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Abstract

Semi-automatic measurement of objects with regular shapes
can be performed efficiently in three steps: (1) selection of an
object model and approximate alignment of its wire frame by
an image analyst, (2) precise alignment to the image by a
fitting algorithm, and (3) correction of fitting errors, again by
the image analyst. This paper presents a new approach to
perform these three steps using the same principle in all three
steps. The developed approach allows the image analyst to
drag both points and lines of the projected wire frame,
including curved edges and contour edges, in order to align
these features with the image contents. Using the described
algorithm, there is no need for the image analyst to specify
which parameters of the object models are to be adapted in
order to improve the alignment. The performance of the fitting
step is analyzed and compared with an alternative approach.

Introduction

Future (geographic) information systems will contain three-
dimensional (3D) and highly structured information. The
development of procedures for the extraction of 3D object mod-
els from digital imagery is, therefore, receiving much attention
at research institutes. Whereas efforts to fully automate the pro-
cess of building extraction show good progress (Henricsson
and Baltsavias, 1997; Steinhage, 1997), it is clear that under
many circumstances automation is extremely difficult to
achieve. For this reason, semi-automatic approaches are being
developed which allow interaction between computer algo-
rithms and an image analyst, thus taking advantage of the excel-
lent interpretation and evaluation skills of the image analyst.

The measurement of objects can be dealt with most effi-
ciently if the objects can be modeled by a combination of a few
primitive shapes. These composite object models can be con-
structed prior to the measurement process. The model-based
semi-automatic measurement of objects can then be seen as a
three-step procedure: (1) the selection of an object model from a
library and the approximate alignment of the object model with
the object appearance in the images by an image analyst, (2) the
precise alignment of the object model to the image by a fitting
algorithm, and (3) the correction of erroneous fitting results,
again by an image analyst.

In this paper we will present a new approach in which we
use the same principle for modifying the pose and shape of the
object models in all three steps.

The next section first reviews some of the related work pre-
sented in the last few years. In sections three to five the three
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steps of the measurement approach will be elaborated. The fit-
ting algorithm is described in section three. This algorithm is
similar to the one described by Lowe (1991). Success rates, pre-
cision, speed, and pull-in range are analyzed in a mapping
experiment involving buildings in a residential and an indus-
trial area. The results are compared with those obtained with
the snake-like algorithm described by Fua (1996). In section
four, the designed algorithm is applied to a different set of
observations such that it becomes suitable for correcting erro-
neous fitting results. Section five demonstrates that the same
algorithm can also be used for approximate alignment of the
object models by an image analyst. The main features of the
developed methods are summarized in the final section.

Related Work

Representation of Object Models

Object models can be described in various ways (Mortenson,
1997). The two most important types are briefly discussed,
because the way of representing an object model can have an
impact on the way in which the parameters of the model can
be manipulated.

Constructive Solid Geometry (€SG) is widely used for com-
puter aided design (CAD). With this technique an object is com-
posed by taking unions and intersections of several primitive
shapes such as rectangular boxes, spheres, cylinders, cones,
and tetrahedra. Such an object model is described by specifying
for each primitive the values of the shape parameters and the
six pose parameters. Often the absolute pose parameters are
specified for one primitive only and the pose parameters of the
other primitives are described relative to the first primitive.

Boundary representations (B-rep) of objects describe the
geometry of the points, edge lines, and surfaces of the object
boundaries together with the topological relationships between
these points, lines, and surfaces. A polyhedral object can there-
fore be described by the coordinates of the corner points and the
point numbers that make up the lines and faces.

Manipulation of Wire Frames

The functions available in CAD packages to change the position
and shape of object models are often fairly limited. Common
approaches are the editing of numeric values of the object
parameters and slide bars for rotations around a specified axis.
These tools are primarily designed for the construction of CAD
models. Whereas they can be used for approximate alignment
of an object model with an image, they are not very user friendly
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for the purpose of model-based measurement. Therefore, new
tools need to be developed.

An approach dedicated to measurement with parameter-
ized models is described by Lang and Férstner (1996). By drag-
ging corner points of an object model to the corresponding
position in an image, one or two parameters of the object model
can be adapted. Which parameters are adapted depends on the
chosen reference point, the point that is moved, and the entries
of a so-called association table. A table has to be made for each
object model available in the object model library, The tables
can be edited in order to store the preferences of the image
analyst.

Fitting Algorithms

After the approximate alignment of the object model by an
image analyst, more precise estimates of pose and shape
parameters can be obtained by fitting algorithms. Several
approaches to optimize the alignment of an object model can
be found in the literature.

Lowe (1991) describes a least-squares algorithm that fits
the edges of the projected wire frame to edge pixels. These edge
pixels are pixels with a grey value gradient above some pre-set
threshold. Starting with an approximate alignment, the errors
in the alignment are quantified by the perpendicular distances
of the edge pixels to the nearest edge of the wire frame. The task
of the fitting algorithm is to estimate the changes to the values
of the pose and shape parameters that have to be applied in
order to minimize the square sum of these distances. This is
accomplished by setting up the observation equation

i=K

E(Au) = 3 — Ap; (1)

i=1 9p

for each edge pixel. In this equation Au is the perpendicular dis-
tance of an edge pixel to the nearest edge of the wire frame, p,
are the object parameters, and K is the number of parameters.
An iterative least-squares adjustment results in an optimal
estimation of the object parameter values. The required partial
derivatives are obtained by numerical simulation.

Sester and Forstner (1989) describe a clustering algorithm
followed by a robust estimation of pose and shape parameters.
Both algorithms are based on correspondences between edges
of the wire frame model and straight edges that are extracted
from the image. Whereas the clustering algorithm is not suit-
able for the simultaneous determination of a large number of
parameter values, the robust estimation is applicable to mea-
surement of polyhedral objects.

Fua (1996) uses a snake-like approach to fit a polyhedral
object model to an image. An energy function is defined as the
negative sum of the absolute grey value gradients along the
edges of a projected wire frame. With a steepest gradient algo-
rithm the pasitions of the corners of the polyhedral model are
adapted such that the value of the energy function is mini-
mized. Instead of the typical regularization component in the
energy function used for road mapping, Fua employs con-
straints on the direction in which the coordinates of the object
corners may be adapted. These constraints are necessary to
ensure that the geometric relationships between perpendicular
and parallel lines of the object model are maintained.

Further Automation in Mapping Buildings

Fitting methods require approximate values of the object
parameters. The derivation of an approximately aligned object
model can be done completely manually, but, in order to further
speed up the mapping process, (partial) automation is re-
quired. Giilch et al. (1998) present an approach for the measure-
ment of buildings with gable roofs which usually only requires
the image analyst to point out both ridge points in one image.
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Based on this knowledge, a search and matching process is
started to find additional roof edges and reconstruct the 3D
building model. A very similar approach is presented by Li et
al. (1998). In their paper, the number of manual measurements
ranges from one to three for flat roofs and two to four for gable
roofs. The number of measured points per model depends on
the success of the hypothesis generation conducted after each
measured point. Hsieh (1996) developed another interactive
modeling environment in which user-delineated roof bound-
aries in one image are used as cues in a matching algorithm to
determine the ground level and roof level.

Due to the complexity of aerial image understanding, the
automation processes described above are commonly re-
stricted to simple building types such as flat roof or gable roof
buildings. In this paper we will not focus on a high degree of
automation for the measurements of a few specific models, but,
rather, pursue the development of efficient tools for the mea-
surement of the large class of arbitrarily shaped parameterized
models.

Fitting Object Models to Images

In this section, we first outline some drawbacks of the
described fitting methods. We then show how these drawbacks
can be eliminated and describe several implementation
aspects. In the last paragraph the performance characteristics
of the new fitting procedure are analyzed and compared with
those of the snake-like approach by Fua (1996).

Analysis of Fitting Methods

The purpose of a fitting algorithm is to determine the pose and
shape parameters of an object model such that the edges of the
wire frame, as projected into the image(s), are optimally aligned
with the pixels with high gradients. It is, of course, assumed
that these pixels correspond to the projection of the object’s
edges. This objective is most clearly visible in the energy func-
tion of the snakes approach by Fua (1996). However, the optimi-
zation algorithm used to find the best parameters is compu-
tationally expensive, because the derived energy gradients only
indicate the direction in which the vector of parameter values
should be changed. It takes a substantial number of iterations to
accurately determine the amount of change required to obtain
the best fit.

Computationally, the least-squares approaches by Lowe
(1991) and Sester and Forstner (1989) are much faster. Due to
the edge detection, the direct relationship between parameter
value changes and gradient values is, however, lost. Weak edge
pixels will not be used in the parameter estimation if their gra-
dients are below the threshold for edge detection.

Modification of Lowe's Fitting Method

A direct relationship between the estimation of the pose and
shape parameters and the gradients of the pixels can be
achieved by modifying the approach by Lowe (1991). Lowe
introduces an observation equation for each pixel which fulfils
two conditions: (1) the grey value gradient should be above
some threshold and (2) the pixel should be within some range of
a projected wire frame edge. We propose to drop the first condi-
tion: i.e., for all pixels within some range of a wire frame edge,
the observation equation is introduced. In order to ensure that
the pixels with the higher gradients dominate the parameter
estimation, the squared grey value gradients of the pixels are
used as weights to the observation equations:* i.e.,

“This is similar to the estimation of subpixel coordinates for points
found with the interest operator described in Forstner and Giilch
(1987). In this paper the coordinates of all pixels within a selected
window are used to estimate the interest point by using the squared
grey value gradients as weights.
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In this way, we avoid the problem of selecting a threshold for
edge detection and at the same time improve the accuracy of
the fitting because the stronger edges will have more weight in
the estimation whereas all edge pixels have unit weight in
Lowe’s approach.

The grey value gradient used in the weight function is cal-
culated as the partial derivative of the grey value g in the direc-
tion u perpendicular to the edge of the wire frame. This has the
advantage that gradients caused by background objects with
perpendicular directions will not interfere with the parameter
estimation.

Implementation Aspects

Gradient pixels of other objects will disturb the parameter esti-
mates if they are within some distance of the wire frame edges
of the object to be measured. In order to reduce the bias by other
objects, it would be best to only use pixels within a very small
buffer around the edges. Using a small buffer, however, implies
that the image analyst needs to supply an accurate approxi-
mate positioning of the wire frame. This would reduce the ben-
efits of a fitting method. It is therefore better to start with a large
buffer and then to reduce the buffer size after each iteration of
the least-squares estimation.

A large buffer will contain a large number of pixels. Setting
up an observation equation for each pixel would make the fit-
ting algorithm time consuming. In the first few iterations with a
larger buffer size, we therefore subsample the buffer with pro-
files perpendicular to the edges (see Figure 1). Observation
equations are set up only for points on these profiles. The point
density is increased each time the buffer size is reduced. In this
way a large initial buffer size can be combined with a fast and
precise fitting.

The partial derivatives of the distances with respect to
changes in the parameters are estimated numerically, as in
Lowe’s approach. A more detailed explanation of the estima-
tion can be found in Vosselman (1998).

3 5 ._ Profile

Figure 1. Profiles perpendicular to a pro-
jected wire frame edge. The point density
can be controlled by the distance between
the profiles D,, the length of the profiles
L,, and the number of points on a profile
N,. The distance between points within a
profile is defined by D, = L,/N,.
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Performance Analysis

To assess the performance of the designed fitting algorithm and
to compare it with the snake-like algorithm by Fua (1996), sev-
eral experiments have been performed. The imagery and refer-
ence data were taken from the Avenches data set provided for
the first Ascona Workshop (Gruen et al., 1995). The images
were recorded at a scale of 1:5000 and scanned with a pixel size
of 15 um (7.5 cm on the ground).

After a description of the used object models the set-up of
the experiments is outlined. Finally, the performance of both
fitting algorithms is analyzed with respect to success rates,
speed, precision, and pull-in range.

Roof Models

All measurements were performed with a standard gable roof
model. This roof model can be described by seven parameters:
the three coordinates of a roof point (X, Y, Z); the rotation
around the Z-axis (x); and the length (/), width (w), and height
(h) of the roof. The height is defined as the height difference
between the roof ridge and the gutter. Note that the wall height
is not estimated in the fitting experiments.

The snake-like approach used a polyhedral boundary rep-
resentation. In this model the three coordinates of all six roof
points are treated as unknown parameters. To make sure that
the coordinates estimated by the fitting algorithm still form a
gable roof, eleven shape constraints are used (Veldhuis, 1998).

Experimental Protocol

A total of ten buildings with gable roofs was selected from two
stereo pairs. For all buildings, the wire frame of the roof model
was approximately positioned by an image analyst. Using these
approximate positions, 15 measurements were performed with
both fitting methods for each building. These different mea-
surements were used to study the effects of the subsampling of
the buffer onto the success rates and the computation time of
the fitting. The subsampling is used for both the least-squares
and the snakes approach. For the distances between the profiles
D, and the initial profile length L,, 5, 10, or 20 pixels were
used. The initial number of points on a profile N, was either 5
or 10. All combinations were made, however, with the restric-
tion that the minimum distance between points in a profile is
one pixel. Therefore, L, = 5 was not combined with N, = 10. In
the last iteration, the number of points in a profile is set to three
and the distance between the points is set to one pixel.

The analyses of the precision and the pull-in range were
done with the subsampling which resulted in the highest suc-
cess rates. For the analysis of the pull-in range, another set of
experiments was performed in which the errors in the approxi-
mate position and rotation of the roof models were systemati-
cally increased until the fitting algorithm could no longer
make a correct estimate.

Success Rates

Looking at the fitting results, it was found that many of the fit-
ted models were not fully aligned. Often one or two edges were
wrong due to the presence of other objects in the image. Most of
the edges, however, were positioned correctly. The success rate
was therefore defined as the percentage of wire frame edges that
required no correction by the image analyst. The results are
visualized in Figure 2. For many combinations of subsampling
parameters, both methods achieved success rates over 90 per-
cent. The least-squares approach seems to be a little more
robust with respect to changes in the subsampling. Both meth-
ods show a lower success rate with an initial profile length of
only 5 pixels. For both methods, best results were obtained with
an initial profile length of 10 pixels, 5 points per profile, and a
distance between the profiles of 5 pixels.
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Figure 2. Percentages successfully fitted wire frame edges for both methods
with varying subsampling parameters (L, - N, - D,).
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Speed
The results on the cPU-time used for fitting are shown in Figure
3.1t is clear that the least-squares method is much faster than
the snake-like method . This is due to the comparatively large
number of iterations required by the last method. Also clearly
visible is the dependency of the computation time on the num-
ber of points for which observation equations are derived.
Another critical factor with respect to the computation
time is the hidden line analysis, The performance of hidden
line algorithms is no bottleneck when working with polyhedral
objects but does become one when working with curved
objects such as cylinders (Ermes and van den Heuvel, 1998).

Precision

For the evaluation of the precision, standard deviations were
computed for both the coordinates of the roof corners (Table 1)
and the pose and shape parameters (Table 2). Both fitting
methods obtain approximately the same results. The new
least-squares fitting method is often slightly better, but the

TaBLe 1.  StanparD DeviaTions oF THE EsTIMATED RooF CORNER
COORDINATES.

TABLE 2. STANDARD DEVIATIONS OF THE ESTIMATED POSE AND SHAPE
PARAMETERS. THE STANDARD DEVIATION OF THE x-ROTATION IS EXPRESSED IN
DEGREES, ALL OTHER VALUES ARE IN METERS OR PIXELS.

X Y Z K I w h

Least squares (m) 0.06 0.05 007 022 006 0.09 0.09
(pixel) 08 07 1.0 022 08 1.2 1.2

Snakes (m) 0.09 0.07 012 0.22 0.08 0.07 0.09
(pixel) 1.2 1.0 16 022 1.0 09 13

Z-coordinate of the roof points and the house width were better
estimated by the snake-like approach.

Considering the expected accuracy of the reference data
(0.1 m), it is difficult to assess the accuracy potential of the fit-
ting methods. It can, however, be concluded that the reference
data probably had a standard deviation below 0.1 m and that
both fitting methods are capable of obtaining the same order of
precision.

Pull-In Range
An important reason for using fitting techniques is the reduc-
tion in mapping time. The image analyst can work faster if the

e Y 7  objectmodels only need to be positioned approximately. There-
fore, the benefits of a fitting method increase when the esti-
Least squares (m) ; 0.09 0.0 034 mated parameters are correct even though the approximate
Sk [[511}’“3 ) é?,, l]]jl] rl}“llz positioning was bad. The pull-in range is defined as the range
N * (pi i : s of differences between the correct and approximate parameter
pixel) 1.6 1.4 1.6 ; . ; sl :
values for which the measurement still succeeds. This pull-in
[] Snakes W Lcast squares
15
‘_3“ 12 (]
: 9 ] -
£ s ' I J
>
* il o e e e e
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Figure 3. Fitting speed for both methods with varying subsampling parame-
ters (L, - N,- D,).
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range was investigated for a shift of the object model in the X'Y-
direction (Figure 4a) and a rotation around the Z-axis (Figure
4b) by systematically increasing the errors in the approximate
positioning until the fitting failed. The experiment was per-
formed for all ten buildings. The results show that the pull-in
range for the least-squares method is a bit larger than for the
snake-like emethod.

Of course, the pull-in range will also depend on the size of
the buffers around the wire frame edges and the presence of
other object edges. The subsampling parameters were, how-
ever, not varied in this experiment.

Correction of Fitting Results

Errors in Fitting Results

Results of fitting algorithms usually contain errors. However,
often the majority of the model edges will be correctly aligned
by a fitting algorithm, whereas only a few lines are misaligned
due to, for example, interfering neighboring objects.

Figure 5 shows a typical example of building extraction
from aerial imagery. The two images on the left side are patches
of the two photographs of a stereo pair overlaid with an approx-
imately aligned wire frame of the house model. The two images
in the second column show the result of the fitting algorithm.
Most edges are aligned correctly, but the high contrast between
the house’s shadow and the yard attracted the lower horizontal
edge in the first image. The correct position would have been
a few rows higher. Due to this mismatch, the sloped lines of
the roof in the second image also show errors. The slope is
underestimated.

Objective for Correction of Fitting Errors
Because most of the edges are aligned correctly, measurements
by the image analyst only have to deal with one or more incor-
rectly aligned edges. However, in a parameterized object
model, the position of edges can not be adapted individually.
Instead, we need to find the changes to the values of the pose
and shape parameters that correct the errors.

For an image analyst, this may be a difficult task to per-
form. If only one parameter needs to be changed, this can be
done fairly easily. However, often a combination of two or more

[] Snakes

B least squares

Pull-in range (pixel)

Pull-in range (degrees)

(b)

Figure 4. Pull-in range for XY-shifts (a) and «-
rotation (b) for both methods on ten buildings.
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parameters needs to be changed to obtain the correct align-
ment. It is not trivial to find this combination without having to
redo the complete measurement by hand.

In the correction method described in the next paragraph,
we therefore only require the image analyst to measure a few
points on one (or a few) of the edges in the image that were not
found correctly. Now, the objective of the correction method is
to adjust the values of the pose and shape parameters such that
the wire frame edges coincide with the points supplied by the
image analyst and at the same time to keep the good fitting
results as much as possible.

Algorithm for Correction of Fitting Errors

The above objective can be met with the same principle as used
for the fitting algorithm, By measuring a point in the image, the
image analyst specifies the correct position of a wire frame edge
and implicitly also indicates that the nearest edge was aligned
incorrectly. A better estimation of the pose and shape parame-
ters can now be found by removing from the normal equation
system the observation equations of the pixels within the buffer
of the indicated edge and by adding an observation equation
for the point measured by the image analyst. In order to ensure
that the adjusted wire frame edge will go through the measured
point, this observation equation is given a high weight. Thus,
there are two types of observation equations: equations for the
pixels within the buffers of the correctly fitted edges and equa-
tions for the points measured by the image analyst. Due to the
geometric constraints within parameterized models, the image
analyst usually only will have to measure one point per incor-
rectly fitted edge. Hence, the correction of fitting errors can be
done very efficiently.

[n the third column of Figure 5, the results of the correction
by a single point measurement are shown. The model now fits
quite well to the image. As can be seen from the parameter val-
ues below the images, the main corrections have been applied
to the roof height and the width of the house.

Alternatively, the correction can also be done in a slightly
less optimal but computationally much faster way. In this
approach, we do not make use of observation equations for the
pixels in the buffers of the correctly fitted edges. Instead, these
edges are sampled with a number of points (see Figure 6). For
each of these points, an observation equation is set up with a
unit weight. The observation equations derived from the points
measured by the image analyst are again added with a very
high weight. The resulting adjusted object model will therefore
accurately be aligned with the measured points, whereas the
other points ensure that the location of the correctly fitted edges
changes as little as possible.

This last correction method, however, does not completely
eliminate the effects of the edge mismatch. Because the posi-
tions of the wire frame edges are correlated due to the shape
constraints in the object model, an error in the fitting of one
edge will also disturb the location of other edges. This was
noticeable in the second picture in the second row of Figure 5.
If only one point to correct the lower horizontal edge is mea-
sured, the algorithm will try to maintain the position of the
edges with the incorrect slope. The result of a correction with
this method can be seen in the images in the last column of Fig-
ure 5. Due to the correlation between the mismatched edge in
the first image and the slope edges in the second image, the
measurement in the first image largely corrects the errors in the
second image too. Therefore the differences between the two
correction methods are very small.

Whereas the first method gives a better correction, the sec-
ond method is much faster because only a small number of
observation equations are involved. Thus, the correction
becomes fast enough to enable the image analyst to drag the
wire frame into the correct position. The parameter estimation
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2

Fitting results

Approximate values

X 569852.32 X 569852.60
X 191610.30 X 191610.05
z 48133 z 481.54
K 64.12 K 59.51
length 11.87 length 12,00
width 12.55 width 12,69

roof height 2.69 roof height 29

Figure 5. Results of approximate alignment, fitting, and corrections
for a house model simultaneously aligned in two images. All coordi-
nates and sizes are in meters, the rotation angle « is in degrees. The
measured point for the correction is indicated by the white dot.

Optimal correction Approximate correction

X 569852.66 X 569852.61
Y 191610.07 | 191610.00
Z 481.61 Z 481.56
K 59.62 K 5922
length 11.93 length 11.96
width 1234 width 1234

roof height 3.27 roof height 328

can be done within the loop which processes the mouse
motion events without noticeably delaying the mouse motion.

The edges that have been fitted correctly are sampled with
a constant interval. This has the effect that longer edges will get
a higher weight in the adjustment. Of course, for straight edges,
two points with a weight depending on the edge length would
have been sufficient. For curved edges, and therefore in gen-
eral, it is however easier to work with a standard sample inter-
val and a unit weight.

With the second correction method, the image analyst can
drag wire frame edges to the correct position. It is, however,

Figure 6. Correctly fitted edges are sampled
with points (small dots). One measurement
(large dot) per incorrectly fitted edge is often
sufficient to correct the error.
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also possible to do the same with distinct points of the wire
frame, such as corners of a polyhedral object. Measurement of
such points then results in two observation equations per point,
related to the row and the column coordinate in the image: i.e.,

X ar
ElAr) =  3p; AP (3)
Elac = 3 €5 (4)
- =1 *“’P:‘ f

Here, Arand Ac are the coordinate differences between the mea-
sured point and the current position of the wire frame corner
in the image. Thus, the image analyst can modify the pose and
shape parameters by dragging both points and edges of the
wire frame.

Approximate Alignment of Object Models

The principle of the second correction method can also be used
for the approximate positioning of a wire frame model in the
images. The behavior of the algorithm is demonstrated in Fig-
ure 7. The first image shows the initial position of the wire
frame. The second image shows the result after one ridge point
is dragged to the correct position. This is done by using Equa-
tions 3 and 4 for the ridge point with a high weight and Equa-
tion 1 for the points on the sampled edges with a low weight.
Because the algorithm tries to keep the edges at the same loca-
tion, the shape parameters may take strange values (see, for
example, the negative roof height) and the model becomes diffi-
cult to interpret. Although one could proceed the measure-
ment by dragging other points to their correct positions,
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(5)

6)

Parameters Image 1 Image 2 Image 3

X 560855.39 569860.67 569861.40
Y 191677.00 191675.54 191674.32
z 468.38 467.84 470.08
K 0.00 -22.96 -33.44
length 8.00 9.22 8.00
width 8.00 6.89 8.00
roof height 3.00 -2.90 3.00
wall height 3.00 397 .00

ground and the roof gutter.

Figure 7. Manual alignment of the object model to two images of a
stereo pair (see text). The wall height is the distance between the

(N (8)

Image 4 Image 5 Image 6 Images7and B
560861.05 569862.05 569863.52 569863.52
191675.04 191673.42 191671.43  191671.43
468.73 471.95 475.89 475.89
-435.64 -36.14 -36.14 -36.14
9.69 10.72 10.66 10.66
9.55 12.45 12.39 12.39
132 4.75 4.72 4.72
4.33 0.76 1.52 3.45

working with these kind of models is clearly not very user
friendly.

This problem can be easily solved by first adapting the
pose parameters without changing the shape parameters. By
removing the shape parameters as unknowns from the observa-
tion equations, the algorithm will try to fit the model to the
measured point and the sample points on the edges by modi-
fying the pose parameters only. The resulting house model is
shown in the third image of Figure 7.

Now, one point of the model is at the correct position. If we
drag a second point to its correct position in the same way as
the first point, this first point will not remain at the same posi-
tion. To ensure that points that have been dragged to their cor-
rect position are not moved, Equations 3 and 4 are added for
each measured corner point. This is indicated by the white dots
in the images. Because the pose of the house model is approxi-
mately correct, the shape parameters were no longer fixed during
the measurement of the second point. The order in which the
remaining points are being measured is not important. In the
fourth image of Figure 7, a gutter point is dragged to its position.
The fifth image shows how the second ridge point is measured.
In order to determine the height of the house, the roof ridge is
also measured in the overlapping photograph as shown in the
sixth image. Note that the point measured in this image is related
to an edge (instead of a wire frame node) and therefore results
in only one equation. Any point on an edge in the second image
could have been used for determining the height as long as the
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selected edge is not on an epipolar line. Finally, another edge is
measured to adapt the wall height. The last two images show
the model at the end of the measurement process.

Compared to the manual alignment method described by
Lang and Forstner (1996), there are several advantages:

e The image analyst is able to drag points as well as lines of the
wire frame and thus has more ways to change the model param-
eters of the object.

e These object lines may also be contour lines (lines that delineate
the contour of an object part in an image but do not necessarily
represent a physical edge of the three-dimensional object). This
feature makes the alignment method suitable for curved
objects too.

e The points of the wire frame nodes are not associated with one
or two object parameters. As can be seen in Figure 7, the mea-
surement of an object point usually involves changes in a large
number of pose and shape parameters. The absence of a direct
relationship between points of the wire frame and parameters
of the object model has two advantages. First, there is no need
for association tables. Second, the image analyst does not need
to have knowledge about the object parameterization. There-
fore, the analyst does not need to reason which parameters are
to be changed in order to find the best alignment.

Conclusions

In this paper we presented a new approach for interactive align-
ment of parameterized object models to images. The same prin-
ciple for adapting the pose and shape parameters of the object
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models has been used in all three measurement phases: ap-
proximate alignment, fitting to grey value gradients, and cor-
rection of fitting errors.

The method to manually align the model to the images
offers a great amount of flexibility. Points, object edges, and
contour lines can be dragged to their correct location, whereas
the image analyst does not need to know which parameters
have to be changed for this purpose.

For the fitting algorithm, a direct relationship between the
required adaptation of the pose and shape parameters and the
grey value gradients of the pixels has been formulated. The esti-
mation shows fast convergence and does not need thresholds
for the determination of edge pixels. The mapping accuracy is
better than 10 cm for 1:5,000-scale imagery scanned with a 15-
pm pixel size.

Finally, two methods have been designed to modify the
object parameters in case of fitting errors. These errors can be
eliminated efficiently by combining observation equations for
pixels along correctly aligned wire frame edges with equations
for corrective measurements by the image analyst. Due to shape
constraints within parameterized models, the number of re-
quired measurements is often very small. A non-optimal but
very fast correction algorithm showed only very small devia-
tions from the optimal estimates,
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