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Abstract 
Spatial data aggregation is widely practiced for "scaling-up" 
environmental analyses and modeling from local to regional 
or global scales. Despite acknowledgments of the general ef- 
fects of aggregation, there is a lack of systematic comparison 
between aggregation methods. The study evaluated three 
methods - averaging, central-pixel resampling, and median - 
using simulated images. Both the averaging and median 
methods can retain the mean and median values, respec- 
tively, but alter significantly the standard deviation. The cen- 
tral-pixel method alters both statistics. The statistical 
changes can be modified by the presence of spatial autocor- 
relation for a11 three methods. Spatially, the averaging 
method can reveal underlying spatial patterns at scales 
within the spatial autocorrelation ranges. The median 
method produces almost identical results because of the sim- 
ilarities between the averaged and median values of the sim- 
ulated data. To a limited extent, the central-pixel method 
retains contrast and spatial patterns of the original images. 
At scales coarser than the autocorrelation range, the aver- 
aged and median images become homogeneous and do not 
difler significantly between these scales. The central-pixel 
method can induce severe spatially biased errors at coarse 
scales. Understanding these trends can help select appropri- 
ate aggregation methods and aggregation levels for particular - -  - 
applications. 

Introduction 
Spatial data aggregation is widely used in environmental anal- 
yses and modeling such as in ecology and hydrology that 
have moved from local scaled modeling to larger regions 
(Ebleringer and Field, 1993; Gupta et al., 1986). During an ag- 
gregation process, the original spatial data are reduced to a 
smaller number of data units (points, lines, polygons, or pix- 
els) for the same spatial extent. As a result, each aggregated 
data unit represents a larger area than the original units. The 
aggregated data are often referred to having a coarser spatial 
resolution. In an era that emphasizes global scaled research, 
data aggregation is widely practiced primarily for "scaling up" 
environmental analyses or models from local to regional or 
global scales. Spatial data available at finer resolutions need to 
be aggregated to represent the spatial characteristics (spatial 
pattern, spatial autocorrelation, etc.) at corresponding scales. 

The aggregation process may alter the statistical and spa- 
tial characteristics of the data. When aggregated data are 
used as input to analyses or models, the output of these 
analyses or models may be affected, i.e., outputs differ when 
input data of different resolutions are used. This effect is no 
longer an unfamiliar phenomenon to the GIS, remote sensing, 

Department of Geography, State University of New York, 
Buffalo, NY 14261-0023. 

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING 

and other science communities that use spatial data (Quattro- 
chi and Goodchild, 1997). Despite the fact that general ef- 
fects of aggregation are often acknowledged, there is a lack of 
systematic evaluation of the effects caused by different aggre- 
gation methods. Studies that require aggregation often em- 
ploy the most convenient method without taking potential 
effects into account. As a result, this may jeopardize the in- 
tegrity of the studies as well as of any subsequent decision- 
making processes. 

For scientific inquiry, aggregating data to a coarser reso- 
lution is often preferred, because certain spatial patterns will 
not be revealed until the data are presented at a coarser scale 
(Seyfried and Wilcox, 1995; Zhang and Montgomery, 1994; 
De Cola, 1994; Bian and Walsh, 1993; Brown et al., 1993; 
View, 1993; Levin, 1993; Lam and Quattrochi, 1992; Stoms, 
1992; Turner et al., 1989; Nellis and Briggs, 1989; Mark and 
Aronson, 1984). In other circumstances, it is feared that data 
aggregation could cause information loss, thus having a nega- 
tive impact on a study. All aggregation methods lose details, 
but some methods can retain statistical characteristics of the 
original data better than others. Similarly, some methods 
may help reveal new spatial patterns better than they can 
maintain statistical characteristics of the original data. This 
notion adds another dimension to a systematic evaluation of 
aggregation effects. 

There is a growing literature reporting on the effects of 
data aggregation under the general topic of scale effects (Wol- 
ock and Price, 1994; Zhang and Montgomery, 1994; De Cola, 
1994; Bian and Walsh, 1993; Brown et al., 1993; Vieux, 1993; 
Lam and Quattrochi, 1992; Stoms, 1992; Turner et al., 1989; 
Nellis and Briggs, 1989; Mark and Aronson, 1984). Most of 
this type of work appears in the literature of GIS, remote sens- 
ing, environmental modeling, or other sciences. The modeling 
communities tend to focus their attentions on aggregation ef- 
fects on model output. This narrow focus fails to separate in- 
herent errors from operational errors. Inherent errors are those 
that are carried in the data before the data are entered into 
analyses or models, while operational errors occur during 
analyses or modeling (Walsh, 1989; Burrough, 1986). If aggre- 
gated data are used as input for analyses and modeling, errors 
induced during aggregation are inherent errors. A successful 
identification of inherent errors can help devise means to 
compensate for those errors. For example, knowing that aggre- 
gated DEM data caused the mean of a wetness index to in- 
crease, Lammers et al. (1997) subtracted a constant from the 
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mean, leading to a much improved hydrological modeling re- 
sult. 

The majority of studies that have paid attention to iden- 
tifying inherent errors (caused by aggregation) use empirical 
data. The knowledge learned is often on an ad hoc basis. For 
a simple image such as one with row crop on rolling hills, it 
is possible to link scales of the two features to changes in 
statistics at a particular aggregation level (e.g., transition 
points in a semivariogram). For most empirical images, spa- 
tial patterns are often too complex to pin down exact spatial 
features that might correspond to particular statistical 
changes. In dealing with this problem, simulated data can be 
a better option for systematic evaluation of aggregation ef- 
fects in order to ultimately understand the "real world" pat- 
terns. Some recent works showed advantages of simulation 
in providing better control over statistical and spatial charac- 
teristics of data (Hunter and Goodchild, 1997; Arbia et al., 
1996; Heuvelink, 1992). In particular, Arbia et al. (1996) 
studied data aggregation effects using simulated images. 
However, their simulated images were restricted to only two 
values, 0 and 1. All the aforementioned simulations imple- 
mented spatial autocorrelation but with only one "structure," 
which implies that an image is dominated by only one type 
of spatial feature. For example, an image with row crop on 
rolling hills would involve two structures, the row crop with 
a shorter range of spatial autocorrelation and the rolling hills 
with a longer range. It is necessary to move one step forward 
to create simulations that are closer to a natural image, i.e., 
images that have a greater number (>> 2) of data values and 
multiple structures of spatial autocorrelation. 

a he objective of this research is to compare and evaluate three 
widely used spatial data aggregation methods using simulated 
data with multiple structures of spatial autocorrelation. The 
three aggregation methods--averaging, central-pixel resam- 
pling, and median--are commonly used in spatial analysis in 
many scientific disciplines, and are used for aggregating both 
GIS and remotely sensed data. The simulated images contain a 
great range of data values and two structures of spatial auto- 
correlation so that they more closely resemble natural images 
of biophysical phenomena. The aggregation effects were evalu- 
ated by changes in statistical and spatial distribution, as well 
as by the changes of errors across aggregation levels. Special 
attention is given to changes at levels that correspond to the 
ranges of spatial autocorrelation embedded in the data. 

The remainder of the paper presents the following sec- 
tions of discussion. The first one details the data simulation 
design and implementation. The second section describes ag- 
gregation procedures employed on the data. The third sec- 
tion summarizes and discusses the aggregation results, and 
the fourth section discusses implications of the results to 
scaling-up analyses and modeling. A final section concludes 
the findings. 

The Simulation Deslgn 
The basic spatial unit used for the simulation is typical of 
raster data, the pixel. The importance of raster data is deeply 
rooted in the success of remote sensing (Couclelis, 1992; 
Peuquet, 1988) and the DEM. These two types of spatial data, 
along with many other types of raster data, are widely used 
in geography as well as in many areas of natural science. 
The raster data are ideal for studying data aggregation be- 
cause of their regular and uniform geometry (e.g., pixels 
share identical size and shape). With raster data, spatial reso- 
lution can be readily measured and presented. In addition, 
the effects of data aggregation can be easily observed by 
varying the data resolution and comparing the resultant sta- 

tistical and spatial characteristics. The raster data are well 
suited to the intended study. 

There are many models for simulating spatial phenom- 
ena. Burrough (1986), following the regionalized variable the- 
ory, argued that the spatial variation of any variable can be 
expressed as the sum of three major components: 

where Z(x) is the value of variable Z at location x. The first 
component, m(x), is a general trend (a tilted plane, for exam- 
ple) that can be described by a linear model. The second 
component, E'(x), is random but it is locally varying and 
spatially autocorrelated. This component can be described by 
spatial autocorrelation models. The third component, E", is a 
spatially independent error term, that can be modeled by a 
random distribution such as Gaussian distribution. This con- 
ceptual framework is adopted for simulation in the present 
study and the general trend is excluded to assure stationarity 
across the simulated area. Arbia et al. (1996) also simulated 
the same two components but with a spatially autocorrelated 
error term. 

The simulation is implemented using unconditional simu- 
lation described in Deutsch and Journel (1998). A simulation 
process produces a series of realizations of spatial data accord- 
ing to pre-defined parameters for both statistical distribution 
and spatial autocorrelation. A conditional simulation generates 
data using parameters of actual sample data. An unconditional 
simulation creates data without actual sample data and the 
simulation uses default parameters (e.g., mean = 0). Each real- 
ization is the sum of the estimated data component and the 
corresponding error term. More elaborated treatment of spatial 
simulation can be found in Deutsch and Journel (1998). 

The present study assumes a Gaussian distribution for 
the data component based on the model detailed by Bur- 
rough (1986). Each estimated data value is a possible out- 
come of the Gaussian random function. The estimated data 
follow pre-defined spatial autocorrelation. In the present 
study, the spatial autocorrelation contains two structures, 
both following a standard spherical model. The expression of 
the model follows the form defined in Deutsch and Journel 
(1998): i.e., 

y(h) = c .  Sph (hla) = c .  [1.5(hla) - 0.5(h/a)3] if h 5 o (2) 

where semivariance y(h) is a function of the spatial lag h, a 
is the range of spatial autocorrelation, and c is the sill. Once 
the spatial lag reaches the range, the semivariance y(h1 be- 
comes a constant. Among several spatial autocorrelation 
models, the spherical model has the shape for which the 
range of spatial autocorrelation can be most easily identified 
in a semivariogram by visual examination. This is ideal for 
the intended study. The nugget effect is set to zero. The first 
structure of the spatial autocorrelation has a spatial autocor- 
relation range of 30 pixels and the second structure has a 
range of 10 pixels. The error term is simulated such that it is 
independent of the estimated data component and it also fol- 
lows a Gaussian random function. 

The total simulated area is 512 by 512 pixels, and the 
simulation generates a total of 30 realizations to assure an ad- 
equate number of observations for summary statistics. Table 1 
lists the basic statistics of the simulated images. The simula- 
tion is implemented using the geostatistical software package 
GSLIB (Deutsch and Journel, 1998). The choice of the area 
size is primarily constrained by technical difficulties. The un- 
conditional simulation algorithm (kriging) is computationally 
intensive. The present study did attempt to simulate 1024- by 
1024-pixel areas, but an experimental run indicated that simu- 

74 lanuary  1999 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING 



TABLE 1. SUMMARY STATISTICS OF THE 30 SIMULATED IMAGES. THE MEAN, 
STANDARD DEVIATION, MAXIMUM, AND MINIMUM VALUE WR EACH OF THE 30 

IMAGES WERE COMPUTED (ROWS). THE SUMMARY STATISTICS PRESENTED AS THE 
MAXIMUM, MINIMUM, AND MEAN OF THE FOUR SETS OF STATISTICS OVER ME 30 

IMAGES ARE PRESENTED IN COLUMNS. 

Maximum Minimum MBan 

Means (30) 0.1233 -0.0606 0.0124 
Standard Deviations (30) 1.3900 1.3201 1.3471 
Maximum Values (30) 7.1950 5.1956 5.9649 
Minimum Values (30) -5.1837 -6.8572 -5.9399 

lating such sizes demanded super-computing power. The area 
of 512 by 512 pixels is the largest area possible within the ca- 
pacity of Unix workstations. A 512- by 512-pixel area is ade- 
quate for the intended study. It contains a number of 30-pixel 
structures across the area so that the image reasonably resem- 
bles a natural image, while the number of structures is within 
a manageable range. 

Aggregation Procedures 
Three aggregation methods - averaging, central-pixel resam- 
pling, and median - are used for aggregating the simulated 
data images. All the methods extract a value over an n by n 
window in the original image. The windows are adjacent but 
do not overlap (Figure 1). The averaging method uses the av- 
erage value over the n by n window. This method may be 
deemed more appropriate for aggregating remotely sensed im- 
ages, because a pixel value is assumed to be the integrated 
value over the corresponding area on the ground. The central- 
pixel resampling method takes the original value of the cen- 
tral pixel of the n by n window. This method is more com- 
monly used in modeling communities such as hydrology 
(Wolock and Price, 1994). The median method takes the me- 
dian of the n by n window. This method is perhaps less used 
in practical works but it is easy to implement and leas sensi- 
tive to extreme data values. It is examined in the present 
study for its potential as an alternative for the averaging 
method. Initially, a mode method was attempted which takes 
the mode value of a window. For image-like data, however, 
either all data values in a window are unique so no mode 
value can be identiiled, or a handful of pixels share identical 
values to yield a mode value, but this situation does not carry 
the meaning of mode. A C++ code was developed in-house to 
implement the three aggregation methods. 

The three methods are applied to the same 30 simulated 
images to compare differences among the methods. The ag- 
gregation operates at ten levels, using 3- by 3-, 9- by 9-, 11- 
by 11-, 21- by 21-, 31- by 31-, 41- by 41-, 51- by 51-, 61- by 
61-, 71- by 71-, and 81- by 81-pixel window sizes. All win- 
dows are positioned to begin from the upper left-most pixel 
of the 512- by 512-pixel area. At each level, data are aggre- 
gated directly from the original images (e.g., from 1 by 1 to 
51 by 51) instead of from a previous aggregation (e.g., from 
41 by 41 to 51 by 51). Window sizes 9 by 9,11 by 11, and 
31 by 31 are included to examine the behavior of data at ag- 
gregation levels corresponding to the ranges of spatial auto- 
correlation. Window sizes around the autocorrelation ranges, 
2 1  by 21  and 41 by 41 pixels, are also included in case the 
autocorrelation ranges deviate from the simulation design 
due to the errors embedded in the simulation. The small 
window size (3 by 3) and the large window sizes (51 by 51 
to 81 by 81) provide observations to monitor the trend of 
change at aggregation levels finer and coarser, respectively, 
than the autocorrelation ranges. With aggregation, the total 
number of pixels decreases and each pixel represents a larger 

Averaefna Asxmzafion Method 
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Figure 1. Illustration of the averaging, central-pixel, and 
median aggregation methods. The averaging method 
takes the average of an n by n window. The central-pixel 
method takes the original value of the central pixel of the 
n by n window. The median method takes the median of 
the n by n window. 

area (Figure 2). The 512 by 512 pixels at the original data 
level are reduced to 6 by 6 pixels at the last level of the 81- 
by 81 pixel window size. Further aggregation leaves too few 
pixels to support statistical analysis. 

The statistical distribution and spatial distribution are 
evaluated and compared between the three methods across the 
ten aggregation levels. The distributions are evaluated by three 
sets of treatment: (1) the mean and standard deviation of the 
aggregated data plotted against window size for all methods, 
(2) histograms of all levels for a l l  methods to support the sta- 
tistics in (I), and (3) images of aggregated data by all methods 
at each aggregation level to evaluate the changes in spatial 
pattern during aggregation. 

The spatial details lost during aggregation are considered 
to be aggregation errors. Error images are created by subtract- 
ing the aggregated values from the originally simulated values 
in each window. The resultant error images maintain the orig- 
inal size of 512 by 512 pixels. The statistical and spatial char- 
acteristics of errors are evaluated by three sets of treatments: 
(1) mean and standard deviation of errors to evaluate statisti- 
cal changes of errors across all aggregation levels for all meth- 
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(b) 31x31 pixels (c) 61x61 pix& 

Figure 2. Illustration of aggregated images. Presented are (a) an original image, (b) an aggregated image using a 
31- by 31-pixel window by the averaging method, and (c) an aggregated image using a 61- by 61-pixel window by 
the averaging method. 
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Figure 3. Means and standard deviations of the averag- 
ing images for the 30 simulations at the ten aggrega- 
tion levels and the original image. (top) means, and 
(bottom) standard deviations. 
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Figure 4. Means and standard deviations of the central- 
pixel images for the 30 simulations at the ten aggregs 
tion levels and the original image. (top) means, and 
(bottom) standard deviations. 
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Figure 5. Means and standard deviations of the me- 
dian images for the 30 simulations at the ten aggre- 
gation levels and the original image. (top) means, and 
(bottom) standard deviations. 
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central-pixel images (Figure 4) show a rather chaotic pattern. 
Up to the lo-pixel window size (9 by 9, 11 by 11), the means 
remain almost the same as those of the original images. At 
window sizes greater than 30 pixels, the values spread to a 
wide range. 

The differences in aggregation mechanisms among the 
three methods cause the fundamental difference in statistics of 
the aggregated data. Both the averaging and median methods 
aggregate based on data values, and the values are confined to 
the mid-range. The central-pixel resampling is based on loca- 
tion, which changes with window size. The aggregation re- 
sults are a systematically sampled subset of the original data, 
and their values are expected to be less confined. This may 
explain the spread of the means for the central-pixel method 
(Figure 4). The spatial autocorrelation further modifies the 
general statistical trend. Within windows smaller than the spa- 
tial autocorrelation ranges, spatial autocorrelation is present. 
The means are similar to the original neighboring values 
within the window. With windows greater than the spatial au- 
tocorrelation range, the statistical distribution approaches the 
global distribution. An aggregated image based on central pix- 
els becomes a mere subset of the original image. Its mean 
value varies with the location of central pixels as the window 
size changes. 

The standard deviations show a similar division among 
the three methods. The averaging and the median methods 
present a decreasing trend with increasing aggregation level 
(Figures 3 and 5, respectively). This is expected because both 

ods, (2) images of errors at all aggregation levels for all meth- 
ods to examine the changes in spatial characteristics of the er- 
rors, and (3) semivariograms of errors to support illustrations 
in (2). A total of 2160 images are analyzed, including 11 ag- 
gregation levels (including the original images), three methods, 
30 realizations, and a data and an error image for each level, 
method, and realization. It takes more than three gigabytes of 
space to store the 2160 data and error images! 

Aggregation Results and Analysis 
The means and standard deviations (Figures 3,4,  and 5) surn- 
marize the statistical changes through aggregation. The means 
of the averaging and median images remain essentially con- 
stant across all aggregation levels (Figures 3 and 5, respec- 
tively). Theoretically, the means of the averaging images 
should be absolutely constant. The mild varptions shown in 
Figure 3 are due to an "edge effect," which is produced by 
the inability of the window size to divide evenly into 512 pix- 
els. The pixels that do not make up a whole window (edge 
pixels) are left out of the computation, thus slightly shifting 
the statistics of an image. In a sharp contrast, the means of the 
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Figure 6. Histograms of the averaging images at selected 
aggregation levels and the original image for one of the 30 
simulations. Starting from the top left corner moving down 
the column: The original image, 9 by 9, 21- by 21-, 41- by 
41-, 61- by 61-, and 81- by 81-pixel window aggregation. 
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Figure 7. Histograms of the central-pixel images at se 
lected aggregation levels and the original image for one 
of the 30 simulations. Starting from the top left corner 
moving down the column: The original image, 9- by 9, 
21- by 21-, 41- by 41-, 61- by 61-, and 81- by 81-pixel 
window aggregation. 

methods eliminate the low frequency values at both ends of 
a histogram (the large and small values), resulting in a 
smaller standard deviation. This effect is more obvious at 
larger window sizes, where a greater range of values are 
likely to be averaged or eliminated, producing successively 
"taller and tighter" histograms (Figures 6 and 8) and lower 
standard deviations. It is important to note the following ob- 
servations. First, the decrease in standard deviation is non- 
linear. This could be affected by spatial autocorrelation. The 
decreasing rate remains almost constant up to ten-pixel win- 
dow sizes and slows down around the 30-pixel window. It is 
possible that, when the statistics of large windows (>30 pix- 
els) are approaching the global statistics, the standard devia- 
tions do not differ greatly with increasing window size. The 
non-linear trend was also reported by Arbia et al. (1996) but 
the study did not provide any explanation. 

The central-pixel method presents a different trend (Fig- 
ure 4). The standard deviations fluctuate about standard devia- 
tions of the original images (Table 1) across aggregation levels, 
and the range of variation increases steadily with window 
size. The fluctuation stems from the varying subsets of data 
with changing window size. In addition, the small number of 
pixels can also enhance the fluctuation at large window sizes. 
Up to window sizes of ten pixels, the standard deviations re- 
main similar to those of the original images. Up to the win- 
dow size of 40 pixels, the values are confined to a relatively 
narrow range. Both of these observations can be attributed to 
the presence of spatial autocorrelation. Histograms of the cen- 

tral-pixel method displayed in Figure 7 shows similarities be- 
tween the original and the 9- by 9-pixel window as well as 
the fluctuation after the 41- by 41-pixel window. 

Changes in spatial patterns are presented in Figures 9, 
10, and 11 for aggregated images produced by the three 
methods. The averaging method, functioning as a low-pass 
filter, reveals the underlying spatial patterns and loses con- 
trast (Figure 9). At window sizes greater than 30 pixels, the 
averaged values quickly approach the global mean value, and 
these values appear similar between large window sizes. Be- 
cause of the similarity between the averaged and median val- 
ues, the median images appear almost identical to the 
averaging images (Figure 11). Figure 10 shows the central- 
pixel images. By visual examination, the contrast as well as 
the basic patterns (high and low values and their relative lo- 
cations) of the original images seem to be better kept than 
the other two methods. The patterns become increasingly 
random at window sizes larger than 30 pixels. 

The spatial details lost during aggregation represent aggre- 
gation errors. Figure 12 presents statistical summaries of errors 
produced by the averaging method. The means of errors (Figure 
12) vary about zero and the range of the variation slightly in- 
creases with window size. The errors are small because they 
are the differences between the original values and their local 
averages. Standard deviations of the errors level off around the 
30-pixel window size. At this window size and larger, the aver- 
aged values are similar to the global mean. As a result, the 
standard deviations of the errors are similar among these win- 
dows and approach the global standard deviation (Table 1). 

W k d n v s t a n m  m d o r s t a  rn-1 

Figure 8. Histograms of the median images at selected ag- 
gregation levels and the original image for one of the 30 
simulations. Starting from the top left comer moving down 
the column: The original image, 9 by 9, 21- by 21-, 41- by 
41-, 61- by 61-, and 81- by 81-pixel window aggregation. 
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Figure 9. Aggregated images using the averaging method 
for one of the 30 simulations. (a) The original image, (b) 
9- by 9-, (c) 21- by 21-, (d) 41- by 41-, (e) 61- by 61-, and 
(f) 81- by 81-pixel window aggregation. 

ing error images (Figure 13) when varying values are 
subtracted from the original image. Semivariograms in Figure 
17 show both similarities and differences from those of aver- 
aging errors (Figure 14). The range of spatial autocorrelation 
reaches that of the original image at the 30-pixel window. The 
semivariograms deviate significantly from that of the original 
image at larger window sizes, corresponding to the spatial pat- 
tern presented in Figure 16. 

The statistical and spatial characteristics of median er- 
rors are presented in Figures 18, 19, and 20. The statistical 
characteristics represented by means and standard deviations 
(Figure 18) and spatial characteristics represented by error 
images (Figure 19) and semivariograms (Figure 20) are al- 
most identical to those of the averaging errors (Figures 12, 
13, and 14). This resemblance stems from similarities be- 
tween averaged and median values in a window for the data 
simulated in the present study. 

Discussion 

Summary of the Obsewatlons 
The summary focuses on the ability of each method in pre- 
serving the statistical and spatial characteristics of the original 
images, as well as the characteristics of aggregation errors. The 
averaging and median aggregation methods can maintain the 

Figures 13 and 14 present spatial pattern changes of er- 
rors. Error images (Figure 13) of small window sizes, reflect- 
ing local errors, are noisy and vary at fine scales. A global 
pattern emerges when window size becomes greater than the 
spatial autocorrelation ranges. The global pattern appears to 
be a mirror image of the original image and the pattern re- 
mains similarly for larger window sizes. In order to examine 
changes in spatial autocorrelation, semivariograms in Figure 
14 summarize the spatial behavior of the errors through ag- 
gregation. The range of spatial autocorrelation of the errors 
gradually approaches 30 pixels where the errors change from 
a local to a global pattern. Accordingly, semivariance values 
increase quickly at small window sizes and eventually reach 
the value of the global variance. This corresponds to the be- 
havior of the standard deviation illustrated in Figure 12. 

Figures 15, 16, and 17  present the statistical summary, 
spatial pattern, and semivariograms of errors, respectively, for 
the central-pixel aggregation method. The means (Figure 15) 
have a much greater value range, and the standard deviations 
have both higher values and a greater value range than those 
of averaging errors (see Figure 12). Because the central-pixel 
errors depend on locations of the central pixel which vary 
with window size, the greater value range of the means and 
standard deviations is expected. Figure 16 shows that the cen- 
tral-pixel error images appear more "blocky" than the averag- 
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Figure 10. Aggregated images using the central-pixel 
method for one of the 30 simulations. (a) The original im- 
age, (b) 9 by 9, (c) 21- by 21-, (d) 41- by 41-, (e) 61- by 
61-, and (f) 81- by 81-pixel window aggregation. 
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Figure 11. Aggregated images using the median method 
for one of the 30 simulations. (a) The original image, (b) 
9- by 9, (c) 21- by 21-, (d) 41- by 41-, (e) 61- by 61-, and 
(f) 81- by 81-pixel window aggregation. 

mean or median of the original images across aggregation lev- 
els and also produce decreasing standard deviations. The rate 
of decrease seems to be associated with the spatial autocorre- 
lation. These observations are shown in Figures 3 and 5. Spa- 
tially, both methods lead to increasingly homogeneous images 
as window size becomes coarser than the spatial autocorrela- 
tion range, indicated by the patterns shown in Figures 9 and 
11. The standard deviations of both averaging and median er- 
rors increase up to the window sizes corresponding to the 
spatial autocorrelation, as displayed in Figures 12 and 18. 
Spatially, the error images of both methods change from a 
noisy, local pattern to a global pattern at the window size of 
the spatial autocorrelation, and this observation is supported 
by patterns shown in Figures 13 and 19. 

The means and standard deviations of the central-pixel 
method are less predictable when the location of the central- 
pixel changes with window size. The presence of spatial au- 
tocorrelation seems to help confine the variations (Figure 4). 
To a limited extent, the method can better maintain data val- 
ues and basic spatial patterns of the original images within 
the spatial autocorrelation range. The central-pixel errors 
have greater magnitude and variation than the other two 
methods (Figure 15). Spatially, the errors are imprinted heav- 
ily by the random patterns involved in the central-pixel im- 
ages (Figures 10 and 16), especially at window sizes greater 
than the spatial autocorrelation. 
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lmpllcatlons of Results 
The averaging method can preserve the mean values of origi- 
nal images across all levels of aggregation. This is important 
particularly for physical process models, many of which re- 
quire averaging of a variable over an area and then use the 
mean values as input for modeling. For example, average val- 
ues of land surface roughness over sub-basins are often used 
as an input parameter in watershed hydrologic models. The 
potential cost of the averaging method is the reduced standard 
deviation. If a model is sensitive to the range of variable val- 
ues, using an averaging method may induce significant errors. 
The magnitude and range of errors are affected by the spatial 
autocorrelation present in the data. Averaging within spatial 
autocorrelation ranges can confine aggregation errors to a low 
magnitude and random spatial patterns. Knowing how the 
decreasing rate of the standard deviation may change, it 
might be possible to devise a means to "restore" the stan- 
dard deviation for those models that are sensitive to variable 
value ranges. Effective means to achieve the goal are yet to 
be investigated. 

Spatially, the averaging method reveals underlying spatial 
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Figure 12. Means and standard deviations of the averag- 
ing errors for the 30 simulations at the ten aggregation 
levels and the original image. (top) means, and (bottom) 
standard deviations. 
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Figure 13. Images of the averaging error at selected ag- 
gregation levels and the original image for one of the 30 
simulations. (a) The original image, (b) 9- by 9, (c) 21- by 
21-, (d) 41- by 41-, (e) 61- by 61-, and (f) 81- by 81-pixel 
window aggregation. 
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ing spatial patterns. Resampling central pixels beyond the 
autocorrelation range may induce unpredictable spatial varia- 
tion (Figure 10) and spatially biased errors [Figure 16). The 
latter can be severe. Generating a large number of samples or 
multiple sample sets may help alleviate the randomness and 
the subsequent effects. 

Data aggregated by the median method share many statis- 
tical and spatial similarities with the averaging method. 
Greater differences are expected for empirical data because the 
data simulated in the present study are close to an ideal nor- 
mal distribution so that the average and median are close. Dif- 
ferences can occur in aggregated data and in aggregation 
errors. Subtracting the median from original values in a win- 
dow differs from subtracting the average in the window. The 
former produces greater (if not equal) remainders, or aggrega- 
tion errors termed in the present study. If the median method 
does not do better than the averaging method in preserving 
the statistical and spatial characteristics of the original data, 
and it only leaves greater aggregation errors, then the median 
method is not necessarily a better substitute for the averaging 
method in data aggregation. When there is a choice between 
the two, averaging is a better option. 

Although the ten-pixel spatial autocorrelation is imple- 
mented in the simulated images, its effects are not clear in all 
situations. The effects are more apparent for the central-pixel 
method in statistics (Figure 4) and semivariograms of errors 
(Figure 171. It is possible that the smoothing effect of the aver- 

patterns [as opposed to original patterns) within the spatial 
autocorrelation ranges (Figure 9). Averaging beyond the spatial 
autocorrelation ranges may not reveal any new actual patterns. 
Instead, the difference between patterns across these aggrega- 
tion levels may become a statistical artifact (Figure 9). For 
models that use averaged values and are sensitive to spatial 
patterns, using data averaged over one resolution coarser than 
the spatial autocorrelation range may not induce more errors 
than data averaged over another resolution coarser than the 
autocorrelation range. This serves as a worst-error scenario if 
averaging must be done at a coarse resolution. 

The central-pixel method, in contrast, yields a greater yet 
less predictable variation for both mean and standard devia- 
tion. For process models that depend on mean values, and/or 
are sensitive to ranges of variable values, the central-pixel 
method may induce more inherent errors than the averaging 
method. An exception is to resample central pixels within the 
spatial autocorrelation ranges (the autocorrelation range can be 
identified using semivariogram, using Moran's I index, or vi- 
sually examining the size of dominant spatial features in an 
image). This may keep both the mean and standard deviation 
close to those of the original data. Spatially, the central-pixel 
method preserves, to a limited extent, the original values and 
their relative locations at aggregation levels close to the origi- 
nal. This trait can be useful to models that require maintain- 
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Figure 14. Semivariograms of the averaging errors at se- 
lected aggregation levels and the original image for one 
of the 30 simulations. Starting from the top left corner 
moving down the column: The original image, 9- by 9-, 
21- by 21-, 41- by 41-, 61- by 61-, and 81- by 81-pixel 
window aggregation. 
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Figure 15. Means and standard deviations of the cen- 
tral-pixel errors for the 30 simulations at the ten ag- 
gregation levels and the original image. (top) means, 
and (bottom) standard deviations. 

aging method may have obscured effects of spatial autocorre- 
lation of a shorter range. This observation is consistent with 
the previous experience of authors using empirical images. 
Spatial autocorrelation seems to be apparent at 20- or 40-pixel 
window sizes. It is possible that these two window sizes are 
transition scales. On the basis of a preliminary experiment on 
a separate set of simulations, the spatial autocorrelation ap- 
peared in the semivariograms tends to extend beyond what is 
defined in the simulation. The random errors inserted into the 
simulated data may have caused the shifting. 

Conclusions 
Among the three methods compared in the present study, 
the averaging method produces aggregated data and aggrega- 
tion errors with the most statistically and spatially predicta- 
ble behavior. The median method produces similar results. 
The central-pixel method is the least predictable. 

Successfully identifying aggregation effects on statistical 
and spatial properties of spatial data can help manage inher- 
ent errors before the data are entered into analyses or models. 
Using established methods (e.g., semivariograms and Moran's 

I, etc.) to identify spatial autocorrelation ranges is a necessary 
step to help choose appropriate aggregation levels. Aggregating 
within the spatial autocorrelation range can help c o n h e  the 
magnitude or spatial pattern of errors. Knowing the behavior 
of errors through aggregation can help predict the worst-error 
scenarios if aggregation must be done at coarse scales. With 
the error and uncertainty theory, knowledge of error behavior 
can help access the accuracy of analyses and modeling out- 
comes (Goodchild and Gopal, 1989). Furthermore, it is possi- 
ble to devise means to compensate inherent errors. Such 
examples include simply subtracting a constant £rom the 
mean (Lammers et al.. 1997) to improve the model perform- 
ance. Generating multiple subsets of central pixels can help 
stabilize the variation in the aggregated data induced by the 
central-pixel resampling method. 

Using simulated images provides a better control of sta- 
tistical and spatial characteristics of the data, and it is suit- 
able for a systematic evaluation of aggregation effects. Results 
of the evaluation can be compared with a control data set 
without spatial autocorrelation. Such a comparison may pro- 
vide more conclusive explanations on effects of spatial auto- 
correlation in the present study. It will also be useful to 
examine empirical images that contain apparent, multiple- 
scaled features to validate results found in the present study. 
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Figure 16. Images of the central-pixel errors at selected 
aggregation levels and the original image for one of the 
30 simulations. (a) The original image, (b) 9 by 9, (c) 
21- by 21-, (d) 41- by 41-, (e) 61- by 61-, and (f) 81- by 
81-pixel window aggregation. 
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Figure 17. Semivariograms of the central-pixel errors at 
selected aggregation levels and the original image for 
one of the 30 simulations. Starting from the top left cor- 
ner moving down the column: The original image, 9- by 
9-, 21- by 21-, 41- by 41-, 61- by 61-, and 81- by 
81-pixel window aggregation. 

Another issue that warrants further investigation is the role 
of multiple structures of spatial autocorrelation in aggrega- 
tion effects. Although two structures are implemented in the 
present simulation, only the effect of 30-pixel autocorrelation 
range is apparent. The impact of the ten-pixel range is not as 
apparent as expected. 

These observations should contribute to a better under- 
standing of aggregation methods and their effects on using 
multi-resolution spatial data for environmental analyses and 
modeling. Aggregation effects are an interesting yet complex 
issue. In-depth understanding of the effects will evolve in re- 
sponse to the challenges of scaling up environmental models 
for global change research and for a better management of 
natural resources. 
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Figure 20. Semivariograms of the median errors at se- 
lected aggregation levels and the original image for one 
of the 30 simulations. Starting from the top left corner 
moving down the column: The original image, 9 by 9, 
21- by 21-, 41- by 41-, 61- by 61-, and 81- by 81-pixel 
window aggregation. 


