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I Abstract 
1 A maneuvering target i s  difficult to follow because its turns 

are hard to identify from noisy position measurements. It i s  
1 shown here that, even at close range, an image-enhanced ar- 

chitecture is  effective in  a tracking application. The perform- 
ance of a nonlinear, dual-sensor algorithm i s  contrasted with 
sophisticated radar-only algorithms, and i t  i s  shown that sen- 
sor utilization can be expanded significantly with a dual-sen- 
sor estimation approach. 

Introduction 
In a low signal-to-noise environment, a maneuvering target is 
hard to track. In a typical implementation, a sequence of ra- 
dar measurements is processed to yield an estimate of cur- 
rent position and velocity (filtering). This estimate of target 
state is extrapolated to the next observation time (predic- 
tion), and the sensor line-of-sight is centered at the antici- 
pated location. As long as the target remains within the 
field-of-view of the sensor, this process continues. Unfortu- 
nately, the timing, the sense, and the magnitude of target 
turns are hard to identify from range-bearing measurements. 
A bad state estimate (particularly in velocity) will place the 
sensor ineptly, and the target will not be detected at the next 
observation time - it will be lost. Loss-of-lock (LOL) obvi- 
ously has untoward consequences if the tracker is part of a 
defense system. 

In systems with a phased array radar, there is a strong 
motivation to extend the interdwell (intermeasurement) inter- 
val subject to reasonable constraints on LOL. Signal process- 
ing at high, fixed sample rates is burdensome, and, with an 
agile beam radar, extending the interdwell interval permits 
tracking several targets simultaneously. This desire to reduce 
sample rate has led to a diverse collection of tracking algo- 
rithms. Some are ad hoc and are tailored to sharply delim- 
ited environments, but others are flexible enough to accom- 
modate a wide range of conditions. The latter often make use 
of explicit analytical models of the target and maneuver dy- 
namics and the sensor errors. Such algorithms are called 
model-based and are typified by the (extended) Kalman filter 
(EKF) and its lineal variants. Model-based trackers use an im- 
plicit quantification of the likelihood of various motion paths 
to balance the exigencies imposed by the need to simultane- 

D.D. Sworder is with the Department of ECE, University of 
California, San Diego, La Jolla, CA 92093-0407 (dsworde~a 
ucsd.edu). 

J.E. Boyd is with Cubic Defense Systems, San Diego, CA 
92186. 

G.A. Clapp is with the SPAWAR Systems Center-San Diego, 
San Diego, CA 92152. 

R. Vojak is at 5, rue George Bizet, 
91560 Crosne, France. 

ously attenuate the wideband observation noise, and respond 
quickly when the motion mode changes. Unfortunately, with 
fixed-gain trackers, this must be done by selecting the filter1 
predictor time constants in some intermediate range. The 
performance may not be adequate in high tempo encounters; 
the possibility of LOL during a maneuver dictates high filter 
gains, and high gains preclude the data averaging desirable 
during quiescent intervals. Indeed, EKFs without a range-rate 
measurement are particularly maladroit at estimating the ve- 
locity of an agile target and are unable to make accurate pro- 
jections across interdwell intervals (Sworder et al., 1993a). 
To overcome their inherent deficiencies, the EKFs must be 
implemented at high sample rates. 

Fundamental issues in tracking are illustrated in the 
problem of devising an algorithm for following an agile tar- 
get moving at nearly constant speed in the plane. Maneuvers 
create multiple motion modes. The different parts of the tar- 
get path have distinguishing dynamics; e.g., coast without 
turning is different from a turn left at rate *, radianls. A de- 
ceptively simple model of the planar translational dynamics 
of a maneuvering vehicle is given by 

0 0 1  0 

d ( i )  = [ : : : - ; ] ( ; ) d t + [ ; i ] d ( 3  o o *  0 

where the state vector x, is composed of (X,Y), the position 
coordinates, and (V,,VJ, the associated velocities. The accel- 
eration process consists of two parts: an omnidirectional ex- 
citation (w,] and a maneuver turn rate {41~]. The former can be 
conveniently represented by a wideband process: let (w,,w I 
be a Brownian motion with intensity W (dwdw' = Wdt).   he 
sample functions of the maneuver process are not well de- 
scribed by a "white" noise, nor do they display the smooth 
paths typical of an orthodox linear-Gauss-Markov (LGM) pro- 
cess (Gwimer, 1992). Rather than being continuous, the turn 
rate is more closely approximated as piecewise constant, 
switching between a fixed set of values with the direction of 
the maneuver acceleration perpendicular to the target veloc- 
ity; e.g., an oft used model of the maneuver has a state space 
of size K: i+ht ,,E {ai; i E K] where K designates the index set 11, 
..., K]. The motion model (Equation 1) is a hybrid, nonlinear, 
stochastic differential equation containing both continuous 
states (positions and velocities) and discrete states (turn rate). 

It is difficult to modify LGM models to properly account 
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Figure 1. Image-enhanced estimation architecture. 

for maneuvers. Proposals for doing this have included treat- 
ing the maneuver as additive, and affming an online maneu- 
ver detection-and-estimation term to the EKF (Mook and 
Shyu, 1992); and employing multiple models, in which the 
effect of the different maneuver modes is represented by dif- 
ferent intensities for the omnidirectional acceleration. The 
former is difficult to implement successfully because the ma- 
neuver may change before it has been "identified," leaving 
the tracker following a phantom motion. The latter suffers 
from the fact that th; sample functions of the maneuver ac- 
celeration are far from being white processes. Using either 
approach, it is exceedingly difficult to incorporate the geo- 
metric attributes of the maneuver motion into the filter. Be- 
cause of the failure to model the maneuver acceleration 
properly, the correlation between estimation errors in the 
translational and the rotational states is not used to improve 
path-following performance. 

Despite their limitations, when the tracker depends ex- 
clusively on radar measurements, the aforementioned ap- 
proaches are the best of those currently available. However, 
as the use of electro-optical (EO) imagers has become ac- 
cepted, new tracking architectures are possible. The dual- 
path configuration shown in Figure 1 has been proposed for 
this application (Sworder et aL, 1993b). The radar provides a 
center-of-reflection measurement of the target, i.e., range and 
bearing along the line-of-sight to a point-equivalent object. 
An imager uses visual, infrared, or second-order radar prod- 
ucts to infer relevant spatial attributes of the target, specifi- 
cally, the target orientation with respect to the line-of-sight 
of the imager (Kuhl, 1992). The observation sequence from 
the radar will be designated (y,) (or (yk) if reference is made 
to the radar measurement at the k-th dwell taken with an 
interdwell interval of T seconds. This range-bearing measure- 
ment can be modeled (with suitable linearization, see May- 
beck (1982)) as y, = Dx, + n, at observation times, where (x,] 
is the location state and (n,} is a "white" measurement noise 
with covariance R, > 0. The radar "gain," D, depends upon 
the target-sensor geometry and will vary during an engage- 
ment. 

Target orientation is measured with an EO-imager every 
T' seconds (or at a rate A = 1IT' frameslsecond) yielding a 
measurement sequence (z,} (or (z,) if the frame number is to 
be emphasized). The form that this measurement takes de- 
pends upon the sensor; e.g., z, could be the true orientation 
observed in a noisy channel (Andrisani and Kuhl, 1992; Ta- 
ble 8). This paper uses a measurement framework that differs 
fundamentally from that of the EKF. The orientation sensor is 
an image classifier which places the measured orientation 
into one of L equally spaced orientation bins: (zJ is an Gdi- 
mensional counting process, the i-th component of which is 
the number of times on [O, t] the imager has placed the target 
orientation in bin i. The quality of the imager is determined 
both by the frame rate, A, and by the fidelity of the process- 

ing of a single data frame, the latter embodied in an L by L 
discernibility matrix P: Pij is the probability that the target 
will be classified as being in bin i if j is the true orientation 
bin. Measured target orientation is used to infer the maneu- 
ver state in the upper path of Figure 1. 

Let (CKJ be the maneuver indicator process; a, = ei if I/J, 
= up1 Equation 1 can be written 

dx, = X,Aixiaidt + Bdw, 

where the definition of (A,; i E K] is clear from Equation 1. 
The maneuver tempo will be quantified by supposing that CC,, 
is a Markov chain with K by K transition-rate matrix q. The 
angular bin sequence will also have a Markov representation 
for a specific turn rate; e.g., if a, = em, then the indictor pro- 
cess of the true angular bin, {p,), is Markov with transition 
rate matrix Qm. The comprehensive maneuver state of the 
target is given by 4, = a,@p,, and (4,) is a Markov process 
with KL by KL-dimensional transition-rate matrix Q = (q@I,) 
+ diag(Q; i E K). 

A gain adaptive tracker, the polymorphic estimator 
(PME), was proposed in Sworder et al. (1993c), and effec- 
tively fuses the "point" and "extended-body" data se- 
quences. The PME algorithm first uses the image data to 
estimate the maneuver state (the PME-orientation filter), and 
this estimate is then used both additively and multiplica- 
tively in the filteringlprediction link. Specifically, define the 
vector mean observation rate A, = AP(1,'@IL)4,, and use a cir- 
cumflex to denote conditional expectation. The i-th compo- 
nent of A, is the expected rate of receiving the i-th observation 
for a given maneuver state; i.e., for a given turn ratextrue 
orientation-pair. Because the measured orientation depends 
only on true orientation, the factor (l,'@IJ reduces 4, to p,. 
The PME algorithm is most concisely written in terms of a 
modified version of the image measurements. Let (29,) be a 
process that is constant between image observations, with in- 
crements AI?, = AP'diagh-l)Az, when an image observation is 
received. Then, the maneuver estimate is found from the sto- 
chastic equation: 

A. Between observations: (d/dt)$, = Q'$, 

B. At an observation time: & = diag(l,'@dtY)$- (3B) 

subject to an appropriate initial condition. 
Estimates of position and velocity are given by the PME- 

translation filter. This algorithm has a more conventional 
form, mapping the radar measurements into an estimate of 
position and velocity, with gains that are functions of both 
the image and the radar measurements: 

'Note: ei is the i-th canonical unit vector in the vector space appro- 
priate to the context, I, is a K-dimensional identity matrix, 1, is a 
K-vector of ones, and @3 indicates Kronecker product. 
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A. Between observations: 
(dldt)$ = Xi Ai((Px,)., + *hi) (4A) 

B. At a radar measurement: 
A9, = P>' (DP>'+Rx)-' Av, (4B) 

C. At an image measurement: A$ = Px,(li@)A4) (4C) 

where Av, = y, - Dri, (the increment in the translational in- 
novations process), and (P,, P,,) are the (random) second 
central moments of the estimation error. The moments are 
dependent upon the image measurements and the filtered es- 
timate of the target path. The equations for their calculation 
are derived in Sworder and Vojak (1994a). 

Equation 4 is similar in form to the EKF. If the correla- 
tion between x, and 4, is neglectefi, Equation 4C disappears, 
Equation 4A becomes (d/dt)$ = A&, and Equation 4B be- 
comes the orthodox Kalman update. As written, Equation 4 
differs from the EKF because it utilizes the geometry of the 
motion path in the computation of the joint orientation-trans- 
lation cross central moment P,,. (Note that an analogous mo- 
ment for a different sensor type is computed as part of the 
EKF proposed in Andrisani et al. (1992)). Further, the transla- 
tional error covariance, P,, is contingent upon both the esti- 
mated target path and the image sequence. The former 
dependence occurs in the conventional EKF but the latter is 
novel. To gain a perspective on the salient differences be- 
tween the PME and radar-exclusive trackers, certain proper- 
ties of the P h f ~  should be noted. The PME-translation filter 
uses a single model for extrapolation; i.e., Equation 4A is 
four-dimensional, with extrapolation dynamics weighted by 
output of the PME-orientation filter. Equation 4A neither aver- 
ages the maneuvers, nor treats the maneuver acceleration as 
additive; it maintains both the separateness of the maneuver 
classes and the geometry of the maneuver acceleration and 
the target velocity. The update after a radar measurement, 
Equation 4B, has a conventional form with the caveat that 
the multiplier P, is responsive to the image sequence. The 
image update (Equation 4C) sets the PME apart most dis- 
tinctly from the radar-exclusive algorithms in which it plays 
no role. The correlations between errors in estimating the 
translational and rotational states are used directly to update 
the translational estimate. This direct image-to-translation 
update is possible only because the relevant second moment, 
P,,, is computed as part of the PME. 

The effectiveness of the PME derives from its ability to 
use the image information both for direct updates, and for 
adjustments to the tracker gains and time constants. But the 
image path is justified only through improvement in tracker 
performance, and not by its accuracy in maneuver classifica- 
tion; if the PME-orientation estimate has a liminal influence 
on the PME-translation filter, the increased complexity of the 
image-enhanced architecture would not be warranted. It is 
difficult to isolate the primary influence of the imager. How- 
ever, the behavior of the translation error covariance matrix, 
P,, gives considerable insight into how image information is 
used to adapt the tracker to changing motion status. In the 
radar update equation (Equation 4B), the i ~ o v a t i o n s  gain is 
a function of P,. Because Rx is usually fixed, and D is either 
constant or varies smoothly on the path, it is through P, that 
the balance between data smoothing and modal adaptation is 
achieved. When P, is large, the increment in the innovations 
process is valued more highly as regards location updates 
than when it is small; when the filter is uncertain about the 
target location, it becomes more data-driven. Trackers which 
identify turns from radar data must adjust P, in an ad hoc 
manner to account for increased uncertainty near changes in 
motion mode. In the PME, the image data are used to manage 
this "hand-off' problem. 

In what follows, the PME is used in two tracking applica- 

tions: tracking a cruise missile on approach to a ship, and 
following a maneuvering ground vehicle. In the former, the 
missile path moves in all three position coordinates, but in 
both examples, the active portion of the target path lies in a 
6xed plane. This restriction permits the planar model given 
in Equation 1 to be used to describe target motion. In both 
examples, the location measurement is of a conventional 
sort: range and bearing. In the first example, a realistic model 
of a currently deployed phased array radar is used. The radar 
model includes random data dropouts, sensitivity to angle 
off of line-of-sight, and highly nongaussian measurement er- 
rors. The second example uses an additive Gaussian noise 
model to represent location measurement errors. 

The discernibility matrix, P, parameterizes the quality of 
the imagedimage processor. Practical methods of classifying 
orientation from a single image frame lead to errors that are 
not well modeled with additive noise. A useful taxonomy 
separates the imager error into three categories and con- 
structs P from these primitives. Because the examples are 
planar, the image orientation bins are naturally constructed 
by dividing the circle into bins of width 2 ~ l L  radians; the 
matrix P is L by L. The most distinctive image error occurs 
when the ostensible orientation bin is symmetrically placed 
about a line perpendicular to the line-of-sight. This error 
source represents the generic ambiguity which arises when 
the target orientation classifier relies heavily on a projection 
of an extended object. It is pointed out in Taylor et al. (1992) 
that, when a target has bilateral symmetry, any image inter- 
pretation method which relies exclusively on a two-dimen- 
sional projection of the target shape will be interpreted 
erroneously at least half of the time. The use of internal fea- 
tures, derived from EO or range information, can be used to 
reduce the probability of projection error. Figure 7 of Taylor 
et a]. (1992) shows the sensitivity of image classification to 
the number of measured features for a target moving in three 
dimensions. Utilizing additional target features, the probabil- 
ity of correct classification can be increased to the range of 
65 percent to 90 percent. 

Other sources of image distortion include local image 
degradation due to pixel noise and quantization, or, more 
globally, severe occlusion of the image. The former source 
will be represented by assuming that the image is misclassi- 
fied symmetrically into a neighboring bin (spillover error). 
The latter results in errors of large magnitude, and will be 
represented by assuming that the image is classified with 
uniform probability across all possible angular bins. This ma- 
croerror could be reduced in significance by the "class-type" 
identification proposed in Taylor et al. (1992), but this is not 
done here. The maneuver model describes the dynamic evo- 
lution of orientation, and this permits the use of Equation 3 
to partially resolve the symmetry errors described above, in 
particular, minimizing the influence of the "folded angle" 
ambiguity discussed in Taylor et al. (1992). Andrisani et al. 
(pers. comm., 1996) propose to extend the utilization of a 
motion model to include the estimates of the kinematic 
states to aid in image disambiguation. This approach has 
been shown to reduce the aliasing error to 1 percent in some 
cases. This sophisticated feedback is not used in the PME 
where the maneuver state is inferred from the imager meas- 
urements alone. 

An Example: Cruise Missile Tracking 
To illustrate the utility of image-augmentation, a specific sce- 
nario will be considered in some detail. An anti-ship missile 
is launched at a range of 80 km, an altitude of 1 km, and a 
velocity of 300 m/s. After a free fall to 780 m, the missile ap- 
proaches the ship at a velocity of 335 mls. Nearing the ship 
at constant altitude, the missile performs a series of 7-g jinks, 
coasts for 10s, and then makes a final 3-g turn toward its in- 
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tended destination. The constant altitude portion of the path 
is shown in Figure 2. 

The translational observations are generated by a GHz- 
band, phased array radar using amplitude-comparison mono- 
pulse with uniform illumination across the array. The array 
consists of 3600 individual elements with cosine illumina- 
tion. The broadside is directed at 0" in bearing and 10" in el- 
evation. The two-way radar beam has a 3-dB beamwidth in 
the sum channel of 1.2" at the broadside direction. The range 
gate is 1550 meters with range bins of 50 meters. Investiga- 
tors at Naval Surface Warfare Center, Dahlgren Division, 
have created a realistic model of the radar (Blair et al., 1994). 
Additionally, Blair and his coworkers at the Naval Surface 
Warfare Center developed an Em compatible with this par- 
ticular radar. The Blair-EKF will be used as normative in 
what follows. 

Several independent groups of investigators have de- 
vised radar-exclusive trackers for this cruise missile trajec- 
tory. The simplest algorithm is an a-p tracker (a is the 
position gain and p is the velocity gain) with an identifica- 
tion logic to detect maneuvers and change the tracker gains 
(Rhatigan et al., 1994). Satisfactory performance was ob- 
tained from the a-P tracker with an interdwell interval of 
0.75s: approximately 2 percent LOL on a small sample. In 
Sastry et al. (1994), a more sophisticated approach was pro- 
posed. An auxiliary processor was used to estimate the tim- 
ing and sequencing of the maneuvers. The influence of the 
ostensible maneuvers was then included in an EKF-like algo- 
rithm. With an interdwell interval of 0.5s, the LOL rate was 
approximately 1.5 percent. Sample functions of the "identi- 
fied" maneuvers show good accuracy, but with a delay suffi- 
cient to cause the maneuver estimate to lag the true by several 
seconds (see Figure 1 of Sastry et al. (1994)), an important 
lag when the maneuver durations are themselves on the or- 
der of a few seconds. A third approach, the interacting mul- 
tiple model (IMM) algorithm, has been shown to be highly 
efficient for radar-based tracking. In Daeipour et al. (1994), 
three models, each with a different white-noise intensity, 
were used to model coast, a continuing maneuver, and the 
start-or-end of a maneuver. The IMM with a variable interd- 
well interval (with mean 1.5s) was shown to yield an LOL 
rate of 3 percent (as compared with an LOL rate of 54 percent 
with a similarly designed EKF). 

With its additional sensor, the PME is not directly com- 
parable to the algorithms described above. For this study, the 
PME uses a nominal 3-s radar interdwell interval, accommo- 
dating to a failure to receive a return by requesting a new ra- 
dar sample after 0.1s. A collocated imagerlprocessor measures 
target orientation. In what follows, it will be supposed that 
target orientation bins are 10" wide (L = 36), and the image 
frame rate is h = 1 imagels; i.e., a target image is created 
every second, and it is processed and placed into one of 36 
bins (image latency will be neglected at this sample rate). 
The discernibility matrix, P, is constructed from the error 
primitives: (1) with probability 0.1, the target is placed in the 
bin symmetric to the true orientation; (2) with probability 
0.05, the target is placed in an bin adjacent to the true bin; 
and (3) with probability Be, the target is placed in an arbi- 
trary bin. As pointed out earlier, the first error source repre- 
sents the generic ambiguity arising from projecting a three- 
dimensional object into a lower dimension (described as a 
2'12-dimensional projection in Taylor et al. (1992)). The sec- 
ond represents spillover errors from the images near a bin 
boundary. The third represents the output of the image clas- 
sifier when the image is so contaminated that the categoriza- 
tion of the image is arbitrary. The probability of capricious 
classification, Be, is a parameter in this section. 

The radar interval used by the PME is selected to be ap- 
proximately twice that used with the most sophisticated of 
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Figure 2. Path of an anti-ship missile. 
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the radar-exclusive algorithms (and four times the less so- 
phisticated), and the image frame rate is relatively slow and 
is comparable with the scan rate of current IRST implementa- 
tions. In what follows, tracking on the subinterval [120, 1401s 
will be explored (see exploded frame in Figure 2). This has a 
short coast (2s), a hard left (los), a brief coast (3s), and a 
hard right (5s). A simplified maneuver state space is used to 
represent the scenario: Pt E {alj2 = + 0.2 r/s, a3 = 0 rls}. The 
PME must resolve the motion modes from image frames that 
are few in number (one per second), and contaminated with 
noise. Note that the subpath is more difficult to follow than 
the full path would be because the tracker has no opportu- 
nity to initialize itself on the long initial coast; the normative 
EKF lost lock on every trial of this subpath even when using 
the radar at a sample rate of 20 samplesls. This shortened 
scenario provides a stiff test for the tracker, and it illustrates 
the implications of a failure to identify the presence of a tar- 
get until it is close to its objective. 

The performance of an image-enhanced tracker is sensi- 
tive to image quality; as image quality degrades with range, 
clutter, processing elegance, etc., LOL tends to increase. In 
this scenario, the image sample rate is such that few data 
frames are taken during each of the maneuver modes. If an 
image is too contaminated to classify properly, the PME must 
extrapolate across multiples of the interframe time. Figure 3 
shows the variation of LOL as a function of Be. The LOL rates 
are deduced from a simulation of the trajectory and the ra- 
dar-imager, using a sample of size 30 for each Be tested - 
and are shown as the small circles in the figure. When Be is 
small (Be < 0.25), the PME almost never lost lock - once in 
150 trials. By the time Be moves beyond 0.4, the LOL rate in- 
creases to an unacceptable level (approximately 10 percent at 
Be = 0.4). Observe that, with a Be of 0.4, image classification 
is correct less than half the time; on the 2-s coast used for 
initialization, the PME expects only one good piece of data. 

Each element in the error taxonomy has an idiosyncratic 
(and synergetic) iduence  on LOL. Hence, P is not well de- 
scribed by a single number, e.g., standard deviation of the 
image error. It is nevertheless interesting to compare the per- 
formance of the PME with other algorithms. Andrisani et al. 
(1992; Figure 2) present a parametric study of imager effec- 
tiveness on a slower speed, coast-turn path with interdwell 
intervals for both the radar and the imager of 0.1s. Both 
types of measurement were taken in additive white-noise 
channels. For these sensors, it was shown that image enhance- 
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Figure 3. Probability of loss-of-lock as a function of Be. 

ment leads to significantly improved tracking performance 
when the standard deviation of the orientation measurement 
error is in the range 2 to 7 degrees. By way of comparison, 
the PME with Be = 0.4 has a standard deviation in the angu- 
lar measurement of approximately 66" due to Be alone. The 
effect of the other errors depends upon target orientation, but 
the total angular standard deviation exceeds 70". Even with 
this imprecision, the PME maintains lock on this near-range 
scenario under conditions that cause the normative EKF to 
fail even with a 6040-1 advantage in radar sample rate. 

The PME utilizes the image measurements to adapt its 
gains to the maneuver mode. Even with a high fidelity ima- 
ger, the slow sample rate precludes resolution of the maneu- 
ver status with high confidence. The maneuver dynamics 
interact with classification errors to cause the PME-orientation 
algorithm to maintain a conservative demeanor. The PME re- 
sponds more quickly to maneuvers than does the detection1 
identification algorithm proposed in Sastry et al. (1994), but, 
without the postprocessing of the latter algorithm, the pre- 
cise shape of the maneuver is never clearly delineated. The 
advantage of the image-enhanced algorithm lies not in its 
ability to recreate the sample path of the turn rate, but in- 
stead, in its ability to maintain the proper geometric relation- 
ship between the maneuver acceleration and the velocity. 

Loss-of-lock rate is the central measure of tracking per- 
formance, but this single number masks the detailed behav- 
ior of the system. Figure 4 shows a sample function of the 
log of the product of the eigenvalues of P, along the path 
(shown as the small circles and using the left scale) and the 
actual turn rate (shown as the continuous curve and using 
the right scale). The Markov model for the turn rate process 
is seen to be only a coarse approximation to its realization, 
but effective nonetheless as indicated by the infrequent target 
losses. The log of the product of the eigenvalues of P, (a posi- 
tive symmetric matrix) gives an indication of the error volume 
in the location x velocity state space as computed by the PME. 
After a three-second initialization, {log lTii=,,,,,,, Ai(P,)) falls 
into a pattern of significant decrease after every radar mea- 
surement (at 123s, 126s, ....), and smaller changes (of both 
signs) at the image updates (e.g., at 127s, 128s, 131s). The re- 
duction in the error covariance after a radar update is an oft 
noted characteristic of the Kalman filter, but the image-in- 
duced changes are novel. Analysis of other tracking data (not 
presented here) suggests that the largest image-coincident 
changes occur when there are significant changes uncertainty 
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Figure 4. The log of the P, error volume and the turn rate 
along the sample path: Be = 0.1. 

in maneuver detection; i.e., changes in &&(I - &) resulting 
from an image observation that the PME found persuasive. 
When the PME-orientation filter is less sure of the maneuver 
mode, it causes the PME-translation filter to reduce its time 
constants, and conversely. The error volumes are seen to be 
relatively insensitive to the motion mode, with an initializa- 
tion transient that takes several measurement cycles. 

Another measure of filter performance is prediction er- 
ror, the magnitude of the difference between the predicted 
and true target position. Prediction error tends to grow be- 
tween measurements, and it is sensitive to changes in the 
motion mode - LOL ends to occur after a sudden turn. Even 
if lock is maintained, it is important to have a sense of the 
size and distribution of prediction error; e.g., for fire control 
calculations. Figure 5 shows two snapshots of prediction er- 
ror, both computed on a sample of size 50, with the filter in- 
itialized to the true state at time 113s to eliminate the effect 
of effect of the initialization transient. The first snapshot 
shows the error likelihood at t = 124.9s, a full second into 
the first left turn. The extrapolation error is concentrated 
near zero with a few significant outliers. Also plotted is a 
Rayleigh density with the same mean as that of the predic- 
tion error. If the errors in the X and Y direction were inde- 
pendent zero-mean Gaussian random variables with the same 
variance, the prediction error would be Rayleigh. It is seen 
that the error in strongly nonGaussian, thus explaining in 
part the poor performance of the normative EKF. 

The second snapshot it taken at t = 139.0s, the most de- 
manding point on the path. The target has ended its first 
turn, coasted for only 3s, and begun a turn in the other di- 
rection. The mean of the sample error is somewhat larger 
than it was at t = 124.9, but the sample distribution is more 
concentrated near the mode; the error does not have zero 
mean, but it is biased primarily because of the lag in re- 
sponding to the new turn. Again, it is evident that the Gaus- 
sian hypotheses underlying the EKF will lead to grief when 
applied here. 

Renewal Models 
Parasitic effects make the sojourn times in an angular bin 
random even when the nominal turn rate is known. Further, 
the finite state space for acceleration is an abstraction used 
to describe what is actually a continuum of possible actuali- 
zations (see Figure 4). For example, a, is but a single element 
in an interval bin] of rotation rates; a, is close to, but likely 
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Figure 5. Histogram of prediction error at times t 
= 124.9s and 139.0s. 

not identical to, the actual value of Tt even when !Pt is in the 
a, bin. In the basic PME, the orientation bin sequence is as- 
sumed to be a Markov process for a specific turn rate. Sup- 
pose Ikt = a, for an a, in the direction of increasing bin 
number. The Markov model presents target orientation as re- 
maining in an angular bin with an exponentially distributed 
residence time (mean ZdLa,), after which the bin indicator 
process, {p , ] ,  transitions e,+e,+,; the faster the turn, andlor 
the smaller the bin, the shorter the mean time within the 
bin, with the direction fixed by the sense of the turn. This 
representation for bin sojourns has an obvious weakness: ex- 
ponential distributions have an excess of very short and very 
long lifetimes. While the Markov bin model has proven to be 
serviceable, it does not manifest the quasi-periodicity under- 
lying the angular motion well; e.g., if the frame rate is high, 
the orientation is unlikely to enter a bin at one frame time 
and exit it the next, but the exponential model masks this 
trait. 

It is possible to create a more realistic sojourn model for 
target orientation by using a gamma density. A y-density is a 
two parameter family, y(t;R,A), in which R controls shape and 
A controls time scale: y(t;R,A) = 4t,ol A(QR))-l(At)R-iexp(-At); 
R,A>O. The mean of a gamma distributed random variable is 
v = RIA, and v will be used to indicate the time scale. Fig- 
ure 6 shows three y-densities, and it is evident that, as R in- 
creases, the transition events become more regular. To adjust 
the PME for this, more realistic, orientation model, first fix 
the turn rate; e.g., a, = em. Select a y-density (with param- 
eters (v,, R), the latter integer valued) that best describes the 
sojourn times associated with an angular bin residence for 
the given acceleration. R could depend upon the turn rate 
(i.e., m) too, but the changes that result from this general- 
ization are transparent. Partition the sequence of integers 

RL into L, equally spaced contiguous blocks: A = A(1) 
U...UA(L); A(1) = (1 ,..., R], A(2) = {R + 1 ,..., 2R}, and so on. 
The orientation model replaces each substantive angular bin 
with R subbins; i.e., as the orientation moves across a single 
true bin (the k-th say), the model has it traverse R ersatz 
bins (labeled A(k)). Let r, be an R-dimensional indicator. In 
this new framework, the orientation is given by the unit vec- 
tor p,@rt, the former denoting the true angular bin, and the 
latter, the sub-bin. To preserve the mean time angular change 
of the target, the mean time in each of the sub-bins must be 
reduced by the factor R (v, = 2~rlRLa,). The joint (accelera- 
tion X orientation) process is now Markov even for the y-re- 
newal residence times, albeit in a state space of higher 
dimension: the maneuver state of the target is 4, = at@pt@r,. 
The transition rate matrix for the orientation model associ- 
ated with the m-th maneuver mode can be deduced in a di- 
rect manner. 

To illustrate the performance of the modified PME, con- 
sider a slower paced coast-turn-coast path of a tank or APC. 
The target is initially located at (X,, Yo) = (1.0, 6.4) krn, and 
moving at constant velocity (V,, V ) = (5.0, -13.3) m/s for t 
E [O, 10)s. A 0.3-rls turn is made &ing t E [lo, 20)s, after 
which the target returns to constant velocity motion. Figure 7 
shows the target path (labeled truth) without the wide band 
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Figure 7. Mean tracking performance for two values of R. 
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Figure 8. Probability of coast as  determined from the im- 
age information. 

acceleration. Tracking will be accomplished with two sen- 
sors: a conventional range-bearing sensor located at (0, 0) 
and a collocated imager. The sensors take measurements si- 
multaneously every 0.1 seconds. Sensor qualities are as fol- 
lows: the position sensor measures true location in additive 
Gaussian noise with a standard deviation 5.0 meters in range 
and 0.25" in bearing; the orientation sensor partitions the an- 
gular field into 30' bins (L = 12) ,  and the discernibility ma- 
trix, p, is constructed from the following error primitives, (a) 
with probability 0.29, the target is placed in the bin symmet- 
ric to the true orientation; (b) with probability 0.03, the tar- 
get is placed in a bin adjacent to the true bin; and (c) with 
probability 0.01, the target is placed in an arbitrary bin. The 
imager misclassifies its observation a third of the time. The 
omnidirectional accelerations will be assumed to be slight: W 
= 0.011 ( m l ~ ~ ) ~ .  The maneuver state space will be three di- 
mensional; [a, = coast, a , ,  = 20.3 r/sl, with the chain {cud 
symmetric about the coasting mode and coasting always in- 
te jected between turns (no jinking). Specifically, the follow- 
ing tempo is assumed: vl = 20s; v,, = 10s. 

Figure 7 shows the response of two PME-trackers in the 
(a,; el+e,+e,} scenario: PME(R = 1) (Markov PME) and PME(R 
= 4) (quasiperiodic bin crossings). To display biases, 20-trial 
mean sample paths are shown rather than the (noisier) single 
sample paths. Both of the trackers perform well in the pre- 
maneuver phase, but deviate slightly during and after a turn. 
Their performance is far superior to the conventional EKF 
(Sworder and Vojak, 1994b). The corresponding velocity pro- 
files (not shown) display similar behavior, and are again far 
superior to the orthodox EKF. 

The nonMarkov bin-sojourn model portrays more accu- 
rately the bin dynamics than does the Markov model. Figure 
8 shows the sample average of the conditional probability of 
"turn right." Note that both algorithms are delayed in recog- 
nizing the beginning of a turn (it starts at t = 10s); the orien- 
tation must pass a bin boundary before a turn is manifest in 
the angular data. Despite the improved model, the non- 
Markov algorithm is little better than is its Markov counter- 
part during the turn. The return to coast is much more 
expeditiously determined in the PME(R = 4)-orientation filter 
though. Both models "decay" to coast, but the rate of the 
nonMarkov algorithm is much faster. This improvement in 
rotation estimation is not, however, reflected in a substantive 
improvement in track error. 
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Figure 9. The value of P, along the path for two values 
of R. 

Although tracking performance (as contrasted with ma- 
neuver identification) is little different in the two algorithms, 
PME(R = 4) achieves its goals with generally lower gains. Fig- 
ure 9 shows the sample average of the computed conditional 
X-covariance (see Equation 4B). Both algorithms adjust their 
gain as the path uncertainty changes; high gains during times 
of higher uncertainty and conversely. But PME(R = 4) gener- 
ates moments that are generally smaller, and in some cases 
much smaller than its Markov counterpart. The R = 4 algo- 
rithm has the desirable property that is able to track well, 
but with smaller gains (and consequently less magnification 
of the observation noise). It is, however, more complex to 
implement. 

Conclusions 
This paper presents a study of performance improvements 
possible with image enhancement. Using a simulated 
phased-array radar, it is shown that a target of the cruise 
missile class can be followed with low probability of LOL 
and with an interdwell interval that is nominally 3s. This 
compares favorably with the most sophisticated of the radar- 
exclusive algorithms. An improvement by a factor of almost 
two is achieved with an imager whose ability to discern a 
turn is not particularly good. The advantage of proper mod- 
eling of the nonlinear engagement dynamics and utilizing the 
extended set of cross moments is evident. 

The sample rate of the imager is rather slow for the 
cruise missile scenario. In general, the imager frame rate can 
be reduced only if the processing fidelity is increased. In the 
fleet defense example, the short sojourns in each of the mo- 
tion modes precludes extending the interframe intervals of 
the imager much more. Tests indicate, however, that the be- 
nign portions of the path, e.g., the initial coast at long range, 
can be handled quite well with a lower frame rate. 

This paper also suggests, by means of an example, that 
the performance improvement attainable from using a more 
accurate model of target rotation (a nonMarkov renewal 
model) may not be worth the additional effort to implement 
it. The Markov PME performs well even when a rudimentary 
model is used. This tracker appears to be sufficiently robust 
as to not need the additional computation that a high accu- 
racy maneuver model entails. However, a lower gain imple- 
mentation is possible if the nonMarkov representation is 
used. 
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