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Abstract 
Applications requiring the comparison of angular directions, 
descriptive angular statistics, or spatial interpolation of di- 
rectional data are problematic to implement because ac- 
cepted G I ~  modeling language constructs do not contain the 
directional data types or operators. Embedded directional 
operators or models may be developed with existing GIS 
functionality by reorganizing the directions into unit vectors. 
Representation of directional observations, such as surface 
orientation or solar rays, in a unit vector matrix form allows 
for the development using linear algebra in cartographic 
modeling constructs. This article presents fundamental direc- 
tional operators and demonstrates their development for sev- 
em1 surface-oriented applications: mean and dispersion in 
neighborhood surface orientation, comparison of surfaces, 
shaded relief mapping, topographic normalization of re- 
motely sensed imagery, and solar radiation. Extension of the 
fundamental directional operators to spatial interpolation is 
also discussed. 

Introduction 
Modeling of topographic surfaces and the effects of topogra- 
phy on other variables is a prevalent topic in many envi- 
ronmental modeling applications. Many of these disparate 
applications require not merely independent treatment of ele- 
vation or slope/aspect angles, but also treatment of the bidi- 
rectional angle that describes surface orientation. Examples of 
such applications include mapping shaded relief, modeling 
solar radiation, topographic normalization of remotely sensed 
imagery, or comparison of two different digital elevation mod- 
els (DEMS) of the same area. Other applications need direc- 
tional statistics to analyze measures of central tendency and 
dispersion in surface orientation angles. Modeling of many en- 
vironmental processes requires the use of what some have 
called vector fields (Kemp, 1992), such as wind flow or even 
surface slopelaspect. Finally, although spatial interpolation of 
scalar fields is common in geostatistics, spatial interpolation of 
vector fields is problematic in a GIS. 

Models constructed for topographic surface orientation 
applications share the unique problem of representing the bi- 
directional angle (i.e., slope and aspect together) of a surface 
and of comparing the bidirectional surface angle with other 
three-dimensional angles. The bidirectional angle is different 
from the unidirectional angle (i.e., aspect alone) associated 
with surface water flow or surface winds. The bidirectional 
surface angle is almost 3D but is limited to the two-and-one- 
half dimensions of hemispherical space. However, in appli- 
cations it may be used in comparisons with either other 
hemispherical angles or 3D angles, such as other surface an- 
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gles or solar rays, respectively. Unfortunately, modern GISS 
or image processing systems do not include either a bidirec- 
tional data type (e.g., a mathematical vector data type) or the 
bidirectional operators with which to efficiently construct 
topographic surface orientation-related models1. Only re- 
cently were vector data types introduced in a modern GIS 
(i.e., ESRI's ArcView vector data object). In addition, modern 
GISs, image processing systems, or even statistical packages 
do not include procedures for deriving the directional statis- 
tics that characterize a set of bidirectional surface angles. 
The authors view this deficiency as a conceptual impedi- 
ment-not a technical impediment. This article presents the 
constructs for fundamental directional operators that may be 
used to construct models for the applications described 
above. In a departure from previous work in these applica- 
tions, (1) the angles are represented as unit vectors, (2) the 
operators are based on linear algebra, and (3) the implemen- 
tation is entirely with existing cartographic modeling con- 
structs. Representing and analyzing the directional nature of 
surface orientation in this manner provides a common foun- 
dation for a wide variety of surface analyses and directional 
statistics related applications. 

This article describes an embedded approach to model- 
ing the bidirectional nature of surfaces using cartographic 
modeling concepts and linear algebra. For example, two cat- 
egories of surface orientation applications are presented: (1) 
directional statistics and (2) surface-normal solar-ray models. 
Extension of these fundamental directional statistics to spa- 
tial interpolation is then presented. The intent here is to de- 
mystify the nature of such functions or models and to place 
the conceptual measurements/statistics in an accepted GIS 
modeling language framework. Primitive operators for unit 
vectors in matrix algebra are first developed and provide the 
common link between surface-orientation directional statis- 
tics and surface-normal solar-ray models. The fundamental 
applications and formulae requiring the hemispherical treat- 
ment of topographic surfaces are then presented. Following 
the "cartographic modeling" concept by Tomlin (1990), each 
application is implemented using local, neighborhood, and 
zonal operators in three-dimensional vector algebra notation. 
FinaIly, these cartographic modeling-based operators are 
summarized in a proposed set of standard directionally re- 
lated objects and operators. The intent is not to review the 
theoretical arguments and empirical results for various topo- 

To the authors' knowledge, directional data types and associated 
operators do not exist in any of the raster-based commercial GIS or 
remote sensing packages. 
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<ABLE 1. PRIMITIVE DIRECTIONAL OPERATORS AND MODELS BASED ON 
DIRECTIONAL OPERATORS 

primitive Directional Models and Directional Operators 
Operators Needed 

Unit Vector for Surface Orientation Comparison 
Surface or Sun Unit Vector, Spherical Angle 

Spherical Angle Surface Neighborhood Characterization 
between Vectors Unit Vector, Mean Unit Vector, Dispersion 

Mean Unit Vector Surface Zonal Characterization 
Unit Vector, Mean Unit Vector, Dispersion 

Dispersion in Shaded Relief Mapping 
Unit Vectors Unit Vector, Spherical Angle 

Topographic Normalization: Lambertian 
Unit Vector, Spherical Angle 

Topographic Normalization: Non-Lambertian 
Unit Vector, Spherical Angle 

Solar Radiation 
Unit Vector, Spherical Angle 

Interpolation of Directional Data 
Unit Vector, Mean Unit Vector 

graphic normalization, directional statistics, solar radiation 
models, and spatial interpolation. With the exception of spa- 
tial interpolation of directional data, several others have con- 
ducted excellent work in these areas and the appropriate 
references are included for the reader. The purpose of this 
article is to provide the fundamental operators and proce- 
dures common to these models so that others can easily con- 
struct a variety of such models and continue improving on 
their use and development. 

Coupled and Embedded Operators/Models 
Solutions to topographic surface orientation include (1) cou- 
pling between GIs and existing non-GIs modelststatistical 
packages, (2) embedding "black-box" GIs functionstmodels, 
or (3) embedding the application using a GIS modeling lan- 
guage (Wesseling et al., 1996). Coupling of external models is 
often used in topographic surface analysis, such as surface 
form characteristics (Gallant and Wilson, 1996). The advan- 
tage of coupling is to reuse complex models or operators that 
have already been implemented. Coupling approaches often 
suffer from the inherent incompatibility of confidential file 
structures (e.g., ArctInfo's spatial data, ERDAS Imagine's 
.img grid data) in the "coupled" applications. Thus, conver- 
sion of file structures between the GIS and the coupled model 
and back is normally required. A "black-box" model or oper- 
ator is one embedded within the GIS but whose formula, al- 
gorithm, and details are occasionally hidden (e.g., proprie- 
tary). "Black-box" approaches are convenient for a specific 
use but prevent any modification and obscure the exact func- 
tional linkages. Furthermore, if the algorithms are hidden in 
either external coupled models or "black-box" operators, 
their evaluation or use in error propagation and uncertainty 
is confounded. 

An ideal solution for surface oriented related operators 
or models would be an embedded approach using the con- 
ceptual constructs in either an ANSI or defacto standard GIs 
modeling language (Wesseling et al., 1996; Zhang and Grif- 
fith, 1997). To date, the high-level modeling constructs in the 
cartographic modeling language (Tomlin, 1990) or map alge- 
bra language (Tomlin and Berry, 1979; Berry, 1987) are the 
closest to a high-level defacto standard for GIS modeling lan- 
guage. An embedded model is developed within the GIS 
using existing functionality through scripting or macro lan- 
guages. In general, the dominant raster-based GI% have 
adopted the local, focal, and zonal formalizations in the car- 
tographic modeling language by Tomlin (1990). This carto- 
graphic modeling functionality is available directly through 

the command language (e.g., Arc Grid), the graphical user in- 
terface (GUI), the graphical modeling language (e.g., ERDAS 
Spatial Modeler), or through the scripting language (e.g., Av- 
enue, ERDAS macro language). A model that adheres to the 
formalizations in cartographic modeling will be more univer- 
sal across GISS, more stable over time, and, thus, more porta- 
ble and easier to maintain. By using the existing GIs 
constructs of a modeling language, the surface orientation 
models could be modified, encapsulated as functions, docu- 
mented, used for errortuncertainty propagation, and pre- 
sented in educational form. Some specific applications 
presented here, such as solar radiation modeling, have em- 
bedded the conceptual model in a macro language such as 
AML (Dubayah and Rich, 1995) or Spatial Modeler. 

We believe that the implementation of the directional oper- 
ators and vector statistics is possible with the existing GIS data 
models and functions. If such implementation is possible, then 
previously noted impediments to such directional-based model- 
ing is a conceptual problem-not a technical problem. 

Categorization of Applications 
The two applications-surface orientation and surface-sun 
angular relations-make use of the two fundamental meas- 
urements of surface orientation and solar position-slope 
and aspect or solar elevation and solar azimuth. Seven algo- 
rithms for estimating slope and aspect have been presented 
elsewhere (Sharpnack and Akin, 1969; Ritter, 1987) and 
compared (Skidmore, 1989; Hodgson, 1998). At least one of 
these algorithms for deriving slope and aspect is built into 
all GISS as a "black-box" command or operator. In the carto- 
graphic modeling language constructs, these operators are ex- 
pressed as focal operators with immediate neighborhoods 
(i.e., using a 3 by 3 window). Although not explicitly pre- 
sented in this article, implementing any of the various slopel 
aspect algorithms using the vector algebra and cartographic 
modeling constructs discussed in this article is possible. 

Once these slope and aspect characteristics are derived, 
then other higher-order operators or models of processes are 
created. The surface orientation and surface-sun applications 
are both easily implemented using mathematical directional 
operators (Table 1). Other higher-order operators may be 
built using these primitives, and, ultimately, models may be 
constructed. 

Specific implementation of these models, such as topo- 
graphic normalization or solar radiation, often use spherical 
trigonometry. Other formulae for directional statistics often 
rely on the use of complex numbers (e.g., Hanson et al., 1992; 
Klink, 1998). Complex data types are not common in GIS, pre- 
senting an implementation impediment. Compared to previous 
work, all of the hemispherical angular measurements in this 
article are based on unit vectors and linear algebra. The use of 
unit vectors and linear algebra provides a common foundation 
for developing the operators above and constructing these and 
other models. By characterizing surface orientation as a unit 
vector, both directional statistics for surfaces and solar-radia- 
tion related models may be implemented using existing con- 
structs in cartographic modeling: scalar data types and local, 
focal, and zonal operators. In keeping with the broader con- 
cept of cartographic modeling, more complex operations or 
models can be built on a logical structuring of these carto- 
graphic modeling primitives. For example, a model of instan- 
taneous solar radiation will be constructed from the angle 
between local vectors, which are in turn constructed from lo- 
cal vector components. Furthermore, the use of linear algebra, 
as compared with spherical trigonometry, provides a useful 
instructional base as it is familiar to most students. 

Implementation of the formulae for the statistical or pro- 
cess models described above is accomplished through a set 
of conventions. After presenting each formula, the imple- 
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mented model will follow the following translation of the 
mathematical formulae to cartographic modeling primitives: 
.. - 
Ti and S are unit vectors, 

where is normal to the surface at cell, and 5 points 
toward the sun; 
implies summing the observations in a 
neighborhood (i.e., focal operator) or zone 
(i.e., zonal operator); and ,- 

J dH implies integration by approximation 
using a local sum operation for each 
observation in time (e.g., by hour). 

Primitives 
The vector normal to the terrain surface 6,) is represented as 
a matrix containing the vector endpoint. The implied origin 
is at the center of the cell and of unit length (i.e., length of 
1.0 units) (Figure la): i.e., 

where 
x = sin(aspect) * sin(slope), or x = 0.0 if slope = 0.0 
y = cos(aspect) * sin(slope), or y = 0.0 if slope = 0.0 
z = cos(s1ope) 

The unit vector used here implies direction but not magni- 
tude. As will be seen later, representation of the surface ori- 
entation as a 3D vector obviates the problems of including 
observations with a slope of 0.0 degrees, or undefined aspect. 
This consideration is important for including all observations 
in a zone when deriving mean and dispersion in surface ori- 
entations (Hodgson and Gaile, 1996). 

The embedded cartographic modeling implementation 
creates three separate grid layers of the x, y, and z compo- 
nents of the normal vectors (Figure 2). Using a local opera- 
tor, the vector endpoint components are derived from 
Equation 1. These three grids are the foundation for develop- 
ing all other operators presented here. 

To derive the three-dimensional angular difference be- 
tween two vectors pointing away from the same origin (Fig- 
ure lb), the dot product of two vector matrices is used. The 
cosine of the angle between two vectors is equivalent to the 
dot product of the two vectors divided by the product of the 
vector lengths: i.e., 

cos (i) = 
T . S 

I+I 151 ' 
Because the vectors are of unit lengths (i.e., always equal to 
1 unit in length), the denominator of Equation 2 is 1.0 and 
Equation 2 may be simplified to 

.. * 
cos (i) = T . S  = t,* s,+ t ,* s,,+ t , *  s,. 

Comparison of Surface Form 
A common methodology for accuracy assessment in remote 
sensing and GIS DEM generation studies is to compare the sur- 
face derived from a specific technique (e.g., softcopy photo- 
grammetry) to a reference data surface for the same study 
area. The reference data approximates "truth." Often the refer- 
ence data are samples of the surface (Bolstad and Stowe, 
1994) while other studies use reference data of the entire sur- 
face to be examined (Hodgson, 1995). The common practice in 
the accuracy assessment is to conduct separate evaluations of 
the errors in elevation, slope, and aspect. Evaluating errors in 
bidirectional orientation could also be conducted by compar- 
ing the bidirectional surface orientation angles of the test sur- 
face with the reference surface (Hodgson, 1998). This compari- 

son involves two angles in one hemisphere rather than the 
full three-dimensional case as the surface element in a DEM 
cannot point "down" (Figure lb). Knowledge of the errors in 
surface orientation is more important for applications where 
solar radiation or topographic normalization will be con- 
ducted. Few studies have used such a comparison method, 
presumably because of the lack of GIS tools for comparing 
hemispherical angles. 

Using cartographic modeling concepts, the angle between 
the two vectors (Equation 3) is computed from the x, y, and z 
components of each vector derived in Equation 1. In this ap- 
plication, the two vectors represent the surface orientation for 
the same cell in surface 1 and surface 2. These ~urfacepormal 
vectors from the two surfaces are referred to as TI and T,. The 
angle between the two vectors is computed as in Equation 3. 

Implementation of the bidirectional angular difference is 
illustrated using cartographic modeling constructs in Figure 
3a. Once the x, y, and z components of the vector in each 
cell are computed as separate map layers, the hemispherical 
angular difference (i) is derived using a local operator. The 
local operation is an implementation of Equation 3,'the dot 
product of two vectors. 

Mean and Dispersion in Surface Orientation 
A common conceptual measure for either remotely sensed im- 
agery or landscape data is to characterize the neighborhood 
variability and central tendency. Example measures of central 
tendency are mean brightness values in imagery, median land- 
cover class, average slope, or "average" aspect. The "average" 
hemispherical surface orientation and dispersion in hemi- 
spherical angles analogous to the mean and standard deviation 
in linear statistics can be devised using directional statistics 
and are presented in greater detail elsewhere (see, for exam- 
ple, Gaile and Burt (1980), Mahan (1991), and Hodgson and 
Gaile (1996)). The fundamentals for directional statistics were 
developed over 100 years ago (Rayleigh, 1880) but are seldom 
utilized in GIS, presumably due to the lack of any available GIS 
functionality. As indicated earlier, even statistical packages 
that might be "coupled with a GIs do not contain the rele- 
vant directional statistics. 

If the x, y, and z components of the vector normal (i.e., 
for each cell in an n by n neighborhood (e.g., a 3 by 3 

window) has been derived, the mean vector is 

where each ?i is the surface normal for a grid cell in the 
neighborhood (Figure lc). 

Computing a mean surface slope for the neighborhood is 
derived from a ratio of the length of the projected vector on 
the x-y plane and the z component of the vector: i.e., 

d x L  + y L  
Slope,,, = tan-' 

z m  
(5) 

The mean aspect is derived algorithmically from the signs 
and ratio of x- and y,, (e.g., Ritter, 1987). Measures of dis- 
persion in the 3D vectors of a neighborhood, analogous to 
variance and standard deviation in linear statistics, may also 
be computed. The hemispherical "variance" (Sh) and hemi- 
spherical "standard devistion" (s,) are derived from the 
length (Rh) of the vector T-: i.e., 
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Normal Vector to Cell Bi-Directional Angle 
Between Surfaces 

Normal Vector 
for Surface 
+ 
T = k y ,  zl 

Vector towards 

Normal Vector 
from DEM I 
a 

f, =I.,, Y,, zJ 
Normal Vector 4 from D E M ~  

INSTANTANEOUS 
SOLAR ILLUMINATION 

Mean and Dispersion in 
Surface Orientation 

Mean 
+ Vector 

Tsum = [ xsum Ys, zsum 1 

Vectors for Each Cell 
In Neighborhood or Zone 

DIURNAL 
SOLAR ILLUMINATION 

Vector towards 
Sun Normal Vector 

+ for Surface 

Figure 1. Fundamental representation of surface-related directions and operators. The three-dimensional vector normal to a 
surface slope is shown in (a). Three-dimensional angle between two unit vectors normal to each surface is shown in (b) and 
the mean and dispersion in a set of surface normals is shown in (c). The specification and relationship between the surface 
normal and solar rays is shown in (d) while the instantaneous solar rays and surface normal are shown in (e). 

The number of cells in the neighborhood is N. As compared focal cartogrqhic modeling operations using the surface nor- 
to its linear analog (i.e., variance) that can have any positive mal vectors (TJ hom each surface element in an extended 
value, S,, only varies from 0 to 1. Interpretation of the hemi- neighborhood (Figure 3b). The vector matrix values are the 
spherical "standard deviation" (s,) is similar to the interpre- sums of the respective x, y, or z components in the neighbor- 
tation of standard deviation in linear statistics. hood. Implementation of Equations 6, 7, and 8 only requires 

The implementation of Equation 4 is with three separate the traditional local map algebraic operations in cartographic 
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SURFACE ORIENTATION VECTOR COMPONENTS 

/ ~ e v a ~ o n  . 

Figure 2. Computation of the three components (i.e., x, y, and z) for the surface normals in a 
map layer. Conceptually, this set of cartographic modeling operations could be encapsulated 
as a single operator - Vcomponents. 

3 

- + modeling. The entire implementation is presented in Figure cos(i) = r - S ]  = [x * xs + y * ys + z * ZS] 
3b. 

Extension of the neighborhood mean and dispersion in 
surface orientation to zones is straightforward (Figure 3c). whgre 
Rather than using focal operators to sum the x, y, and z com- S = [XS~ YS? Z S ] ~  the Vector representing solar rays; 
ponents of the vectors in a neighborhood, a zonal operator is XS = sin(solar azimuth) * sin(90 - solar elevation); 
used along with a map layer describing the zones. The im- ys = cos(so1ar azimuth) * si11(90 - solar elevation); and 
plementation of Equations 6, 7, and 8 for mean slope, "vari- ZS = - 

ance," and "standard deviation" in surface orientation angles For maps of small portions of the Earth, the orientation of within a zone may be computed using tabular operations the solar rays (iae., S) is constant for the entire map. 
(Figure 3c)' The of varies 'One and is The surface normal for each cell, however, varies 
to the number of cells within the zone. throughout the study area. Except for the constant solar an- 

Shaded Relief Mapping gles, computation of the angle between the two vectors in 

The objective of shaded relief mapping is to simulate the ap- Equation 9 is identical to that in Equation 3. Cells with a 

pearance of the topographic surface in planimetric form negative cos(i) are in self-shadow. On a shaded relief map, 

caused solely by the variation in illumination due to bidirec- the brightest cells are those with a large value of cos(i). The 

tional surface orientation with respect to the sun's rays (Fig- apparent brightness is then from O to 255 

ure Id). Practically all modern ~ 1 ~ s  contain one shaded relief (i.e.$ dark light) the cosine of a 'On- 

model as a "black box.- ~h~ shaded relief model stant for the maximum brightness (e.g., 255): i.e., 

varies the apparent brightness of the terrain unit as a linear Brightness = cos(i) * 255 if cos(i) 1 0 ,  or 
functiog of the angle of incidence (i) between the solar rays (10) 
(vector S) and surface normal (vector T): i.e., Brightness = 0 if cos(i) < 0. 
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X, Y, Z Surface Normals X, Y, Z Surface Normals 
from DEM 1 from DEM 2 

LOCAL MEAN 
AND DISPERSION 

X, Y, Z Surface Nonnals 

X, Y, Z Surface Normals 

Figure 3. Fundamental cartographic modeling operations on a grid of surface normal vector components to 
produce the difference between two surface normals (a), and the mean and dispersion in surface normals 
of a neighborhood (b) and a zone (c). The operations in (a) might become a localvdiff operator. The neigh- 
borhood mean and dispersion primitives might become the focal- Vmean and focal- Vstd operators while 
the zonal primitives might be zonal - Vmean and zonal - Vstd. 
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(Shaded Relief Mapping) 

X, Y, Z Surface Normals 

(Lambertian Model) 

Local Operation 
Note: If cos(r) .le. 0.0, 
cell in self shadow. 

Figure 4. Fundamental cartographic modeling operations for deriving the instantaneous solar radiation on a 
surface are shown in (a) and for normalizing remotely sensed imagery using a Lambertian and Minnaert- 
based models are shown in (b) and (c), respectively. 

The cartographic modeling implementation uses the map elevation and aspect (Figure 4a). The model then adds one 
layer of vector endpoints (Figure 2) and two scalars for solar local operator to derive i. By implementing the shaded relief 
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mapping directly in cartographic modeling, the analyst may 
easily implement a non-Lambertian reflectance model (i.e., 
described below) or make modifications for haze and cloud 
shadows. The surface represented by i could also be used to 
develop the "shadowed contours" presented by Yoeli (1983). 
This general concept for predicting the angle of incidence 
could also be extended to predict " h ~ t  spots" on imagery of 
water bodies where the map layer of Ts represents view an- 
gles from the surface to the sensor. 

Topographic Normalization 
The objective in topographic normalization is to remove or 
minimize the variation in illumination in a remotely sensed 
image caused solely by the variation in surface orientation to 
the solar rays. Thus, the objective in topographic normaliza- 
tion is the inverse of that in shaded relief mapping. The re- 
mote sensing community has generally made use of three 
models for topographic normalization - Lambertian model 
(Holben and Justice, 1980), Minnaert model (Smith et a]., 
1980; Colby, 1991), and a two-stage normalization model 
(Civco, 1989). Presentation of the merits of each is beyond 
the scope of this article. For in-depth reading, the references 
above are provided. All three models use the angle of inci- 
dence (i) between the surface normal and solar rays as de- 
fined above (Equation 9). All three models assume that the 
raw reflectance values have been transformed to radiance 
(LA) and the diffuse atmospheric component (i.e., skylight) 
has been removed. Transformation to radiance is accom- 
plished by means of a simple table look-up. Removal of the 
atmospheric component is often accomplished using black 
body subtraction (Jensen, 1996). 

Assuming a Lambertian surface, the form of the topo- 
graphic normalization model is 

LA Ln, = - 
cos (i) 

where Ln, is the normalized radiance for wavelength region 
A and LA is the measured reflected radiance for wavelength 
region A. Pixels that are in self-shadow have a cos(13 of less 
than or equal to 0.0 (i.e., i 2t 90 degrees). 

Implementation of the Lambertian normalization model is 
a logical extension of the DEM surface orientation comparison 
model (Figure 3a). Because the denominator in Equation 11 re- 
quires the cos(1') rather than i, the arc cosine function is not 
used. The grid layer of cos(1') values is used to normalize each 
image band on a band-by-band basis (Figure 4b). As in the 
shaded relief model, the solar elevation and azimuth are sca- 
lars. 

A commonly used non-Lambertian topographic normali- 
zation model was developed by Minnaert (1941). Although the 
Minnaert-based model was developed for lunar surfaces, it has 
been applied in numerous remote sensing studies of Earth re- 
sources. This model may be expressed in linear form as 

LA * cos(e) 
Ln, = 

cosk(i) * cosk(e) 

where cos(e) is the exitance angle or slope and k is the Min- 
naert constant. The Minnaert constant k is often assumed to 
vary by land-cover class and wavelength (Smith et al., 1980). 
Under this assumption, the Minnaert constant k for a class is 
derived from a set of sample pixels of the same class using a 
linear regression form of Equation 12. 

Similar to the implementation of the Lambertian model, 
the Minnaert-based normaIization model requires only a lo- 
cal operation (Figure 4c). This model does require the use of 
a surface slope layer and a grid of k values by zone. 

Dlrect Solar Radiation 
The goal in modeling solar radiation of surfaces is to esti- 
mate either (1) absolute solar flux or (2) relative solar flux. 
In climatological applications, the goal is often the former 
where actual solar flux estimates at the surface are desired. 
The latter goal of relative solar flux is often sufficient for 
studying solar radiation as a causal factor in biogeographic 
spatial patterns. There are many solar radiation models that 
vary depending on the scale of analysis, general climate of 
the site, and amount of supporting data. For further reading, 
the articles by Dubayah and Rich (1995) and Duguay (1993) 
may be consulted. The dominant factor in solar radiation 
variability on inclined surfaces in these models is the vari- 
ability in solar flux from the angle of incidence (1'). A com- 
mon form of a simple solar radiation model is expressed 
[after Garnier and Ohmura, 1968) as 

where Id is the daily total direct radiation in langleys, I, is 
the solar constant (e.g., 2.0 lylmin), HI and If2 are the begin- 
ning and ending hours of daylight, p is the mean zenith path 
transmissivity (e.g., 0.75), and m is the optical air mass: i.e., 
sec Z, = l/cos(Zs). This formula is a simple version of the 
atmospheric processes and would obviously vary with local 
meteorological conditions such as rainfall, cloudiness, etc. 
This formula does not consider the diffuse or reflected com- 
ponents of illumination. The formula above also does not 
consider the shadows caused by intervening topography. In 
areas of very rugged terrain, the persistence of shadows be- 
comes increasingly important and the inclusion of this in a 
viewshed operation is required. 

Computation of the incidence angle differs from the 
shaded relief and topographic normalization models in that 
the solar angle varies diurnally and seasonally. Implementa- 
tion requires the accumulation of the incremental soIar fIux 
on each surface element throughout the day and throughout 
the season of interest (e.g., seasonal or annual). Conceptually. 
we could derive a surface of incremental flux for each unit 
in time and then aggregate the layers through a local sum. 
Even small units of time (e.g., 20 minutes) would result in a 
large number of layers for a year. For example, considering 
every hour in a day throughout the year would result in 
26,280 layers (365*24*3). An alternative is iteratively to cre- 
ate the layer for time, (current time), add it to a total solar 
flux layer, and then recreate the layer for the time,, , etc. 
Formally, there is no "do while" or "for loop" construct in 
the cartographic modeling language. Pragmatically though, 
these constructs do exist in macro languages of ArcIInfo 
AML, ArcIInfo Grid, Arcview Avenue, or ERDAS EML. 

Spatial Interpolation of Directional Data 
The concepts and formulae presented earlier may be ex- 
tended to spatial interpolation, or even the resampling prob- 
lem in rectificationlregistration of regular tesselations [Atkin- 
son, 1985; Jensen, 1996). We briefly present the nature of the 
spatial interpolation problem with vector data, in general, 
and an implementation using concepts presented earlier. For 
simplicity, the interpolation model for directional data pre- 
sented here is based on the fundamental general inverse dis- 
tance weighted model for estimating the scalar value z': i,e., 

where k is the number of neighboring observations and dp is 
the distance to observation, with exponent p. 
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The choice of a spatial interpolation method is influ- 
enced by the characteristics of the phenomena to be esti- 
mated and the physical laws of such phenomenon to be 
maintained. For most interpolation problems, the phenome- 
non is represented by a scalar field and is relatively simple 
compared to directional data. Two different characteristics 
may be of interest with directional data: (1) a grid of direc- 
tions (and possible velocities) that represents the "most 
likely" direction or movement of the phenomenon for each 
point, and (2) a grid that depicts the flow of energy or matter 
at each point based on the physical laws that govern the flow 
of such. The former characteristic would be useful for inter- 
polation of sensible properties such as surface aspect or 
wind direction; the latter is closely related to the concept of 
flux and density. Modeling of flux and density requires tem- 
poral observations and treatment of such as a function of 
time. 

Many phenomena that "move" behave in accordance 
with certain physical laws. It is well-known that matter can- 
not be created or destroyed (except in nuclear reactions). 
This axiom gives rise to the equation of continuity also re- 
ferred to as the conservation of mass. Basically, this equation 
states that, for an infinitesimal volume, inequalities in the 
amount of matter (or energy) entering the volume and the 
amount of matter (or energy) exiting the volume are resolved 
as changes in the density of the matter (or energy) for the 
volume. For many applications, the matter is considered in- 
compressible (e.g., water, tropospheric atmosphere, ice) and, 
thus, invariant in pressure. Thus, if precise maintenance of 
the conservation of mass is required, then the interpolation 
algorithm should guarantee this. 

The interpolation methods suggested here do not guaran- 
tee that mass is conserved. For such moving phenomena and 
physical laws, three-dimensional data models are required as 
well as an iterative algorithm for adjusting the estimated grid 
values to conformity. Preservation of these characteristics is 
analogous to a spatial interpolation method such as the pyc- 
nophylactic interpolation method for conserving mass (Tob- 
ler, 1979). However, the methods suggested below may be 
said to "lean" toward the conservation of mass (particularly 
if three-dimensional directions are used). In applications that 
only require approximate surface movement fields, these 
methods will suffice. For other static directional data, such 
as the dispersion of phenomena by surface aspect or a com- 
bined slope-aspect directional vector, the suggested interpo- 
lation methods satisfy statistical assumptions required for 
weighted means. 

By expressing the directional data as unit vectors (e.g., 
Equation 1 if three-dimensional) in separate grids as before, 
spatial interpolation may be implemented by performing sep- 
arate spatial interpolations for the x and y components (and 
z if three-dimensional). Kemp (1992) also noted the use of 
vector endpoints for resampling of vector fields. Equal 
weighting of all neighboring observatioqs results in an inter- 
polated vector equivalent to the vector T,, in Equation 4. To 
implement differential-weighting of observations as is com- 
mon, the mean vector T,, is interpolated by decomposing the 
problem into 

where 

and 

Once the x and y components for each directional vector are 
computed, x,~~,,,, and y,,,,,,,, are derived using the exist- 
ing interpolation method (e.g., general inverse distance 
weighting model) or resampling logic. 

For example, the resampling of two-dimensional direc- 
tional data requires the following steps: 

(1) Create a grid of x components from the directional value 
(Equation I), 

(2) Create a grid of y components from the directional value 
(Equation I), 

(3) Rectifyfregister the grid of x values in the conventional 
manner as a scalar, and 

(4)  Rectifylregister the grid of  y values in the conventional 
manner as a scalar; then 

( 5 )  Each location in the resulting grids contain the endpoints of 
the interpolated directional data. 

Discussion 
The representation of surface orientation angles in a DEM as a 
map layer of hemispherically directed vectors puts many sur- 
face orientation applications in a broader context (Figure 5). 
A common foundation for linking these applications mathe- 
matically and conceptually through linear algebra and carto- 
graphic modeling has been presented. This article has 
demonstrated that seemingly complex models based on di- 
rectional concepts can be easily implemented in the existing 
cartographic modeling language of a modern G I ~ .  Reliance on 
external "coupled" models is not necessary except for em- 
ciency reasons. 

As conceptual modeling in a GIS framework continues to 
evolve, it is imperative that two-and-one-half-dimensional 
and three-dimensional data models and operators be devel- 
oped. The representation of two-and-one-half-dimensional 
surfaces are possible while three-dimensional representations 
are less well developed. This article has presented concepts 
and cartographic modeling implementations that are possible 
through the present evolutionary status for a modern GIs. For 
efficiency and conceptualization reasons, it might be desira- 
ble to organize the surfaces of x, y, and z components into 
an "object," as in object-oriented representations. In this 
manner, references to a "surface orientation object" would 
refer to the x, y, and z components of a map layer of unit 
vectors. Data structures like ERDAS Imagine's multiple layer 
"images" are an example. As noted earlier, the new vector 
data object in ESRI's Arcview "3-D Analyst" provides a vec- 
tor data object, but not for regular tesselations. However, cre- 
ating a new data type, such as a vector object, only provides 
an efficient method for encapsulating multiple attributes for 
a surface. To develop the models discussed in this paper 
would require the availability of 2 ' 1 2 ~  operators or 3D opera- 
tors, such as vector addition, vector differences, dot and 
cross products, and higher level concepts like directional sta- 
tistics. 

A comprehensive extension of the cartographic modeling 
language to three dimensions would require consideration of 
operators well-beyond the limited scope of surface orienta- 
tion and sun-surface rays. However, the implementation of 
"surface orientation objects" (expressed in x, y, and z com- 
ponents) and associated directional operators with these ob- 
jects would satisfy the fundamental applications presented 
here. The following operators (expressed as map algebra 
statements) would be needed: 

Grid - Vobject = Vcomponents (grid - DEM] 
Grid - Vobject = FocalVmean (window, Grid - Vobject] 
Grid - Vobjed = ZonalWean (zone Grid, Grid - Vobject) 
Grid = Vslope (Grid - Vobject) 
Grid = Vasped (Grid - Vobject] 
Grid = FocalVstd [window, Grid - Vobject) 
Grid = ZonalVstd (zone Grid, Grid - Vobject) 
Grid = LocdVdiff (Grid - Vobject 1 ,  Grid - Vobject 2) 

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING 



- 

g) TM Blue Band h) TM Blue Band Normalized 

Figure 5. Example applications using the directional operators and models de- 
veloped. Simple elevation differences between a very high resolution photogram- 
metrically derived DEM (a) and the u s ~ s  30-m DEM for the same area (b) 
indicates larger differences in the stream channels and a few other areas (c). 
The local bidirectional surface angles between the two D E M s  (d) highlight the 
differences in surface orientation adjacent to stream channels. A traditional 
shaded relief map for an area in Colorado (e) is compared to the surface illumi- 
nation at the moment of TM image collection (f). The blue band from Landsat TM 
is shown in (g) and after topographic normalization in (h). 

In the above operators, a "gr id  is the traditional grid data 
model of one layer. The Vcomponents operator would create 
the multilayer grid vector object (i.e., Grid - Vobject) of x, 
y, and z components from a digital elevation model (i.e., 
Equation 1). The mean vector (Ts,) for a neighborhood or 
zone could then be derived by focalvmean or zonalvmean 
operators, respectively (i.e., Equation 4). A window object 
would describe the size, shape, and specific row-column ele- 
ments to be used in the focal operation. Slope or aspect for 

the surface object is derived by the Vslope and Vaspect oper- 
ators (i.e., Equation 5), respectively. These two slope and 
aspect operators differ from the traditional slopelaspect oper- 
ators in that they derive surface angles from the vector repre- 
sentation rather than the surface elevations in a DEM. The 
standard deviation in surface orientation (s,) is derived with 
the focalvstd or zonalvstd operators. The angle i between 
two vectors in 3D space may be computed using the local- 
Vdiff operator (i.e., after Equation 3). 
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There are no formal constructs for "looping" to model 
temporal processes in the cartographic modeling language. 
Although this prohibits an elegant solution to creating tem- 
poral models, looping constructs for modeling temporal pro- 
cesses can be implemented with existing "flow-of-control" 
constructs available in modern GISS. 

No formalized methods exist in GIS languages for model- 
ing flux or density. Preserving these characteristics in model- 
ing applications requires the conservation of mass and en- 
ergy. Even the methods for spatial interpolation or 
computation of mean wind direction as presented here (or 
similar concepts by others) does not insure conservation - 
these methods only "lean" toward such properties. 

Finally, there is also no formalized method for encapsu- 
lation of modeling code segments into operators (i.e., grey 
boxes), such as those proposed above. For instance, it would 
be preferable to build a model for mean surface dispersion 
based on the available objects and hemispherical operators, 
and to later use this model by simple reference to a surface 
dispersion "object" (e.g., focalvstd or zonalvstd). Existing 
implementations must rely on separation of embedded mod- 
els using separate script files (e.g., AML or EML files, or Ave- 
nue code) or graphical models. 

As the conceptual development of modeling language 
constructs continues, a standardized modeling language that 
includes the directional nature of 2'1~~ or 3D surface opera- 
tors will ultimately be accepted by the GIS community. Ide- 
ally, modeling language operators for conservation will also 
be adopted. The conceptual development of surface operators 
based on cartographic modeling constructs proposed in this 
article is one approach toward this goal. 
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