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Abstract
Semi-automatic meosurement of objects with regular shapes
can be performed efficiently in three steps: (1) selection of an
object model and approximate alignment of its wire frame by
an image andyst, (2) precise dignment to the image by a

fitting algorithm, and (3) correction of fitting etors, again by
the image analyst. This paper presents a new apprcach to
perform these three steps using the same princip)e in all three
steps. The developed approach allows the image analyst to
drag both points and lines of the proiected wire frame,
including cunred edges and contour edges, in order to align
these features with the image contents. Using the described
algorithm, there is no need for the image analyst to specify
which parameters of the object models are to be odapted in
order to improve the dignment. The performance of the fitting
step is analyzed and compared with an alternative approach.

lntroduction
Future (geographic) information systems will contain three-
dimensional (so) and highly structured information. The
development of procedures for the extraction of sn object mod-
els from digital imagery is, therefore, receiving much attention
at research institutes. Whereas efforts to fully automate the pro-
cess ofbuilding extraction show good progress (Henricsson
and Baltsavias, 1997; Steinhage, 1997), it is clear that under
many circumstances automation is extremely difficult to
achieve. For this reason, semi-automatic approaches are being
developed which allow interaction between computer algo-
rithms and an image analyst, thus taking advantage of the excel-
lent interpretation and evaluation skills of the image analyst.

The measurement of obiects can be dealt with most effi-
cientlv if the obiects can be modeled by a combination of a few
primiiive shapes. These composite obiect models can be con-
itructed prior to the measurement process. The model-based
semi-aut6matic measurement of obiects can then be seen as a
three-step procedure: (t)the selection of an object model from a
library and the approximate alignment of the obiect model with
the object appearance in the images by an image analyst, (2) the
precise alignment of the object model to the image by a fitting
algorithm, and (3) the correction of ertoneous fitting results,
again by an image analyst.

In this paper we will present a new approach in which we
use the same principle for modifying the pose and shape of the
object models in all three steps.

The next section first reviews some of the related work pre-
sented in the last few years. In sections three to five the three

Delft University of Technology, Faculty of Civil Engineering
and Geosciences, Thijsseweg 1.1.,2629 JA Delft, The Nether-
Iands (g.vosselman@geo.tudelft .nl).

H. Veldhuis is currently with the Grontmij Geogroep, Boven-
donk 29, 4700 BS Roosendaal, The Netherlands
(Henri.Veldhuis@grontmij. nl).

PHOTOGRAMMETRTC ENGINEERING & REMOTE SENSING

steps of the measurement approach will be elaborated. The fit-
ting algorithm is described in section three. This algorithm is
similar to the one described by Lowe (1991). Success rates, pre-
cision, speed, and pull-in range are analyzed in a mapping
experiment involving buildings in a residential and an indus-
trial area. The results are compared with those obtained with
the snake-like algorithm described by Fua (i996). In section
four, the designed algorithm is applied to a different set of
observations such that it becomes suitable for correcting erro-
neous fitting results. Section five demonstrates that the same
algorithm can also be used for approximate alignment of the
object models by an image analyst. The main features of the
developed methods are summarized in the final section.

Related Work
Representation of 0bject Models
Object models can be described in various ways (Mortenson,
1997). The two most important types are briefly discussed,
because the way ofrepresenting an object model can have an
impact on the way in which the parameters of the model can
be manipulated.

ConJtructive Solid Geometry {csc) is widely used for com-
puter aided design (cAD). With this technique an object is com-
posed by taking unions and intersections of several primitive
shapes such as rectangularboxes, spheres, cylinders, cones,
and tetrahedra. Such an obiect model is described by specifying
for each primitive the values of the shape parameters and the
six pose parameters. Often the absolute pose pa-rameters are
specified for one primitive only and the pose parameters of the
other primitives are described relative to the first primitive.

Boundary representations (B-rep) ofobjects describe the
geometry of the points, edge lines, and surfaces of the obiect
boundaries together with the topological relationships between
these points, lines, and surfaces. A polyhedral object can there-
fore be described by the coordinates of the corner points and the
point numbers that make up the lines and faces.

Manipulation of Wire Frames
The functions available in cRo packages to change the position
and shape of object models are often fairly limited. Common
approaches are the editing of numeric values of the obiect
parameters and slide bars for rotations around a specified axis.
These tools are primarily designed for the construction of c,tn
models. Whereas they can be used for approximate alignment
of an object model with an image, they are not very user friendly
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for the purpose of model-based measurement, Therefore, new
tools need to be develooed.

An approach dediiated to measurement with parameter-
ized models is described by Lang and Forstner (19S6). By drag-
ging corner points of an object model to the corresponding
position in an image, one or two parameters of the object model
can be adapted. Which parameters are adapted depends on the
chosen reference point. the point that is moved, and the entries
of a so-called asso-ciation ta6le. A table has to be made for each
object model available in the object model library. The tables
can be edited in order to store the preferences ofthe imaee
analyst.

Fitting Algorithms
After the approximate alignment of the object model by an
image analyst, more precise estimates of pose and shape
parameters can be obtained by fitting algorithms. Several
approaches to optimize the alignment of an object model can
be found in the literature.

Lowe (tggt) describes a least-squares algorithm that fits
the edges of the projected wire frame to edge pixels. These edge
pixels are pixels with a grey value gradient above some pre-set
threshold. Starting with an approximate alignment, the errors
in the alignment are quantified by the perpendicular distances
of the edge pixels to the nearest edge of the wire frame. The task
of the fitting algorithm is to estimate the changes to the values
of the pose and shape parameters that have to be applied in
order to minimize the square sum of these distances. This is
accomplished by setting up the observation equation

r = K  r - -

EIAu I  :  )  9aAo ,
r--- opi

for each edge pixel. In this equation Au is the perpendicular dis-
tance of an edge pixel to the nearest edge of the wire frame, p;
are the object parameters, and K is the number of parameterl.
An iterative least-squares adjustment results in an optimal
estimation of the object parameter values. The required partial
derivatives are obtained by numerical simulation.

Sester and Fcjrstner (1989) describe a clustering algorithm
followed by a robust estimation of pose and shape paramerers.
Both algorithms are based on correspondences between edges
of the wire frame model and straight edges that are extracted
from the image. Whereas the clustering algorithm is not suit-
able for the simultaneous determination of a large number of
parameter values, the robust estimation is applicable to mea-
surement of polyhedral obiects.

Fua (1996) uses a snake-like approach to fit a polyhedral
object model to an image. An energy function is defined as the
negative sum ofthe absolute grey value gradients along the
edges of a projected wire frame. With a steepest gradienl algo-
rithm the positions of the corners of the polyhedlal model ire
adapted such that the value of the energy function is mini-
mized. Instead of the typical regularization component in the
energy function used for road mapping, Fua employs con-
straints on the direction in which the coordinateJ of the obiect
corners may be adapted. These constraints are necessary to
ensure thatthe geometric relationships between perpendicular
and parallel lines of the object model are maintained.

Further Automation in Mapping Buildings
Fitting methods require approximate values of the object
parameters-. The derivation of an approximately aligned object
model can be done completely manually, but, in order to fuither
speed up the mapping process, (partial) automation is re-
quired. Giilch et o1. (1998) present an approach for the measure-
ment of buildings with gable roofs which usually only requires
the image analyst to point out both ridge points in one image.

Based on this knowledge, a search and matching process is
sta-rted to find additional roof edges and reconstruct the ao
building model. A very similar approach is presented by Li ef
01. (1gs8). In their paper, the number of manual measurements
ranges from one to three for flat roofs and two to four for gable
roofs. The number of measured points per model depends on
the success ofthe hypothesis generation conducted after each
measured point. Hsieh (1996) developed another interactive
modeling environment in which user-delineated roof bound-
aries in one image are used as cues in a matching algorithm to
determine the ground level and roof level.

Due to the complexity of aerial image understanding, the
automation processes described above are commonly re-
stricted to simple building types such as flat roof or gable roof
buildings. In this paper we will not focus on a high degree of
automation for the measurements of a few soecific models. but.
rather, pursue the development of efficient tools for the mea-
surement of the large class of arbitrarily shaped parameterized
models.

Fitting 0biect Models to lmages
In this section, we first outline some drawbacks of the
described fitting methods. We then show how these drawbacks
can be eliminated and describe several implementation
aspects. In the last paragraph the performanie characteristics
of the new fitting procedure are analyzed and compared with
those ofthe snake-like approach by Fua (1S96).

Analysis of Fitting Methods
The purpose of a fitting algorithm is to determine the pose and
shape parameters of an object model such that the edges of the
wire frame, as projected into the image(s), are optimally aligned
with the pixels with high gradients. It is, of course, assumed
that these pixels correspond to the projection ofthe oblect's
edges. This objective is most clearly visible in the energy func-
tion of the snakes approach by Fua (1996). However, the optimi-
zation algorithm used to find the best parameters is compu-
tationally-expensive, because the derived energy gradients only
indicate the direction in which the vector of parameter values
should be changed. It takes a substantial numter of iterations to
accurately determine the amount of change required to obtain
the best fit.

Computationally, the least-squares approaches by Lowe
(1991) and Sester and Fcirstner (1989) are much faster. Due to
the edge detection, the direct relationship between parameter
value changes and gradient values is, however. Iost. 

^Weak 
edge

pixels will not be used in the parameter estimation if their eri-
dients are below the threshold for edge detection.

Modification of Lowe's Fitting Method
A direct relationship between the estimation of the pose and
shape parameters and the gradients of the pixels cin be
achieved by modifying the approach by Lowe (rggr). Lowe
introduces an observation equation for each pixel which fulfils
two conditions: (t) the grey value gradient should be above
some threshold and (2) the pixel should be within some range of
a projected wire frame edge. We propose to drop the first condi-
tion:i.e., for all pixels within some range of a wire frame edge,
the observation equation is introduced. In order to ensure that
the pixels with the higher gradients dominate the parameter
estimation, the squared grey value gradients of the pixels are
used as weights to the observation equations:* i.e.,

*This is similar to the estimation of subpixel coordinates for points
found with the interest operator described in Frjrstner and itilch
(1982). In this paper the coordinates of all pixels within a selected
window are used to estimate the interest point by using the squared
grey value gradients as weights.

( 1 )
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Figure 1. Profi les perpendicular to a pro-
jected wire frame edge. The point density
can be controlled bythe distance between
the profiles Du, the length of the profiles
1,, and the number of points on a profi le
N,. The distance between points within a
profi le is defined bY Du: L,/Nu.

Perfomance Analysis
To assess the performance of the designed fitting algorithm and
to compare it with the snake-like algorithm by Fua (1996), sev-
eral experiments have been performed, The imagery and refer-
ence dita were taken from the Avenches data set provided for
the first Ascona Workshop (Gruen et al., 1.995). The images
were recorded at a scale of 1:5000 and scanned with a pixel size
of 15 pcm (z.s cm on the ground).

After a description of the used object models the set-up of
the experiments is outlined. Finally, the performance of both
fitting-algorithms is analyzed with respect to success rates,
speed, precision, and pull-in range.

Roof Models
All measurements were performed with a standard gable roof
model. This roof model can be described by seven parameters:
the three coordinates of a roof point (X Y, Z); Ihe rotation
around the Z-axis (r);and the length (1), width (w), and height
(fi) of the roof. The height is defined as the height difference
between the roof ridge and the gutter. Note that the wall height
is not estimated in the fitting experiments.

The snake-like approach used a polyhedral boundary rep-
resentation. In this model the three coordinates of all six roof
ooints are treated as unknown parameters. To make sure that
the coordinates estimated by the fitting algorithm still form a
gable roof, eleven shape constraints are used (Veldhuis, 1998).

Expeilmental PrctocoL
A total of ten buildings with gable roofs was selected from two
stereo pairs. For all buildings, the wire frame of the roof model
was approximately positioned by an image analyst.-Using these
approximate positions, 15 measurements werepe-rformed with
U-oin fitting methods for each building. These different mea-
surements were used to study the effects of the subsampling of
the buffer onto the success rates and the computation time of
the fitting. The subsampling is used for both the least-squares
and the snakes approach. For the distances between the profiles
D" and the initial profile length Iu, 5, 10, or 20 pixels were
used. The initial number of points on a profile N, was either 5
or 10. All combinations were made, however, with the restric-
tion that the minimum distance between points in a profile is
one pixel. Therefore,l, : 5 was not combined with N, : 10' In
the hst iteration, the number of points in a profile is set to three
and the distance between the points is set to one pixel.

The analyses of the precision and the pull-inrange were
done with the subsampling which resulted in the highest suc-
cess rates. For the analysis ofthe pull-in range, another set of
experiments was performed in which the errors in the approxi-
mate position and rotation of the roof models were systemati-
cally increased until the fitting algorithm could no longer
make a correct estimate.

Success Rates
Looking at the fitting results, it was found that many of the fit
ted models were noffully aligned. Often one or two edges were
wrong due to the presenie of other objects in the-image' Most of
the edges, however, were positioned correctly' The success rate
was th-erefore defined as the percentage of wire frame edges that
required no correction by the image analyst. The results are
vizualized in Figure 2. For many combinations of subsampling
parameters, both methods achieved success rates over 90 per-
ient. The least-squares approach seems to be-a little more
robust with respeit to changes in the subsampling. Both meth--
ods show a lower success rate with an initial profile length of
onlv 5 pixels. For both methods, best results were obtained with
an initial profile length of t0 pixels, 5 points per profile, and a
distance between the profiles of 5 pixels,

i g;oo, wra,r : (r,s) (2)

In this way, we avoid the problem of selecting a threshold for
edge detection and at the same time improve the accuracy of
thJfitting because the stronger edges will have more weight in
the estimation whereas all edge pixels have unit weight in
Lowe's approach.

The giey value gradient used in the weight function is cal-
culated ai the partial derivative of the grey value g in the dire-c-
tion u perpendicular to the edge of the wire frame. This has the
advaniage that gradients caused by background objects with
perpendicular directions will not interfere with the parameter
estimation.

lmplementation Aspects
Gradient pixels of other objects will disturb the parameter-esti-
mates if they are within some distance of the wire frame edges
of the obieci to be measured. In order to reduce the bias by other
objects, it would be best to only use pixels within a very small
buffer around the edges. Using a small buffer, however, implies
that the image analyst needs to supply an accurate applox-i-
mate positioning of the wire frame, This would reduce the ben-
efits oJ a fitting method. It is therefore better to start with a Iarge
buffer and then to reduce the buffer size after each iteration of
the least-squares estimation.

A large buffer will contain a large number of pixels. Setting
up an obs;rvation equation for each pixel would make the fit-
ting algorithm time ionsuming. In the first few iterations with a
Iarger buffer size, we therefore subsample the buffer with pro-
file:s perpendicular to the edges (see Figure 1)' Observation
equafions ale set up only for points on these profiles. The point
density is increased each time the buffer size is reduced. In this
*ay 

" 
iu.g" initial buffer size can be combined with a fast and

precise fitting.- 
The partial derivatives of the distances with re,spect to

changes in the parameters are estimated numerically, as in
Lowe-'s approach. A more detailed explanation of the estima-
tion can be found in Vosselman (1998).
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Figure 2. Percentages successfully fitted wire frame edges for both methods
with varying subsampling parameters (1, - N, - D").

Speed
The results on the cPU-time used for fitting are shown in Figure
3. It is clear that the least-squares method is much faster than
the snake-like method . This is due to the comparatively large
number of iterations required by the last method. Also clearly
visible is the dependency of the computation time on the num-
ber ofpoints for which observation equations are derived.

Another critical factor with respect to the computation
time is the hidden line analvsis. The performance of hidden
line algorithms is no bottlen-eck wherrworking with polyhedral
objects but does become one when working with curved
objects such as cylinders (Ermes and van den Heuvel, lgg8).

Precision
For the evaluation ofthe orecision. standard deviations were
computed for both the coordinates of the roof corners (Table 1)
and the pose and shape parameters (Table 2). Both fitting
methods obtain approximately the same results. The new
least-squares fitting method is often slightly better, but the
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Z-coordinate of the roof ooints and the house width were better
estimated by the snake-l ike approach.

Considering the expected accuracy ofthe reference data
(0.1 m), it is difficult to assess the accuracy potential of the fit-
ting methods. It can, however, be concluded that the reference
data probably had a standard deviation below 0.1 m and that
both fitting methods are capable of obtaining the same order of
precision.

Pull-In Ranse
An importait reason for using fitting techniques is the reduc-
tion in mapping time. The image analyst can work faster if the
object models only need to be positioned approximately. There-
fore, the benefits of a fitting method increase when the esti-
mated parameters are correct even though the approximate
positioning was bad. The pull-in range is defined as the range
of differences between the correct and approximate parameter
values for which the measurement still succeeds. This oull-in
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Figure 3. Fitt ing speed for both methods with varying subsampling parame-
ters (Lq - N, D,).
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range was investigated for a shift of the obiect model in the XY-
direction (Figure 4a) and a rotation Elround the Z-axis (Figure
4b) by systematically increasing the errors in the approximate
positioning until the fitting failed. The experiment-was p_er-
iormed for all ten buildings. The results show that the pul]-in
range for the least-squares method is a bit larger than for the
snake-like emethod.

Of course, the pull-in range will also depend on the size of
the buffers around the wire frame edges and the presence of
other obiect edges. The subsampling parameters were, how-
ever, not varied in this experiment.

Conection of Fitting Results
Enorc In Fitting Results
Results of fitting algorithms usually contain errors. However,
often the maioriiy oTthe model edges will be correctly aligned-
by a fitting aigorith-, whereas only a few lines are misaligned
due to, foiexample, interfering neighboring objects.

Figure 5 shows a typical example of builjling extraction
from a6rial imagery. the two imagei on the Ieft side are patches
of the two photographs of a stereo pair overlaid with an approx-
imately aligned wire frame of the house model. The two images
in the second column show the result of the fitting algorithm'
Most edges are aligned correctly, but the high contrast between
the houi's shadow and the yard attracted the lower horizontal
edge in the first image. The correct positiol would have been
a fJw rows higher. Due to this mismatch, the sloped lines of
the roof in the second image also show errors, The slope is
underestimated.

0bjective for Conection of Fitting Errors
Because most of the edges are aligned correctly, measurements
by the image analyst only have to deal with one or more incor-
rectly aligned edges. However, in aparameterized object.-
model, th"e positidn of edges can not 6e adapted individually'
Instead, we need to find the changes to the values of the pose
and shape parameters that correct the errors'

Fofan image analyst, this may be a difficult task to per-
form. If only one parameter needs to be changed, this can be
done fairlv 

-easilv. 
However, often a combination of two or more
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Figure 4. Pull-in range for XY-shifts (a) and r-
rotation (b) for both methods on ten buildings'

parameters needs to be changed to obtain the correct align-
ment. It is not trivial to find this combination without having to
redo the complete measurement by hand.

In the correction method described in the next paragraph,
we therefore only require the image analyst to measure a few
points on one (or a few) of the edges in the image that were not
iound correctly. Now, the objective of the correction method is
to adjust the vilues of the pose and shape parameters such that
the wire frame edges coincide with the points supplied by the
image analyst and at the same time to keep the good fitting
results as much as possible.

Algorlthm fot Corectlon of Fitting Enors
The above objective canbe met with the same principle as us-ed
for the fitting algorithm. By measuring a point in the image, the
image analyit specifies the conect position of a-wire frame edge
andlmplicitly ilso indicates that the nearest edg-e was aligned
incorreitly. A better estimation of the pose and shape parame-
ters can now be found by removing from the normal equation
system the observation equations df the pixels within the buffer
ofthe indicated edge and by adding an observation equation
for the point measured by the image analyst' In order to ensure
that the adiusted wire frame edge witt go lhrough the measured
point, this observation equation is given a high weight. Thus,
ihere ate two types of obs-ervation equations: equations for the
pixels within the buffers of the correctly fitted edges and equa-
iions for the points measured by the image analy-st Due to the
geometric constraints within parameterized models, the image
analyst usually only will have to measure o-ne point per incor-
.""tly fitt"d 

"dge. 
Fience, the correction of fitting errors can be

done very efficiently,
In the third column of Figure 5 , the results of the correction

by a single point measurement are shown. The model now fits
qrrit" *6il tb the image. As can be seen from the parameter val-
ues below the imageJ, the main corrections have been applied
to the roof height and the width of the house.

Alternatively, the conection can also be done in a slightly
less optimal but computationally much faster way. In this .
approach, we do not make use of observation equations for the
piiels in the buffers ofthe correctly fitted edges. Instead, these
6dges are sampled with a number of points (see Figure 6).I'or
eadh ofthese points, an observation equation is set up-with a
unit weight. The observation equations derived from the points
measured by the image analyst are again added with a very^
high weight. The resulting adjusted obiect model will therefore
aciuratefu be aligned with the measured points, whereas the
other points unsrire that the location ofthe correctly fitted edges
changes as little as possible.

This last correction method, however, does not completely
eliminate the effects of the edge mismatch, Because the posi-
tions of the wire frame edges are correlated due to the shape
constraints in the obiect model, an error in the fitting of one
edge will also disturb the location of other edges. This was
noliceable in the second picture in the second row ofFigure 5'
If onlv one point to correit the lower horizontal edge is mea-
sured, the aigorithm will try to maintain the position of the
edges with tie incorrect slope' The result of a correction with
thii method can be seen in the images in the last column of Fig-

measurement in the first image corrects the errors in the
the first image and the slope edges in the second image,
measurement in the first image largely corrects the errorl
second image too. Therefore the differences between the two
correction methods are very small.

Whereas the fitst method gives a better correction, the sec-
ond method is much faster bedause only a small number of
observation equations are involved. Thus, the correction
becomes fast enough to enable the image analyst to drag the
wire frame into the correct position. The parameter estimation

ure 5. Due to the correlation between the mismatched edge in
rha f i rc i  imase nnd the s lone edses in the second image. the
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mffimffirrnr
Apprcximate values Fitting results

x 569852.32 x 569852.60

Y t91610.30 Y 191610.05

z 481.33 Z 481.54

r 64.12 r 59.51

length I 1.87 lenglh 12.00

width 12.55 widrh t2.69

roofheight 2.69 roofheight 2.91

Figure 5. Results of approximate alignment, fitting, and corrections
for a house model simultaneously aligned in two images. All coordi-
nates and sizes are in meters, the rotation angle ,( is in degrees. The
measured point for the correction is indicated by the white dot.

Optimalcorection Approximateconection

x 5698s2.66 X 569852.61

Y 191610.07 Y 191610.00

z 48t.6r Z 481.56

r 59.62 r 59.22

length I 1.93 length I 1.96

width 12.34 width t2.34

roofheight 3.27 roofheight 3.28

can be done within the loop which processes the mouse
motion events without noticeably delaying the mouse motion.

The edges that have been fitted correctly are sampled with
a constant interval. This has the effect that longer edges will get
a higher weight in the adjustment. Of course, for straight edges,
two points with a weight depending on the edge length would
have been sufficient. For curved edges, and therefore in gen-
eral, it is however easier to work with a standard samDle inter-
val and a unit weight

With the second correction method, the image analyst can
drag wire frame edges to the correct position. It ii, however,

Figure 6. Correctly fitted edges are sampled
with points (small dots). One measurement
(large dot) per incorrectly fitted edge is often
sufficient to correct the error.

also possible to do the same with distinct points of the wire
frame, such as corners of a polyhedral object. Measurement of
such points then results in two observation equations per point,
related to the row and the column coordinate in the image: i.e.,

E{Ar} : 'ri_,,#,ol,

i = K  t ^

E[Ac] : 
Z uo,or,

Here, Arand Ac are the coordinate differences between the mea-
sured point and the current position of the wire frame corner
in the image. Thus, the image analyst can modify the pose and
shape parameters by dragging both points and edgesbf the
wrre lTame,

Approxlmate Alignment of 0bject Models
The principle of the second correction method can also be used
for the approximate positioning of a wire frame model in the
images.'The behavior of the algorithm is demonstrated in Fig-
ure 7. The first image shows the initial position of the wire 

-

frame. Th_e second image shows the result after one ridge point
is draggedto the correct position. This is done by using Equa-
tions 3^and 4 for the ridge point with a high weight and Equa-
tion 1 forthe points on the sampled edges with i low welght.
Because the algorithm tries to keep the edges at the same l-oca-
tion, the shape parameters may take strange values (see, for
example, the negative roof height) and thehodel becomes diffi-
cult to interpret. Although one could proceed the measure-
ment by dragging other points to their correct positions,

t3)

(4)
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1gt677.00 19167s.54 191674.32 191675.04 191673.42 191671.43 191671.43

468.38 467j4 470.08 468.73 471.95 4'15.89 475'89

0.00 -22.96 -33.44 -45.64 -36.14 -36.14 -36.14

s.00 9.22 8.00 9.69 10.72 10.66 10'66

8.00 6.89 8.00 9.55 12.45 12.39 12.39

rmf height 3.00 -2.90 3.00 1.32 4.75 4'72 4'72

wall height 3.00 3.97 3.00 4.33 076 152 3'45

Figure 7. Manual alignment of the object model to two images of a
stereo pair (see text). The wall height is the distance between the
ground and the roof gutter.

(6)

working with these kind of models is clearly not very user
friendlv.

This problem can be easily solved !y first adapting the
pose paraheters without changing the shape parameters' By
iemo.ting th" shape parameterJ as unknowns from the observa-
tion equitions, the aigorithm will try to fit the model to the
measuied point and tLe sample points on theedges bV qo$-
fying the pbse parameters only. The resulting house model is

shown in the third image of Figure 7.
Now, one point of lhe model is at the correct position' If we

drag a second point to its conect position in the same way as

the"first point,ihis first point willnot remain at t!e same posi-

tion. To ittnt" that points that have been dragged to their cor-

rect position are ttot-moved, Equations- 3 and. f are added for

"""h'ro""rnt.d 
corner point' Tliis is indicated bythe white dots

in the images. Because the pose of the housemodel^is approxi-
mately coiect, the shape parameters were no longer fixed during

th. *L"tnt"*ent of the second point' The order in which the

remaining points are being measured is not important' In the

fourth imife of Figure 7, a gutter point is dragged to its position'

iit" tltth iti"ge sh"ows how-the selond ridge point is measured'

In order to de'termine the height of the house, the roof ridge- is

"iro 
*u"tntud in the overlapping photograph as shown in the

sixth image. Note that the point measured in this image is related

io 
".r "aSJ 

(instead of a wire frame node) and therefore results
in only Jne equation. Any point on an edge in the second image

"ouldtaue 
been used foidetermining the height as long as the

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

selected, ed,ge is not on an epipolar li!e' Finally, another edge is

measured t6 adapt the walfheight. The last two images show

the model at the end of the measurement process.

Compared to the manual alignment m-eth-od described by

Lang and Fdrstner (t996), there are several advantages:

o The image analyst is able to drag point-s as well as lines of the
wire frarie and thus has more ways to change the model param-
eters of the object.

o These object lines may also be contour lines (lines that delineate
the contour of an object part in an image but do not necessarily
represent a physical'edge of the three-dimensiolal object)- This
feature ma6s-the alignment method suitable for curved
objects too.

I The points of the wire frame nodes are not associated with one
or tdo object parameters. As can be seen in FiSure 7, the mea-
surement of an obiect point usually involves changes in a-large
number of pose and sliape parameters. The absence of a direct
relationship between points of the wire lame and parameters-
of the object model has two advantages. First, there is no need
for association tables. Second, the image analyst does not need
to have knowledge about the object parameterization' There-
fore, the analyst does not need to reason which parameters are
to be changed in order to find the best alignment'

Conclusions
In this paper we presented a new ap-proach for interactive align-
ment oiparameterized object models to images. The s:me-prin-
ciple foiadapting the pose and shape parameters of the object
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models has been used in all three measurement phases: ap-
proximate alignment, fitting to grey value gradients, and cor-
rection of fitting errors.

The method to manually align the model to the images
offers a great amount of flexibility. Points, object edges, and
contour lines can be dragged to their correct location, whereas
the image analyst does not need to know which parameters
have to be changed for this purpose.

For the fitting algorithm, a direct relationship between the
required adaptation of the pose and shape parameters and the
grey value gradients of the pixels has been formulated. The esti-
mation shows fast convergence and does not need thresholds
for the determination of edge pixels. The mapping accuracy is
better than 10 cm for 1:5,000-scale imagery scanned with a 15-
;rm pixel size.

Finally, two methods have been designed to modify the
object parameters in case of fitting enors. These errors can be
eliminated efficiently by combining observation equations for
pixels along conectly aligned wire frame edges with equations
for corrective measurements by the image analyst. Due to shape
constraints within parameterized models, the number of re-
quired measurements is often very small. A non-optimal but
very fast correction algorithm showed only very small devia-
tions from the optimal estimates.
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