired from different sensors and at differing spa- 
tial and spectral resolutions could be compared and evalu- 
ated based on fractal measurements (Jaggi et al., 1993). 

Texture can be measured using a variety of other indices 
such as variance, range, or standard deviation within a mov- 
ing window. The differences in texture for images covering 

the same area but with different cartographic scales and reso- 
lutions can indicate the heterogeneity of the scene under ob- 
servation. The higher the resulting textural parameter, the 
greater the degree of contrast or heterogeneity in the image. 
When texture analysis is applied to images of the same scene 
with different resolutions, the computed indices can be com- 
pared with regard to the changes that result from scaling. It 
is argued that the highest texture index indicates the highest 
variation and, thus, the resolution level at which most pro- 
cesses operate (Cao and Lam, 1997). The texture analysis 
method also operates on the assumption that the variability 
of the geographic data changes with scale and resolution, 
and the scale at which the maximum variability occurs is re- 
lated to the operational domain of the processes depicted in 
the image. By f,inding the maximum variability of the data 
set, one could find the operational domain of the geographic 
phenomenon, thus aiding the selection of the appropriate 
resolution and spatial extent needed in the input imagery. 

Ovetview of the Methodology 
A software package known as the Image Characterization and 
Modeling System (ICAMS) (Quattrochi et al., 1997) was used 
to explore: 

How changes in sensor spatial resolution affect the computed 
fractal dimension of ideal fractal sets, 
How fractal dimension is related to surface texture, and 
How changes in the relation between fractal dimension and 
resolution are related to differences in images collected at 
different dates. 

ICAMS provides the ability to calculate the fractal dimen- 
sion of remotely sensed images using the isarithm method 
(Lam and De Cola, 1993) (described below) as well as the 
variogram (Mark and Aronson, 1984) and triangular prism 
methods [Clarke, 19861. ICAMS also allows calculation of ba- 
sic descriptive statistiis, spatial statistics, and textural meas- 
ures such as the local variance (Woodcock and Strahler, 
1987), and contains utilities for aggregating images and gen- 
erating specially characterized images, such as the Normal- 
ized Difference Vegetation Index (NDW). 

The ICAMS software was verified using simulated images 
of ideal fractal surfaces with specified dimensions. ICAMS 
was also used to analyze real imagery obtained by an air- 
craft-mounted high-resolution scanner and multi-date satel- 
lite imagery. The fractal dimension for areas of homogeneous 
land cover in the vicinity of Huntsville, Alabama was com- 
puted to investigate the relation between texture and reso- 
lution, and a multi-tem~oral analvsis was carried out on 
 ands sat Thematic ~ a ~ i e r  image; of the East Humboldt 
Range area in Nevada. Normalized Difference Vegetation In- 
dexlmm) images were used in each case, because ICAMS re- 
quires an eight-bit, single function data set, and because NDW 
can readily be interpreted in terms of the urbanlrurallforest 
contrasts in the Huntsville area and the in terms of the sea- 
sonal changes in vegetation pattern in the Nevada images. 

lsarithm Method 
The isarithm or line-divider method for calculating fractal di- 
mension was used in this analysis due to its robustness, its 
accuracy, and its relative lack of sensitivity to input param- 
eters. In this method, the fractal dimension of a curve (in a 
two-dimensional case) is measured using different step sizes 
that represent the segments necessary to traverse a curve 
(Lam and De Cola, 1993). For an irregular curve, as the step 
sizes become smaller, the complexity and length of the 
stepped representation of the curve increases. The fractal 
dimension D is derived from the equation 

D = log Nllog (1lG) (2) 

where G is the step size and N is the number of steps re- 
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quired to traverse the curve. If we plot the logarithm of the 
number of segments needed to traverse a curve for a range of 
step sizes versus the length of the curve and perform a linear 
regression, we get 

log L = C + p log G 

where L is the length of the curve, P is the slope of the re- 
gression of log (number of grid cell edges) versus log (step 
sizes), and C is a constant. 

For surface representations (such as remotely sensed im- 
ages), the isarithm method uses contours of equal z values as 
the objects of measurement whose fractal dimensions are es- 
timated. The contours, or isarithms, are generated by divid- 
ing the range of pixel values into a number of equally spaced 
intervals. For each resulting isarithm line, the image is di- 
vided into two regions - areas above and below the isar- 
ithmic value. Each isarithm's length (as represented by the 
number of edges in a grid representation of a surface) is then 
measured at integer step sizes up to a user specified maxi- 
mum. The logarithm of the number of edges is regressed 
against the log of the step sizes, producing a fractal plot. The 
slope of the regressed fractal plot is used to calculate the 
fractal dimension using Equation 4, resulting in a unique 
value of D for each isarithm. The fractal dimension of the en- 
tire image is calculated by averaging the computed fractal di- 
mensions of only those isarithms that have fractal plots with 
R2 > 0.90 (Jaggi et a]., 1993). 

ICAMS also contains modules for analyzing the spatial 
autocorrelation of images. Moran's I and Geary's C (Cliff and 
Ord, 1973) are two indices of spatial autocorrelation which 
reflect the differing spatial structures of the smooth and 
rough surfaces. Moran's I is calculated from the following 
formula: 

where w,~  is the weight at distance d so that w, = 1 if point j 
is within distance d from point i; otherwise, wij = 0; z's are 
deviations (i.e., zi = yi - y,,, for variable y), and W is the 
sum of all the weights where if j. Moran's I varies from +1.0 
for perfect positive correlation (a clumped pattern) to -1.0 
for perfect negative correlation (a checkerboard pattern). 

Geary's C contiguity ratio, another index of spatial auto- 
correlation, is similar to Moran's I but uses the formula 

with the same terms listed above. Geary's C normally ranges 
from 0.0 to 3.0, with 0.0 indicating positive correlation, 1.0 
indicating no correlation, and values greater than 1.0 indicat- 
ing negative correlation. 

Moran's I and Geary's C differ from the fractal dimen- 
sion in that D is focused on object shape, size, and the tortu- 
osity of the edges of these objects. Moran's I and Geary's C 
are similar to join count statistics, but they operate on inter- 
val or ratio scale data. These measures do not explicitly con- 
sider the shapes and sizes of objects once the weights wit in 
Equations 5 and 6 are determined. This "topological invari- 
ance" (Cliff and Ord, 1973) shifts the focus in I and C to rel- 
ative location, expressed as contiguity. 

Fractional Brownian Suhce Simulation 
Ideal fractal surfaces having known dimensions were gener- 
ated using the shear displacement method (Goodchild, 1980; 
Goodchild, 1982), as implemented in FORTRAN code pro- 
vided by Lam and De Cola (1993). This method takes a grid 
matrix, initializes it to a uniform z = 0, and generates a suc- 
cession of random lines across the grid surface. Along each 
line, the surface is faulted vertically to form a cliff. This pro- 
cess is repeated until several random fault lines are created 
between adjacent sample points. The intersections of these 
lines follow a Poisson distribution, while the angles of inter- 
section are distributed uniformly between 0 and 2a. Each 
cliff's height is controlled by the user-specified parameter H, 
so that the variance between two points is proportional to 
their distance, as expressed in the variogram expression 

where z(u) and z(u + h) are the z-values of a continuous sur- 
face at (x,y) locations represented by a vector u, and h is the 
Euclidean distance; or lag between the points. 

The class of variograms 31h) = hZH are termed "fractional 
Brownian" (Goodchild, 1980) and have contours such that the 
hc ta l  dimension D of the surface is equal to 3 - H. The 
parameter H, which has values ranging from 0 to 1, describes 
the persistence of the surface - for large H, the surface has a 
strong tendency to return to neighboring values, and differences 
between adjacent points are small. For small H, the surface is 
highly irregular. An H value of 0.5 results in a Brownian sur- 
face that is statistically self-similar, so that if the intervals are 
rescaled by the ratio rH, the rescaled surface has a probability 
distribution that is identical to the original (Burrough, 1993). 

Figure 1 shows the effect of the H parameter. The sur- 
face with H = 0.1 is quite rough, with bright and dark pixels 
occurring at closely spaced intervals. Increasing H to 0.3 and 
0.5 results in progressively smoother, more uniform surfaces. 
A surface with H = 0.7 bears a close resemblance to a topo- 
graphical surface in the absence of any geomorphologic pro- 
cesses such as erosion that are not scale invariant. Goodchild 
and Mark (1987) have therefore proposed the use of artifi- 
cially generated fractional Brownian surfaces as null hypoth- 
eses in geomorphologic studies. 

The SURF-GEN program (Lam and De Cola, 1993) re- 
quires the user to input the number of rows and columns of 
the desired surface, the number of random cuts or cliffs in 
the surface, an H value, and a seed value for the random 
number generator. For this analysis, 1024- by 1024-pixel sur- 
faces with H = 0.1, 0.3, 0.5, and 0.7 were generated using 
5000 cuts and identical seed values. The resulting text files 
were converted to 8-bit images normalized to DN = 0 to 255. 

An image pyramid approach (De Cola, 1993; De Cola, 
1997) using simple averaging was used to generate coarser 
resolution images from the 1024 by 1024 originals. Suppose 
L is a positive integer with n = ZL and let X, be an n by n 
array of z values. By taking the mean of each 2' by 2 ,  1 = 0, 
..., L non-overlapping window in the original image (in this 
case the 1024 by 1024 output from S ~ G E N ) ,  one can gen- 
erate a stack of L + 1 layers. While the size of the original I 
= o layer is (zL)2, the size of the complete image pyramid is 
only 413 (2L)z. Although the size of each layer is one-quarter 
that of the one below it, the amount of information declines 
more slowly than this (De Cola, 1993; De Cola, 1997). 

As others (Woodcock and Strahler, 1987) have noted 
for the case of remotely sensed data, this simple averaging 
within a 21 by 21 window implies a square wave response on 
the part of the sensor. Although this is an oversimplification 
of actual sensor integration of reflectances within the instan- 
taneous field of view, the simple averaging approach is suffi- 
cient to study the basic properties of statistical self-similarity 
in simulated and real world images. In the analysis of the 
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Figure 1. Simulated ideal fractal surfaces. 1024- by 
1024-pixel images generated by the shear displacement 
method with the same random number seed. (a) H 
= 0.1, D = 2.9. (b) H = 0.1, D = 2.9. (c) H = 0.1, D 
= 2.9. (d) H = 0.1, D = 2.9. 

simulated fractal surfaces L = 10, thus generating square sur- 
faces with 1024, 512, 256, 128, and 64 pixels on a side. Sur- 
faces smaller than 64 by 64 were not used in this analysis 
due to the limitations of the isarithm method, which requires 
a 48- by 48-pixel minimum surface for computing D with a 
step size of five. 

Resub of Fractional Brownian Surface Analysis 
Because the maximum step size in the isarithm method is 
limited by the size of the image, D was computed for both 

the maximum possible number of steps for each averaged 
image and for five steps, the maximum number available for 
the smallest image size. The maximum number of steps al- 
lowed was nine s t e ~ s  for the 1024 bv 1024 image. Table l 
lists the descriptivi statistics for the-ideal fracta surfaces. 
Table 1 shows that the mean and median digital numbers for 
each H value remain approximately the same when the pix- 
els are aeereeated into larger cells. Standard deviation of the 
digital n g b i r s  (DN) decreases drastically with increasing ag- 
gregation for the H = 0.1 surface, but changes very little for 
the H = 0.7 surface. Adiacent cells have similar values in the 
smoother surfaces with high H (and low fractal dimension), 
while averaging groups of adjacent cells has a more pro- 
nounced smoothing effect on the irregular surface. 

Figure 2 shows D for each of the four fractional Brown- 
ian surfaces generated with the SURF-GEN program. The frac- 
tal dimensions estimated by ICAMS generally agree with the 
known dimensions of each surface, although there is a ten- 
dency for the isarithrn method to overestimate, particularly 
at lower values of H (and consequently higher fractal dimen- 
sions). Specifying five as the maximum possible number of 
steps made little difference in the estimated dimension, al- 
though using the maximum possible number of steps in- 
creased the overestimation at lower H values. The fairly 
linear response across resolutions is a characteristic of ideal 
fractal surfaces and demonstrates the concept of self-similar- 
ity - for these monofractal surfaces, the complexity of the 
image remains the same across scales. 

Table 2 lists the error (difference between computed D 
and the D = 3 - H that was specified in the SURF-GEN pro- 
gram) for each resolution and H-value along with the overall 
root-mean-squared error (RMSE, square root of the mean of 
the squared differences between the estimated D and the D 
resulting from the specified H value). The least bias and low- 
est standard deviation occur at H = 0.5 for both the maxi- 
mum number of steps and a fixed step size of five. In 
general, a fixed step size generated the least RMSE across all 
values of H, although the lowest error was obtained at H = 
0.5 for the maximum number of steps. 

The ICAMS local variance utility was used to compute 
the variance of pixels within a moving 3 by 3 window. This 
utility generates a texture map of the image and computes 
the global mean standard deviation of the DNs in the moving 
window. Figure 3 shows the effect of pixel aggregation and 
scaling on the mean standard deviation (MSD) within the 3 

Pixel Max D R D RZ Mean Median DN Moran's Geary's Mean 
H Size Image Size Steps Max Step Max Step 5 Step 5 Step DN DN Std. Dev. I C Std. Dev 
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Figure 3. Mean standard deviation within a 3 by 3 moving window - sim 
ulated surfaces. 
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TABLE 2. DEVIATIONS FROM KNOWN FRACTAL DIMENSION - ISARITHM METHOD 

Five Steps Maximum Possible Steps 

Pixel Size H = 0.1 H = 0.3 H = 0.5 H = 0.7 H = 0.1 H = 0.3 H = 0.5 H = 0.7 

1 0.0830 0.1052 -0.0046 -0.1369 0.1193 0.1901 0.0294 -0.1511 
2 0.0658 0.0488 -0.0546 -0.1788 0.1431 0.1391 -0.0077 -0.1719 
4 0.0914 0.0258 -0.0570 -0.1750 0.0988 0.1134 -0.0184 -0.1712 
8 0.0972 0.0398 -0.0403 -0.1731 0.1219 0.0728 -0.0308 -0.1594 
16 0.1362 0.0509 -0.0247 -0.1721 0.1362 0.0509 -0.0247 -0.1557 

RMSE 0.0975 0.0605 0.0412 0.1679 0.1248 0.1235 0.0238 0.1621 

- -  - 

- 
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Figure 2. Ideal fractal surface dimension. 



than 5 percent cloud cover. ATLAS is a 15-channel imaging 
system that incorporates the bandwidths of the Landsat The- 
matic Mapper with additional bands in the middle reflective 
infrared and thermal infrared range (Table 3). The daytime 
data were collected around local solar noon and then re- 
peated two to three hours after sunset. Beginning at 1100 
local time, nine daytime flight lines were flown from an alti- 
tude of 5000 meters to image at 10 meters resolution, and six 
flight lines were flown at an altitude of 2500 meters to image 
at 5 meters resolution. All flight lines were repeated at night 
beginning at 2030 local time. Color infrared photography was 
also acquired during the daytime fights (f = 152 mm, 23- by 
23-cm format). Ground data collection, including the estab- 
lishment of GPS control points, measurement of surface tem- 
peratures at selected sites representing different cover types, 
and concurrent launches of radiosondes were also carried 
out during the overflights (Lo et al., 1997). The 10-meter data 
were registered to a digital line graph model of the Hunts- 
ville area that had been updated to include GPS horizontal 
control points. 

384- by 384-pixel images containing homogeneous land 
uses were obtained from the 10-meter ATLAS data set (Fig- 
ures 4 and 5). Three land uses were analyzed: (1) an agricul- 
tural area located north of Huntsville, (2) a forested area 
located in the mountains to the southeast of town, and (3) an 
urban area containing the central business district and adja- 
cent commercial/residential areas. The agricultural area con- 
tains large cotton fields and pastures devoted to grazing, with 
a sparse road network oriented generally along the cardinal 
directions. The image of the forested area is fairly uniform, 
because the 10-meter resolution is insufficient to resolve in- 
dividual trees. Topographical features such as the valley ex- 
tending from the northwest corner to the south central part 
of the image are the main distinguishing features. The urban 
image is highly complex, with individual streets and build- 
ings clearly visible. Large commercial buildings associated 
with the central business district are visible in the southeast 

TABLE 3. ATLAS CHANNELS 
- 

Channel # Bandwidth (pm) 

part of the image, and shopping centers extend along U.S. 
Highway 431 from the south to northeast. 

In an earlier analysis of the Huntsville ATLAS data, Lo et 
al. (1997) found significant correlations between the day and 
night time irradiances of various types of land covers and 
images of the Normalized Difference Vegetation Index (NDVI). 
NDVI showed a very strong negative correlation with the irra- 
diance of residential, agricultural, and vacant land uses, im- 
plying that vegetation tends to bring down the surface tem- 
peratures, especially during the daytime. In the analysis 
presented here, NDVI was computed for the agricultural, for- 
est, and urban images at a 10-meter resolution (384 by 384 
pixels) and for coarser resolution images having 20-, 40-, and 
80-m square pixels using an image pyramid approach (De 
Cola, 1993; De Cola, 1997) using the mean of 4-, 16-, and 64- 
pixel composites of the original 10-m square pixels. NDVI 
was computed from the ATLAS channel 6 (near infrared) and 
4 (red) images using the following formula: 

Figure 4. Location of Nevada and Huntsville study areas. 
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NDVI varies from -1 to +1, and provides a good indica- 
tion of the amount of photosynthetically active biomass in 
the image. Snow, water, clouds, moist soil, and highly reflec- 
tive non-vegetated surfaces generally have NDVI values less 
than zero, rock and dry soils have values close to zero, and 
highly vegetated surfaces have indices close to +LO. NDVI 
varies across spatial extents in a complex fashion due to in- 
fluences of the varying domains of topography, slope, avail- 
ability of solar radiation, and other factors (Walsh et a]., 
1997). 

The ICAMS isarithm method with step size of five and 
contour interval of ten was used to compute fractal dimen- 
sion for the three land uses. The ICAMS software computed 
very high fractal dimensions (in some cases exceeding the 
theoretical limit of D = 3.0) for images of the raw floating 
point NDVI values. Rescaling the NDVI values to an 8-bit for- 
mat facilitated comparisons between the three land-cover 
textures and helped illustrate how changes in resolution af- 
fect the computed fractal dimension. Table 4 shows the de- 
scriptive statistics for the 10-meter image and the coarser 
resolution surfaces with 20-, 40-, and 80-meter square pixels. 
The image size and the range of resolutions was limited at 
the upper end by the need to get a homogeneous land cover 
(thus limiting the maximum size of the image) and at the 
lower end by the minimum image size (48 by 48 pixels) nec- 
essary to use five steps in the isarithm method of computing 
fractal dimension. The ATLAS 5-meter data were not used be- 
cause sufficiently large forested and agricultural areas were 
not imaged in the six flight lines obtained at the lower alti- 
tude. 

Decreasing resolution affected the non-spatial variance 
of the three land covers in different ways. Variance dropped 
by a moderate amount for the agricultural image and by a 
greater amount in the forested image, but it changed very lit- 
tle for the urban image. Moran's I dropped as resolution de- 
creased from 10- to 80-meter pixels in the agricultural and 
urban images (indicating decreasing spatial autocol~elation), 
and the spatial statistics increased then declined in the for- 
ested image. The mean standard deviation within a 3 by 3 
moving window for all three land covers increased with de- 
creasing resolution as the larger pixels encompassed larger 
areas of the ground surface. These measures provide indica- 
tions that convolving groups of small pixels into larger pixels 
by taking the mean DN (and by extension, imaging at differ- 
ent resolutions) affects both the non-spatial distribution of 
the values in an image as well as the relation between fea- 
tures in the image. 

Unlike the ideal fractal surfaces, real world images are 
rarely self-similar, so one would expect fractal dimension to 
vary with the resolution of the sensor. Figure 6 shows that 

(8)  (f) 

Figure 5. ATLAS NDVI Images of the Huntsville, Alabama 
region. (a) Agricultural area, 10-m resolution. (b) Agricul- 
tural area, 80-m resolution. (c) Forested area, 10-m reso- 
lution. (d) Forested area, 80-rn resolution. (e) Urban 
area, 10-m resolution. (f) Urban area, 80-m resolution. 

over the lo- to 80-meter range of resolutions, the agricultural 
image D increases from just over 2.6 to more than 2.9. The 
forest image shows a general decline in D with decreasing 

TABLE 4. DESCRIPTIVE STATISTICS - HUNTSVILLE NDVI TEXTURE ANALYSIS 

Land Pixel 
Cover Size (m) Image Size 

Forest 

Urban 

Mean 
RZ 

0.9904 
0.9817 
0.9680 
0.9754 
0.9920 
0.9900 
0.9933 
0.9754 
0.9903 
0.9924 
0.9798 
0.9763 

Mean 
DN 

127.10 
127.13 
127.15 
127.22 
127.73 
127.86 
127.89 
128.02 
127.01 
127.00 
126.99 
127.00 

Median 
DN 

137 
137 
136 
134.5 
132 
132 
131 
131 
137 
133 
132 
133 

DN 
Std. Dev. 

42.18 
42.10 
41.97 
41.79 
38.68 
38.19 
37.73 
37.53 
42.50 
42.50 
42.50 
42.51 

Moran's 
I 

0.9023 
0.8763 
0.8217 
0.7369 
0.7557 
0.7830 
0.8073 
0.7932 
0.7587 
0.7595 
0.7063 
0.6726 

Geary 's 
C 

0.0978 
0.1237 
0.1773 
0.2612 
0.2443 
0.2171 
0.1937 
0.2105 
0.2413 
0.2407 
0.2947 
0.3301 

Mean 
Std. Dev 

19.92 
30.00 
53.26 

102.76 
23.35 
30.94 
52.67 

101.93 
24.96 
32.88 
54.95 

103.32 
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Figure 6. Fractal dimension of Huntsville NDVI images. 

resolution, and averaging the original 10-meter pixels into 
larger pixels has only a small negative effect on the com- 
puted D value, as indicated by the negative 95 percent c o d -  
dence interval for the slope of the regression for the forest 
data (Table 5). 

The forested scene behaves as one would expect - 
larger pixel sizes decrease the complexity of the image as in- 
dividual clumps of trees are averaged into larger blocks. It is 
likely that the tortuosity of isarithms of gray values in the 
forested image (as indicated by a higher D value) would be 
greater if the sensor were able to resolve individual trees 
within the scene. The urban image behaves most like an 
ideal fractal surface and can be said to be self-similar over 
the range of pixel sizes analyzed, because one cannot reject 
the hypothesis that the slope of the pixel size-hactal dimen- 
sion relation is equal to zero. The 95 percent confidence in- 
terval for the regression slope overlaps zero (although just 
barely at the low end). The slope of the changes in D with 
changes in resolution for the three land uses indicates how 
agricultural, urban, and forested areas compare over the 
range of pixel sizes considered. It should be noted, however, 
that these regressions are based on only one image and four 
pixel sizes in a limited range for each land-cover type. Al- 
though the RZ values for the agriculture and forest images is 
0.94 or higher, the regression of the urban resolution-D rela- 
tion, 0.87 is not as strongly linear. 

The increased complexity of the agricultural image with 
increasing pixel size results from the loss of homogeneous 
groups of pixels in the large fields to mixed pixels composed 
of varying combinations of NDVI values that correspond to 
roads and vegetation. Figure 5 shows that, as resolution de- 
creases in the agricultural image, the roads tend to appear 
wider and the fields are smaller, until eventually the image 

appears very complex, with few homogeneous areas. This is 
also reflected in the changes in Moran's I statistic in Table 4. 
The I statistic for the agricultural area drops from approxi- 
mately 1.0 (indicating a high level of spatial autocorrelation) 
to 0.74, indicating a more dispersed spatial arrangement of 
values in the image as resolution grows more coarse, The 
same process occurs in the urban image to some extent, but 
the lack of large, homogeneous areas in the high resolution 
NDVI image means the initially high D value is maintained as 
pixel size increases. 

East Humboldt Range, Nevada 
Texture is not the only factor used in differentiating between 
different land covers - shape, size, pattern, shadow, tone, 
and association are others (Avery and Berlin, 1992). Al- 
though this paper does not directly analyze the effects of ob- 
ject shape on computed fractal dimension, it does examine a 
large complex scene in a multi-temporal context to analyze 
the effects on D. Thiv investigation used Landsat Thematic 
Mapper images of the East Humboldt Range area of northern 
Nevada that were obtained as part of a long-term field study 
conducted from May 1993 through October 1994 (Laymon et 
a]., 1998). 

This area of the Great Basin (Figure 4) contabs several 
parallel ranges of roughly 3000-m mountains separated by 
broad valleys at about 1800 m above sea level. The mountain 
ranges in this region have sparse vegetation and thin soil 
with low infiltration capacities. Much of the existing vegeta- 
tion occurs in desert valleys or on alluvial fans adjacent to 
the mountains. Vegetative growth is most abundant where 
subsurface water flows close enough to the surface to be ac- 
cessible to plants. The valley is dominated by shrub vegeta- 
tion with understory forbs and grasses. Sagebrush is common 

TABLE 5. REGRESSION OF HUNTSVILLE NDVl FRACTAL DIMENSION VERSUS PIXEL SIZE 

Land Cover Parameter CoeEcients Std. Err. R t P Lower 95.0% Upper 95.0% 

Agriculture Intercept 2.5753 0.0196 131.2215 0.0001 2.4909 2.6598 
Resolution 0.0047 0.0004 0.9836 10.9495 0.0082 0.0028 0.0065 

Forest Intercept 2.8727 0.0132 217.4644 0.0000 2.8159 2.9295 
Resolution -0.0016 0.0003 0.9413 -5.6617 0.0298 -0.0029 -0.0004 

Urban Intercept 2.7386 0.0075 366.8163 0.0000 2.7065 2.7708 
Resolution 0.0006 0.0002 0.8742 3.7277 0.0650 -0.0001 0.0013 
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on the higher elevations of the well-drained alluvial fans, 
and it eventually gives way to grasses, forbs, and small per- 
ennials at lower elevations (Laymon et a]., 1998). 

Figure 7 shows Landsat Thematic Mapper NDVI images 
of the East Humboldt Range that were obtained in May and 
August, 1993. The Humboldt Range area was imaged during 
the peak "green up" period in early summer of 1993 and 
"dry down" in late summer 1993. The imagery was obtained 
from EOSAT Corp. and was system-corrected, orbit-oriented 
(type P data) that was made available at no cost to the inves- 
tigators through an agreement between EOSAT and NASA on 
behalf of the U.S. Global Change Research Program. System- 
corrected data are geometrically adjusted for the spacecraft's 
orientation and predicted position. The images show the 
Ruby Mountains in the south and the East Humboldt Range 
in the north. Drainage extends from the mountains westward 
through Lamoille Creek, which flows northward from the 
bottom part of the image through Lamoille Valley, and Secret 
Creek, which drains the narrow valley between the two 
mountain ranges. The Humboldt River flows northeastward 
through the upper left part of the image. Interstate 80 and a 
railroad operated by the Union Pacific follow the general 
course of the river. Nevada Highway 229 follows Secret 
Creek and joins 1-80 northwest of Phyllis Lake. The East 
Humboldt Range has several channels draining eastward into 
Clover Valley in the upper right corner of the image. 

As in the Huntsville example, rescaled 8-bit NDVI images 
were compared. Images of TM bands 4 and 3 were normal- 
ized to account for illumination differences between the two 
dates, and the pixels in each image were averaged to resolu- 
tions of 60, 120, 240, 480, and 960 meters from the original 
30-meter pixel size. Table 6 shows the descriptive statistics 
for the original 30-meter data and the coarser-resolution N D ~ I  
images. The two images have similar means and standard de- 
viations that do not change appreciably with decreasing reso- of Huntsville. D is no longer independent of resolution, as in 
lution. As with the simulated surfaces and Huntsville ATLAS the ideal fractal surfaces and is not a linear function of res- 
data sets, the mean standard deviation within a 3 by 3 mov- olution (except over subsets of the overall range of pixel 
ing window increased with decreasing resolution as the win- sizes). The positive, fairly linear slope of the change in D for 
dow encompassed larger and larger areas on the ground. the August image shows an increase of complexity as pixel 

Figure 7 shows the NDVI values for May. This image size increases up to 480 meters. The D values in the May im- 
shows large dark (low NDVI) areas in mountains correspond- age show a more complex relation to pixel size, with an ini- 
ing to snow cover. Bright (high NDVI) areas are located along tial rise in D followed by a short decline, then a long in- 
the middle slopes of the mountains, along stream beds, and crease. This may be due to the influence of aggregating 
in irrigated fields. The brightest areas in the August image pixels on the boundaries of the large snow covered areas 
are near the peaks of the mountains. Vegetation remained with high NDW values on the adjacent mountain slopes. The 
active at higher elevations, while the long summer drought resulting mixed pixels tend to blur the sharp distinction be- 
caused vegetation at lower elevations to senesce, as indicated tween snow and vegetative cover, thus altering the shapes 
by the retreat of high NDVI values in the valleys. and areas of homogeneous NDVI values for the snow cover 

The graph of the response of fractal dimension to rescal- and lower slopes. The fractal dimensions of an image created 
ing (Figure 8) shows a much more complex pattern than from the differences in the May and August NDVI values in- 
ideal fractal surfaces or the homogeneous land-cover images crease with pixel size up to a resolution of 120 meters, then 

TABLE 6. DESCRIPTIVE STATISTICS - NDVl IMAGES, EAST HUMBOLDT RANGE, NEVADA 

Pixel Mean Mean Median DN Moran's Geary's Mean 
Date Size (m) Image Size D R DN DN Std. Dev I C Std. Dev 

May, 1993 30 1600 X 1600 2.6252 0.9895 127.03 114 41.73 0.9621 0.0379 12.61 
60 800 X 800 2.6646 0.9919 126.97 111 41.86 0.9484 0.0516 14.49 
120 400 X 400 2.6651 0.9932 126.94 114 41.91 0.9366 0.0634 18.68 
240 200 X 200 2.6347 0.9926 126.92 115 41.93 0.9200 0.0802 29.27 
480 100 X 100 2.7108 0.9654 126.94 115 42.03 0.8954 0.1048 53.37 
960 50 X 50 2.8026 0.9546 126.93 116 42.24 0.8540 0.1462 104.43 

August, 1993 30 1600 X 1600 2.6040 0.9862 126.99 111 42.45 0.9673 0.0327 12.49 
60 800 X 800 2.6337 0.9908 126.99 111 42.46 0.9407 0.0593 15.10 
120 400 X 400 2.6490 0.9844 126.98 111 42.44 0.8155 0.0845 19.65 
240 200 X 200 2.6837 0.9886 126.98 112 42.46 0.8894 0.1107 30.12 
480 100 X 100 2.7632 0.9896 126.98 113 42.48 0.8558 0.1445 53.96 
960 50 X 50 2.6861 0.9923 127.00 117 42.52 0.8011 0.1991 104.81 
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Figure 7. East Humboldt Range area, Nevada - NDVI im- 
ages. (a) May 1993, 30-m resolution. (b) May 1993, 
960-m resolution. (c) August 1993, 30-m resolution. (d) 
August 1993, 960-m resolution. 
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Figure 8. Fractal dimension, NDVI image - East Humboldt Range, Nevada. 

decline with increasing pixel size. This means that the 
greatest complexity in the difference image occurs around 
resolutions of 120 meters, and this is analogous to the opera- 
tional domain of changes in vegetation and snow cover that 
constitute differences in the two dates. 

Conclusions 
This investigation verified that the ICAMS isarithm method 
estimates the fractal dimensions of simulated monofractal 
surfaces generated by the SW-GEN program most accurately 
at H = 0.5, with over- and underestimations at greater or 
lesser H values. The example surfaces exhibit relatively con- 
stant fractal dimensions with aggregation, thus indicating the 
self-similar nature of these ideal monofractal data sets. 

The ICAMS software together with the data pyramid ap- 
proach allow efficient exploration of scaling behavior, be- 
cause the averaged images do not require more than four- 
thirds the original image storage capacity (De Cola, 1993; De 
Cola, 1997). This allows selection of an optimal resolution 
for characterizing geographical phenomena, such as the 
changes in vegetation and snow cover patterns. Operating on 
the assumption that the scale at which the highest fractal di- 
mension is measured may be the scale at which most of the 
processes operate (Goodchild and Mark, 1987; Lam and 
Quattrochi, 1992), one can conclude that the differences in 
the NDVI images of the East Humbold Range, Nevada are due 
to processes that are best represented at a resolution of 120 
meters. 

In the Huntsville example presented here, the complex- 
ity of NDVI images of agriculture, forest, and urban areas re- 
sponds differently to aggregation. The image of the agricul- 
tural area grew more complex as the pixel size was increased 
from 10 to 80 meters, while the forested area grew slightly 
smoother and the complexity of the urban area remained ap- 
proximately the same. In examining the changes in fractal di- 
mensions with changing pixel size in Figure 5, an obvious 
question to ask is whether it is best to use a h e  resolution 
for analyzing complex scenes with heterogeneous land uses, 
or is it best to select a resolution where the complexity of 
each land cover is approximately the same (around 40 me- 
ters pixel size). If one is wishing to distinguish between the 
different land covers, then the resolution at which the 
greatest differences in complexity occurs is optimal. If the 
question is concerned with determining lumped characteris- 
tics of a heterogeneous scene, then the resolution with the 

least differences in fractal dimension will likely provide 
more unbiased estimates of the scene taken as a whole. 

More research is needed to examine how the complexity 
of a geographical process having a known spatial operational 
scale is depicted in remotely sensed images. This process do- 
main benchmark would allow significance testing of the frac- 
tal dimension's response to changes in resolution. Processes 
that are more scale independent (closer to the monofractal 
ideal) require fewer data (i.e., lower resolutions) than other 
processes that are highly scale dependent. For instance, relat- 
ing NDVI values to irradiance (Lo et al., 1997) or emissivity 
(Laymon et al., 1998) would allow an analyst to make infer- 
ences as to how agriculture, forest cover, and urbanization 
(as measured in remotely sensed images) affects heat flux at 
regional scales. No one resolution is optimal for all of these, 
so further investigation is needed to determine how the frac- 
tal dimension can be used to provide indications of the 
tradeoffs involved in selecting the scale, resolution, and spa- 
tial extent of the input imagery. 
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