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Abstract 
Remotely sensed data, especially that from the Advanced 
Very High Resolution Radiometer (AVHRR), are increasingly 
being used to analyze changes in the global environment. 
This research analyzes two of the most commonly used re- 
mote sensing data sets for global environmental change re- 
search, the National Oceanic and Atmospheric Administra- 
tion's (NOAA) Global Vegetation Index (GW) data and the new 
NoAA/National Aeronautics and Space Administration's 
(NASA) Pathfinder AVHRR Land (PAL) data set, to determine if 
the new PAL data have successfully removed the major sen- 
sor-related problems found in  the GVI data. Principal Compo- 
nents Analysis of the data for the geographic region of China 
is  used with results indicating that sensor-related problems 
remain in the PAL data, though not as severely as in  the GVI 
data. For the time period of 1982 to 2992, the GVI and PAL 
data suffer from problems of spatial misregistration and radi- 
ometric miscalibration. The problem of orbital drift, however, 
has been minimized in the PAL data. 

tion of approximately 4.4 km at nadir, at the equator. GAC 
data are further re-sampled by NOAA and other users to spa- 
tial resolutions of 8, 16, and 32 km. A widely used deriva- 
tive of the GAC data is a Global Vegetation Index ( ~ m )  which 
is a 16-km resolution Normalized Difference Vegetation In- 
dex (NDVI)~. Early GVI studies were applied at the regional 
scale (Tucker et al., 1984; Malingreau et al., 1985), followed 
by larger continental- and global-scale studies (Box et al., 
1989; Tateishi and Kajiwara, 1992). 

Although it was originally designed to monitor meteoro- 
logical phenomena, the measurements in the red and NIR 
spectral bands make the data very useful for vegetation analy- 
sis. In part because of the wide availability of the data, re- 
searchers have found a multitude of applications in vegetation 
research, meteorology, oceanography, and geology (Thomas et 
al., 1989; Ehrlich et al., 1994). Satellite-based remote sensing 
employs the same measurement device over the entire globe, 
making it particularly suitable for global studies compared 
with ground-based surveys. However, the measurement of re- 
flected and emitted radiation from the Earth's surface is sub- 

Introduction 
Global environmental change research is rapidly rising in im- 
portance (NAS, 1990; IGBP, 1994) with an increasing need 
for a large amount of geographically referenced data (Town- 
shend, 1992). Remotely sensed data is an important source 
for deriving global data because of its internal consistency, 
its reproducibility, and its ability to cover areas where land- 
cover data are sparse (DeFries et al., 1995). In the 1980s and 
early 90s, Landsat and SPOT provided high spatial resolution 
images of the Earth's surface for regional land-cover applica- 
tions. In order to monitor vegetation at the global scale, how- 
ever, the research community has increasingly turned to data 
from meteorological satellites, and, in particular, to the Na- 
tional Oceanic and Atmospheric Administration (NOAA) se- 
ries with the Advanced Very High Resolution Radiometer 
(AVHRR) sensor (Ehrlich et al., 1994). The A= sensor, with 
its wide instantaneous field-of-view produces a spatial reso- 
lution of approximately 1.1 km by 1.1 km at nadir, and has 
the ability to sense the entire Earth every day. The scanner 
records electromagnetic energy data in five channels: channel 
1, red (0.58 to 0.68 pm); channel 2, near infrared (NIR) (0.725 
to 1.1 p ) ;  channel 3, middle infrared (3.55 to 3.93 p ) ;  and 
two thermal bands, channel 4 (10.5 to 11.5 p) and channel 
5 (11.5 to 12.5 pm). To overcome the problems of large data 
sets and high data costs, NOAA produces a daily Global Area 
Coverage (GAC) data set. GAC data are formed by resampling 
1.1-km AVHRR data on-board the NOAA satellites to a resolu- 
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ject to problems such as variable illumination and atmosphe- 
ric conditions. In addition, the sensor itself is subject to 
variations in performance. As more quantitative global stud- 
ies are being undertaken, a number of data problems have 
been identified (Justice et al., 1989; Goward et al., 1993; Gut- 
man and Ignatov, 1995) with the most serious problems 
found in the GVI time series, as noted by Kineman and Ohr- 
enschall (1992), being orbital drift and radiometric disconti- 
nuities at satellite changeovers. Orbital drift results in 
changes of sun-sensor-target geometry due to a slowing of 
the satellites in orbit. An important consequence of this 
problem is an increasing NDVI through time over low vegeta- 
tion areas, especially desert regions. As the satellite passes 
later and later in the afternoon the pathlength of solar radia- 
tion increases and the shorter wavelength red light attenuates 
faster than the longer NIR light, thus making NDVI values rise, 
creating a false interpretation of increasing vegetation. Radio- 
metric discontinuities are a result of detector andlor eleva- 
tion degradation over the life of the sensor that results in 
discontinuities between the calibration of successive satel- 
lites (Los et a]., 1994). The AVHRR sensors have no internal 
visible and NIR calibration and so various pre- and post- 
launch calibrations have been used with varying degrees of 
success (Roderick et al., 1996). 

'NDVI is derived by dividing the differen'ce between the NR and red 
images by the sum of the NIR and red images (Channel 2 - Channel 
l)/(Channel 2 + Channel 1) (Kidwell, 1994). 
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To overcome known problems in the GVI data, a new 
data set, the N~AA/National Aeronautics and Space Adminis- 
tration (NASA) Pathhnder AVHRR Land (PAL) data set has been 
reprocessed from the original GAC data using new algorithms 
in an attempt to eliminate known problems in the GW data 
(Agbu and James, 1994). Gutman and Ignatov (1995) ana- 
lyzed the application of post-launch calibrations used in the 
PAL data set (Rao and Chen, 1994) and found that the cali- 
bration removed both the effect due to orbital drift in the 
NOAA-9 data, and the discontinuity upon launch of NOAA-11. 
However, a small residual trend of increasing NDW over the 
Sahara was still detected for most of the NOAA-11 period. 
Prince and Goward (1996) and Smith et al. (1997) have 
found that the new calibrations in the PAL data have im- 
proved the visible and NIR measurements, especially with re- 
spect to the calibration discontinuity effect between the three 
successive sensors on NOAA-7, -9, and -11. Young (1997), 
however, has found that, although partially diminished, the 
sensor-related problem of calibration discontinuity persists in 
the PAL data along with a spatial misregistration problem. 
These two problems in the PAL data will be investigated in 
this paper. 

This research, spanning the years 1982 to 1992, uses the 
land covers of China to determine if the PAL data set has 
fully removed the major calibration problems which have 
plagued the earlier GW data sets. The research uses the mmsI 
Geographic Analysis System and the D R I ~ I  Times Series 
Analysis (TSA) procedure (Eastman, 1995), based on stan- 
dardized Principal Components Analysis, to analyze the 
data. The authors have found this form of analysis to be an 
effective way to identify problems in GAC-derived time series 
data. 

Data 
To date, there have been only a few comprehensive global- 
scale remote sensing land-cover data sets established. This 
research uses two of them, NOAA'S Weekly Maximum Value 
Global Vegetation Index (GVI), extracted from the United 
Nations Environment Programme Global Resources Informa- 
tion Database (UNEP-GRID) at a 16-km spatial resolution 
(UNEP-GRID, 1992; Kidwell, 1995), and NOAAINASA's 
Pathfinder AVHRR Land (PAL) data set with an 8-km resolu- 
tion (Agbu and James, 1994). The data are derived from the 
AVHRR sensor on-board NOAA's Polar Orbiting Environmen- 
tal Satellite series, specifically in this case, NOAA-7, -9, and 
-11. 

The GW data (April 1982 through December 1992) and 
the PAL data (January 1982 through December 1992) were in 
monthly maximum value composites (Holben, 1986), where 
the maximum NDVI value per pixel over the course of each 
month was used for that month (Agbu and James, 1994; Kid- 
well, 1994). The authors extracted the China data from the 
GVI and PAL data sets using the China County Border File 
(Lam, 1989). The PAL images originally were in the Goode's 
Interrupted Homolosine Projection, and were reprojected by 
the authors to a latitudellongitude projection2. At the end of 
the research, analyses were also run with the PAL data in the 
original projection, producing the same conclusions, which 
indicates that the reprojection algorithm did not introduce 
problem-causing artifacts in the data. The data needed to be 
reprojected so that various land-cover validation material 
could be used with the PAL data. The NDVI values (-1 to +1) 
for both data sets have been scaled 0 to 255. 

For both the GVI and PAL data, annual average compos- 
ites (1982 through 1992) were created for each year where 1 2  
monthly images (January through December) were added to- 

zProjection program supplied by B. B. Ding of NASA Goddard. 

gether and then divided by 12, yielding an annual average 
NDVI image. These annual average N ~ W  composites were cre- 
ated to remove seasonal variation in the data in order to fo- 
cus on inter-annual variation where the potential sensor-re- 
lated problems of spatial misregistration, drift, and 
discontinuities would become evident. In the case of GW, the 
data for 1982 began in April and, as a result, January, Febru- 
ary, and March of 1983 were substituted in the creation of 
the annual average for 1982. 

In the process of analyzing temporal changes in the GVI 
and PAL data, it was critical to determine the land-cover type 
where apparent changes were occurring. For identification of 
land covers where change was occurring, a number of digital 
and non-digital vegetation maps and images were used. The 
China information includes two global-scale digital land- 
cover maps, Olson's World Ecosystems, and Leeman's Hold- 
ridge Life Zone Classifications (Kineman and Ohrenschall, 
1992); two non-digital paper vegetation cover maps, The 
Vegetation of China (Wu, 1980) and Vegetation Map of 
China (Hou 1983); two non-digital atlases, Atlas of Forestry 
in China (Xu, 1991) and The National Economic Atlas of 
China (Institute of Geography et al., 1994); two paper Land- 
sat images, one Landsat TM composite of all of China and 
one Landsat TM composite of the Great Black Dragon Fire in 
northern Heilongjiang in 1987; and six digital 1993 AVHRR 
LAC images (Heilongjiang, Ningxia, Fujian, Yunnan, Guizhou, 
and Sichuan). The "Percent Forest Cover Map" from The Na- 
tional Economic Atlas of China (Institute of Geography et al., 
1994) was digitized and used in the research to define forest 
cover areas (<I0 percent, 10 to 19 percent, 20 to 29 percent, 
30 to 39 percent, 40 to 49 percent, 50 to 60 percent, and >60 
percent). The data for this map are from the late 1980s. 

Methodology 
Principal Components Analysis (PCA) was used to analyze 
the data sets. PCA is a multivariate statistical method which 
undertakes a linear transformation of a set of image bands to 
create a new set which is uncorrelated and ordered accord- 
ing to the amount of variance explained (from most to least) 
(Johnston, 1980). PCA can use unstandardized components, 
where bands with higher variability contribute more to the 
new component images, or standardized components, where 
every original band has equal weight in the creation of the 
new component bands (Singh and Harrison, 1985). PCA has 
most commonly been used with unstandardized components 
as a compression tool for remote sensing data where minor 
components with little explanatory information have been 
discarded. Some of the early studies utilizing the GVI data- 
base used the PCA methodology with unstandardized compo- 
nents to perform land-cover mapping (Tucker et al., 1985; 
Townshend et al., 1987). Fung and LeDrew (1987), along 
with Eastman (1992) and Eastman and Fulk (1993), have 
shown that standardized PCA appears to produce more useful 
components than unstandardized PCA for the analysis of 
land-cover change in multi-temporal image data sets. East- 
man (1992) along with Eastman and Fulk (1993) explored the 
potential of using standardized PCA with GW data for Africa 
to detect change in vegetation over time. Their research 
showed the potential usefulness of indicating various 
changes in vegetation such as seasonal changes between win- 
ter and summer or aseasonal changes such as the effects of 
El NiiioISouthern Oscillation (ENSO) events. Their research 
also showed the ability of the PCA methodology to identify 
sensor-related problems with time series GVI data. Further 
studies (Anyamba, 1994; Anyamba and Eastman, 1996) have 
shown the ability of the PCA methodology with AVHRR-~~- 
rived NDVI data to detect climatically driven vegetation varia- 
tion over long periods of time as well as to identify sensor 
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related changes in the data. These studies, and most other 
landcover change GVI and PAL studies, use the data in 
monthly or dekadal composites while this study uses the 
data in annual composites. 

The standardized PCA employed in this study uses a 
time series of AVHRR data with the same area (China) and the 
same spectral wavelength (NDVI) for each scene. The only 
variation in the data is time, and, therefore, the procedure 
could be considered a "chronological standardized PCA." The 
procedure creates two products: component images (spatial 
output) and component loadings (temporal output). The first 
component image presents the spatial pattern which best de- 
scribes the greatest degree of variability among the input im- 
ages. The first component's loadings describe the degree to 
which each of the original images is correlated to the compo- 
nent and thus produces a time signal of variability. With 
time series AVHRR NDVI data, as is the case in this study, gen- 
erally all of the input images are highly correlated (nearly 
100 percent) with Component 1. Land covers from year to 
year do not change dramatically compared to how they 
change spatially. That is, the difference in scaled NDVI be- 
tween a desert (120s) and a tropical evergreen forest (210s) is 
greater than the annual changes between the same pixels in 
the desert (i.e., 1984: 122; 1986: 122.6) and the same pixels 
in the forest (1984: 211; 1986: 210). Therefore, Component 1 
of a standardized PCA of annually composited data always 
has a very high percent of variance, and the component's im- 
age represents the characteristic value over the whole series. 

Because each of the successive components (2, 3, 4, etc.) 
is uncorrelated with Component 1 and each other, they rep- 
resent statistically orthogonal (independent) factors which 
are isolated from other factors. These orthogonal factors rep- 
resent variation (during the time period) from the overall 
general characteiistic & displayea in Component 1 (Eastman, 
1992; Eastrnan, 1995). Each successive component decreases 
in magnitude, that is, the early components represent varia- 
tion with either (or both) extensive spatial characteristics or 
intense temporal characteristics. Although each component 
after Component 1 can be the combination of a variety of 
changes occurring in the data, each tends to be dominated by 
one activity and its related effects, especially for early com- 
ponents (Eastman and Fulk, 1993). Even though the compo- 
nents following Component 1 have a low percent of vari- 
ance, and low eigenvalues, they are significant in that they 
represent variation which has occurred in the data relative to 
its "average" condition (Component 1). The chronological 
standardized PCA procedure is sensitive to subtle changes in 
the data. The process can be considered similar to the study 
of successive residuals. The objective of the chronological 
standardized PCA methodology, using the same geographic 
area and the same spectral wavelength over time, is to isolate 
and analyze these variations while the unstandardized PCA 
methodology, using different spectral bands of data over the 
same area, is to remove redundancy from remote sensing 
bands and discard components with low values. An impor- 
tant point is that, with a standardized PCA using NDW data, 
the loadings also represent how NDVI varies in the compo- 
nent over time. 

Results and Discussion 
Overview 
The research began by using the chronological standardized 
PCA procedure with the annual average GVI data for China to 
evaluate the known sensor problems in the data. This analy- 
sis demonstrated problems of radiometric miscalibration 
between satellites and orbital drift. The problem of large ra- 
diometric shifts at the point of satellite change was clearly 

evident in the loadings for Component 2 (Figure IC) which 
show large shifts between 1984-1985 and 1988-1989. These 
radiometric shifts in the GvI data are well documented else- 
where (Kineman and Ohrenschall, 1992; Eastman and Fulk, 
1993). The problem of orbital drift, which is related to the issue 
of radiometric shifts, was also evident in Component 2. The 
loadings (Figure lc) show a continuous decrease in NDm 
throughout each satellite period3. Temporal profiles of the Ta- 
klirnakan desert, using the original GVI annual average images, 
also clearly show orbital drift with increasing NDW for this 
sparsely vegetated region, especially for NOAA-9 (Figure 2). 
There is no documented evidence of this desert region increas- 
ing in NDm throughout the 1980s, and there is evidence that 
other arid regions in the world experienced a similar increase 
in NDVI due to orbital drift (Kaufinan and Holben, 1993). 

Next, a chronological standardized PCA for China was 
executed with the annual average PAL data. The resulting 
first four components created virtually the same configura- 
tions (images and loadings) as in the GVI data, though in a 
different sequence (Figure 1) (Young, 1997). This means that 
either the PAL data still have the sensor-related problems, or 
that the changes which occurred to China's vegetation coin- 
cided with the known sensor problems in the GvI data. In 
PAL components two through four, we chose pixels which 
were most highly (top 25 percent) related to the loadings 
(positively and negatively) and investigated for a number of 
plausible causes of land-cover change, including natural haz- 
ards and climate change as well as human-induced change 
such as urbanization, pollution, agricultural development, 
deforestation, and reforestation. Concerning Components 2 
and 3, we could not find any published patterns which 
matched the loadings and spatial locations of potential 
changes due to natural effects (Ding, 1994; Fu, 1995; Shi, 
1995) or human activity (Richardson, 1990; He, 1991; Smil, 
1993; Luo, 1995; Wang, 1995). It was concluded that changes 
depicted in these components were most likely due to simi- 
lar exogenous factors which influenced the GVI data. The 
spatial patterns and temporal loadings for Component 4, 
however, do show changes associated with human activity 
(agricultural intensification and deforestation), and later com- 
ponents show various climatic effects in addition to human 
activity on China's land cover. The scope of this paper does 
not allow for the discussion of these later components (forth- 
coming article). Investigations of the PAL data for China led 
to the conclusion that for the period of 1982 to 1992 the 
problem of orbital drift was successfully minimized for arid 
regions, but the problem of radiometric miscalibration at sat- 
ellite changeovers persists in the PAL data. In addition, it was 
discovered that both the PAL data and GVI data suffer from a 
spatial misregistration, especially the data from NOAA-9 rela- 
tive to the data from NOAA-7 and -11. This spatial misregis- 
tration was not discovered until the PAL data were analyzed 
extensively. 

Orbital Drlft in PAL Data 
The chronological standardized PCA of the PAL data shows 
potential orbital drift in Component 3 with decreasing NDVI 
in loadings for NOM-11, especially for 1990 through 1992 
(Figure lc). Arid and semi-arid regions are negatively associ- 
ated with these loadings, and thus slightly increasing in NDm 
(Figure lc ,  Plate 1). The pattern is similar to GVI Component 
2 which showed orbital drift (Figure lc). The orbital drift, 
however, seems to be greatly reduced in the PAL data relative 
to the GVI data (Figure lc). Perhaps more importantly, profil- 
- 

31985 has a slightly lower NDW than 1986 because the data for the 
first three months of 1985 are from NOAA-7 and thus 1985's yearly 
average was influenced by NOAA-7's lower values. 
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Figure 1. Component loadings of PAL and GVI data. (a) GVI and PAL Component 1. (b) PAL Component 2, Gvl Component 4. (c) 
PAL Component 3, GVI Component 2. (d) PAL Component 4, GVI Component 3. 

ing the original annual average PAL data for arid regions, through 1992), however, each trend is decreasing, not in- 
such as the Taklimakan desert (Figure 2), the PAL data show creasing, and thus the areas increasing in NDVI according to 
that the effects of orbital drift have been minimized except 
for a slight drift for NOAA-11 which has also been noted by 
Gutman and Ignatov (1995). 

Radlometrlc Mlscallbratlon for PAL Data 
Analysis of PAL Component 3 shows a potential radiometric 
miscalibration of the PAL data. The loadings for Component 
3 show distinctive breaks at the satellite changeover periods 
(Figure lc). This component is similar to Component 2 of the 
GVI data which showed the radiometric miscalibration. The 
loadings for this component, however, seem to show that the 
radiometric miscalibration between satellites has been re- 
duced, especially for N O M - 7 1 ~ 0 ~ - 9 ,  though not completely. 
Although Component 3 could be showing a number of 
changes taking place, there are no documented large-scale 
land-cover changes occurring in China with such distinctive 
characteristics, as indicated by the loadings, in the regions, 
as indicated by the image (Figure lc, Plate 1). The compo- 
nent loadings also show that over the course of the 11 years 
(1982 through 1992), NDVI slightly increases. The component 
image shows forest regions in southeastern and northeastern 
China positively correlated, thus increasing in NDVI, with 
north and west China primarily negatively correlated, and 
thus decreasing in NDvI. Looking at the trends of individual 
satellites (1982 through 1984, 1985 through 1988, 1989 
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Figure 2. Temporal profiling of the 
Taklimakan Desert of western China for 
the PAL and Gvl data. Each annual value 
is an average of Taklimakan Desert 
pixels for that year for that data set. 
The location of the Taklimakan Desert in 
each data set is based on Hou (1983). 
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Principal Components of Annual Average PAL Data for China 1982-92 

Original Components Highest & Lowest Correlations 

Component 1 p - I ~omponent 1 . 
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Plate 1. Color images of the PAL data standardized Principal Components Analysis (1982-92) Components 1, 2, 
and 3. The left-hand column of images are the original components linearly stretched with values ranging from 0 
to 255. The right-hand column of images are value-sliced images of top 15 percent, middle 70 percent, and 
bottom 15 percent of component image values. That is, the pixels with a yellow color are the top 15 percent of 

I pixels most correlated with the loadings for their particular component, and the blue colored pixels are the 15 

i percent of pixels most negatively correlated with loadings, or those with the opposite trend of the loadings. 
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TABLE 1. TOP AND BOTTOM 25 PERCENT OF PAL  COMPONENT^^ CROSS- 
TABULATION WITH TOP AND BOTTOM 25 PERCENT OF PAL SINGLE SATELLITE 

 COMPOSITE^ 

PAL Single Satellite Composite 

Bottom 25% Top 25% 

L 
M Bottom 406 pixels 10,485 pixels 
P 25% 
3 TOP 10,433 pixels 470 pixels 

25% 

'PAL Component 3 from a chronological standardized PCA of annual 
images 1982 through 1992. 
2A single composite image of increasing NDVI from 1982 to 1992 was 
made from three components from a chronological standardized PCA 
run for each of the NOAA satellites (NOAi-7, -9, -11). The three 
components indicating increasing NDVI were added together with the 
resulting image divided by 3, creating a composite image which 
minimizes radiometric miscalibration between satellites. 

the whole series, might actually be decreasing according to 
the individual satellite periods (Figure lc). Therefore, the 
overall increase in NDVI for the entire 11 years seems to be 
the result of a radiometric miscalibration at the point of sat- 
ellite changeover. To investigate this further, a chronological 
standardized PCA was run for each of the individual satellites 
(NOAA-7, -9, and -11), and each produced a component with 
decreasing NDvI in the loadings virtually the same as for the 
individual satellite years in the loadings of Component 3 
above (Young, 1997). Adding these three components 
(weighted averages) from NOAA-7, -9, and -11 together and 
then dividing the resulting image by three creates an image 
depicting change over the entire 11-year period, minimizing 
the inter-satellite calibration problem. The resulting image is 
virtually a reverse image of Component 3 with forest areas 
associated with decreasing NDVI. A cross-tabulation between 

Forest Cover Profiles 
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Figure 3. Annual profiles of percent forest 
cover from 1982 to 1990. Pixels used in 
profiles were determined by the "Percent 
Forest Cover Map" from The National 
Economic Atlas of China (Institute of 
Geography et al., 1994), which was 
digitized by the authors, and uses the 
same categories as in the paper map 
(<lo%, 10-19%, 20-29%, 30-39%, 40- 
49%, 50-60%, >60%). The data for this 
map are from the late 1980s. Note an 
increasing upward shift  in values between 
1988 and 1989 for areas with an 
increasing percent of forest cover. 

Component 3 and the single-satellite composite image shows 
that almost pixel for pixel the two images are completely op- 
posite from each other with complete opposite interpreta- 
tions (Table 1). This indicates that there must be some form 
of radiometric miscalibration between the satellites in order 
to produce this opposite effect. Forests in particular seem to 
be differentially influenced by the shift in satellites because 
forest areas are highly correlated with Component 3 while 
other land covers are not. Looking at the annual profiles of 
percent forest cover (as defined by The Institute of Geogra- 
phy et al. (1994)), with an increasing percent of forest cover 
there seems to be clearer evidence of the satellite changeo- 
ver, especially between NOAA-9 and -11 (Figure 3). Profiles of 
arid regions, however, show very little miscalibration in the 
PAL data while there is a clear miscalibration in the GvI data 
(Figure 2). A differential radiometric miscalibration may 
have been created in the PAL data because desert areas were 
used to create algorithms for PAL data recalibration. The au- 
thors suspect that the reason why forests may still show a ra- 
diometric miscalibration is that they react differently than do 
deserts to electromagnetic radiation because deserts reflect 
highly in red and NIR while forests absorb highly in red and 
reflect highly in NIR. Atmospheric conditions are also differ- 
ent over forests than over desert regions. Therefore, it is pos- 
sible that the algorithm written for desert reflectance might 
not completely remove the problem of sensor degradation for 
all land-cover types. However, it is noted that the scale of ra- 
diometric miscalibration found in forests has been reduced 
in the PAL data relative to the GVI data, though not removed 
as in arid land covers. Further investigation in this area 
needs to be undertaken. 

Spatial Mlsregistration for PAL Data 
Spacial misregistration, although noted in the literature (Go- 
ward et al., 1993), is not often considered a major problem 
with the GVI and PAL data. However, this study shows that it 
might be an important problem when analyzing land-cover 
change over time. Component 2 of the PAL data produced an 
unusual image and loadings. The loadings for Component 2 
are an upside down "U" shape with low values in the early 
1980s and 1990s but with high values in the mid 1980s (Fig- 
ure lb). The image for Component 2 shows that both posi- 
tively and negatively correlated areas are quite widespread in 
China without clear segregation as found in the first compo- 
nent and all of the other components (Plate 1). Not only are 
they widely distributed, but many of the positive and negative 
pixels are seen next to each other, especially in mountainous 
areas. An initial evaluation suggested that this component was 
showing signs of the 1986187 ENS0 event, or another climatic 
event which caused a major shift in wind patterns and asso- 
ciated precipitation, thus changing growth characteristics on 
different sides of the mountains. Analysis into the climate of 
China during the 1980s did not reveal this kind of weather 
pattern (Ding, 1994). GVI Component 4 showed a similar pat- 
tern (Figure lb) and indicates a potential misregistration of 
the data. The GVI loadings have a clear break at the points of 
satellite change (1984-1985, 1988-1989), and the loadings 
for NOAA-7 and NOAA-11 are similar throughout their tenure, 
with the variation primarily coming from the loadings for 
NOAA-9, indicating that there might be some form of misre- 
gistration for NOAA-9 relative to NOAA-7 and NOAA-11. The 
breaks in PAL Component 2 (1985-1986,1987-1988-1989) 
are not as clearly associated with the satellite switches, and 
thus it is possible that a calibration formula used in the PAL 
data smoothed the misregistration problem instead of remov- 
ing it; thus, the data from NOAA-7 and -11 are skewed by the 
NOAA-9 data. 

Further analysis into the component image found that 
not only were mountainous areas exhibiting this effect, but 
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TABLE 2. ANALYSIS OF MISREGISTRATION THROUGH PAL PIXEL VALUES IN  LAKE K H A N K A ~  

NOAA-7 NOAA-9 NOAA-11 

1982 1985 1989 

1988 1992 
160 160 154 155 162 160 152 157 
164 161 152 155 153 153 152 152 
154 154 152 152 135 129 125 124 

'Bold italic numbers are values below 140, representing general lake values for scaled NDVI. 
The numbers in the table are the raw pixel values of scaled NDW for the Lake Khanka region. 
The bottom line of each year is in an unmasked portion of the lake. 

so were lake shores, river valleys, and oases; thus, this 
change could not be explained by the hypothesis of wind1 
precipitation change. To investigate the possibility of spatial 
misregistration, four lake areas (Khanka, Hongze, Tai, and 
Poyang) were intensively analyzed. Visually inspecting the 
images and quantitatively reviewing the raw pixel values, it 
is evident that there is a shift in pixel values. The shift in 
values coincides closely with the patterns created in the 
loadings where values for NOAA-9 are clearly different from 
those of NOAA-7 and -11, especially for the GVI data. Scaled 
NDVI lake values tend to be in the 120s and low 130s while 
lake shore vegetation tend to be in the 140s or higher; thus, 
the shifting of values between the 120s and the 140s indi- 
cates the shifting of pixels due to a spatial misregistration. 

Although most lake pixels have been masked out in the PAL 
data, there were some unmasked pixels found in China. Ta- 
ble 2 shows pixel values near Lake Khanka (Heilongjiang) for 
each of the PAL annual averages from 1982 to 1992. The ta- 
ble shows NOAA-7 lake value pixels (120s) shifting to vegeta- 
tion values (140s) for NOAA-9 and back to lake values later in 
NOAA-11 in a fashion similar to the loadings. Three pixels 
near Lake Khanka (Table 3) were selected to investigate the 
potential influence of the misregistration on pixel anomaly 
values (annual average minus the 11-year average). Of the 
three pixels, pixel 1 was a lake-shore pixel (extreme case), 
pixel 2 was an interior forest pixel, a milder case, and pixel 
3 was the same as pixel 2, except that the values were artifi- 
cially shifted with the misregistration (creating a situation 
with a minimum of spatial misregistration). The shifting val- 
ues for pixel 3 were estimated based on the loadings for 
Component 2. Pixel 1 had an anomaly range four times 
greater than pixel 3, and pixel 2 had more than a two-fold 
increase over pixel 3. The positive and negative anomalies 
for pixels 1 and 2 show the general changes between satel- 
lites while pixel 3 does not. A similar analysis of Lake 
Hongze in Jiangsu province also clearly shows this form of 
spatial misregistration. Figure 4 shows a shift in NDVI (pri- 
marily a southward movement of pixels) for 1986 through 
1988 relative to 1982 through 1985 and 1989 through 1992, 
which the loadings of Component 2 show. This shift is par- 
ticularly clear for the central portion of the image. This anal- 
ysis indicates that Component 2 is potentially showing a 
spatial misregistration of the data at the pixel level. It also 
shows that changes in the spatial registration of pixels can 
create a large change in values, especially for pixels along 
the border between different land-cover types. This is why 
mountainous areas along with river valleys, oases, and lake 
shores were prominent in Component 2. The pixels in Com- 
ponent 2 are quite widespread throughout China and not 
congregated as in the other components, especially for the 
highest and lowest correlated pixels (Plate 1). 

TABLE 3. LAKE KHANKA PAL PIXEL VARIATION 

Pixel 1' Pixel Z2 Pixel 3 

Year Value3 Anomaly4 Value Anomaly Value Anomaly 

1982 123 -13.5 156 -3.5 156 3 
1983 123 -13.5 153 -6.5 153 0 
1984 125 -11.5 154 -5.5 154 1 
1985 144 7.5 159 -0.5 159 6 
1986 154 17.5 167 7.5 154 1 
1987 153 16.5 163 3.5 153 0 
1988 152 15.5 164 4.5 154 1 
1989 138 1.5 164 4.5 150 -3 
1990 129 -7.5 162 2.5 148 -5 
1991 137 0.5 161 1.5 149 -4 
1992 124 -12.5 153 -6.5 153 0 

Average5: 136.5 159.5 153 
Anomalye: 58.5 24 12 

'Pixel 1 is a lake border pixel. 
ZPixels 2 and 3 are the same pixel, an interior forest pixel, but pixel 
3's values shift as the data shifts between satellites as best could be 
determined based on the loadings. 
3These values are raw scaled NDVI values. 
4The anomaly is the difference between the raw NDVI value for the 
year and the average NDVI value over the 11-year period (yearly 
value minus 11-year average). 
SAverage NDvI value for the pixel over the 11-year period. 
eAccumulated variation from the 11-year mean, i.e., sum of the posi- 
tive anomaly values which equal the sum of negative anomaly val- 
ues ? 1. 

Conclusion 
The known sensor problems found in the GVI data are also 
found in the PAL data, though they seem to be diminished as 
the percent of variation, and the eigenvalues for Components 
2 through 4 in the PAL data have decreased relative to the 
GVI data (Figure 1, Table 4). The chronological standardized 
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TABLE 4. PERCENT VARIANCE AND LOADINGS FOR PAL AND GVI ANNUAL AVERAGE CHRONOLOGICAL STANDARDIZED PRINCIPAL COMPONENTS ANALYSIS 

PAL data CMP 1 CMP 2 CMP 3 CMP4 CMP 5 CMP 6 CMP 7 CMP 8 CMP 9 CMP 10 CMP 11 

%Variance 99.94175 0.02088 0.01010 0.00749 0.00355 0.00328 0.00290 0.00266 0.00264 0.00253 0.00224 
Loadings: 
1982 0.99971 -0.01641 -0.00394 -0.00282 -0.00452 -0.00568 -0.00154 -7E-06 0.00154 -0.01293 0.00162 
1983 0.99973 -0.01508 -0.00337 -0.01318 0.00460 -0.00019 -0.01080 -0.00125 0.00331 0.00592 -0.00013 
1984 0.99971 -0.01395 -0.01215 -2.23-05 0.00113 0.00909 0.00833 -0.00830 -4.1E-05 0.00092 0.00078 
1985 0.99974 -0.0072 0.00116 -0.00996 -0.00730 -0.00255 0.00814 0.00928 -0.00066 0.00533 -0.00096 
1986 0.99959 0.02257 6.1E-05 -0.01136 0.00526 -0.00143 0.00116 -0.00240 -0.00774 -0.00346 -0.00668 
1987 0.99967 0.02078 -0.00663 0.00015 8.9E-05 -0.00130 -0.00111 0.00071 -0.00256 0.00128 0.01259 
1988 0.99963 0.02006 -0.01245 0.00782 -0.00692 0.00319 -0.00372 0.00177 0.00733 0.00031 -0.00566 
1989 0.99974 0.00769 0.01664 0.00084 0.00678 -0.00326 0.00527 -0.00221 0.01049 -0.00038 0.00085 
1990 0.99975 -0.00219 0.01940 0.00250 -0.00372 0.01183 -0.00419 0.00230 -0.00347 -0.00229 0.00093 
1991 0.99980 -0.00545 0.00700 0.01110 -0.00631 -0.00858 -0.00153 -0.00755 -0.00488 0.00530 -0.00168 
1992 0.99972 -0.01082 -0.00573 0.01492 0.01091 -0.00120 0.00000 0.00767 -0.00332 0.00000 -0.00165 
- - 

GVI data CMP 1 CMP 2 CMP 3 CMP4 CMP 5 CMP 6 CMP 7 CMP 8 CMP 9 CMP 10 CMP 11 

% Variance 
Loadings: 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 
1991 
1992 

PCA of the annually composited PAL data suggests that the 
problems of spatial rnisregistration and radiometric miscali- 
bration are still problems in the data set in that they are the 
second and third components and therefore are two signifi- 
cant variations observed in China's vegetation between 1982 
and 1992 when analyzed at the annual level. As noted above 
in the Methodology section, an important aspect of the PCA 
procedure is that it arranges its components in a sequential 
fashion from most significant variation to least. 

Each of the problems in the PAL data have differing in- 
fluences on the interpretation of long-term change analysis. 
The effect of spatial misregistration on the interpretation of 
vegetation classification and vegetation change will vary de- 
pending on the scale of the analysis and the homogeneity of 
the land cover being analyzed. In general, the larger the area 
being studied, the less the influence of the spatial misregis- 
tration because other effects will become more influential. 
Spatial misregistration can potentially have a strong effect if 
one is working at the local scale. Perhaps more influential is 
the type of land cover in the area being analyzed. The more 
homogeneous the land cover, the less weight the spatial mis- 
registration will have because there will be fewer variations 
between pixel values; therefore, other effects, such as climate 
change, will be more dramatic. Areas of greater heterogene- 
ity, especially with radically different vegetation types with 
large differences in NDvI values, will be more infiuenced by 
spatial misregistration. Problems will arise because in these 
landscapes many pixels will experience large changes in val- 
ues when spatial misregistration occurs. A large variety of 
land covers stretch over much of China to create a landscape 
of heterogeneity. The result is that China is dominated by 
many pixels of changing values, except for the large western 
arid region. This great heterogeneity found in China may be 
the reason why the problem of spatial rnisregistration ap- 
peared as having such a strong effect in China and may not 
be as important in more homogeneous areas. In the literature 
the spatial misregistration of the GAC data is linked to prob- 

lems of navigation and are seen as being relatively inconsis- 
tent and random (Goward et al., 1993). This study, however, 
shows an aspect of the spatial misregistration problem which 
seems to be related to the mapping of NOAA-9 data relative to 
NOAA-7 and -11. 

The radiometric shift in values between satellites is a 
known problem in the GVI data. Early evaluations of the PAL 
data have suggested that the radiometric miscalibration be- 
tween satellites was corrected because there are no longer 
any large shifts over the arid regions. This study, however, 
suggests that the calibration problem has not been fully fixed 
because shifts still exist over other land covers, especially 
forest covers. Concerning the interpretation of the PAL data, 
this radiometric miscalibration is a difficult problem because 
the effects of the radiometric miscalibration seem to vary de- 
pending on the land-cover type in question with a dispropor- 
tionate effect on forest areas. Desert regions have been used 
to recalibrate the data to remove sensor related problems. Be- 
cause different cover types react differently to red and NIR 
light, the study suggests that the recalibration has been suc- 
cessful for arid regions, but perhaps not as well for other 
cover types. Also important is the fact that initial evaluations 
of the PAL data have found certain regions correctly classi- 
fied; therefore, current users are assuming that the radiomet- 
ric problem has been completely corrected, even though it 
potentially has not been. Preliminary research in Africa also 
indicates that the radiometric problems are found in forested 
areas. The problem of orbital drift, however, was found to be 
successfully minimized in China for arid regions as has been 
found in Africa. 

Despite these problems, the PAL data are still able to pull 
out significant changes which are truly occurring in land 
covers in China and Africa. The scope of this paper does not 
allow a review of the changes which were found to be occur- 
ring using the PAL data for China and Africa (forthcoming 
article). 

686 l u n e  1 9 9 9  PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING 



1982 1983 1984 

1985 1986 1987 

1991 1992 

NDVI 
Lake Mask 

Low High 

Figure 4. A 56-pixel window of the Hongze Lake region in 
Jiangsu Province for annual average PAL data for 1982 
through 1992. The two prominent black squares are lake 
masks while the grey pixels are scaled NDVI ranging from 
120 (darkest grey) to 1 9 1  (lightest grey). The low NDVI 
pixels near the center of the window appear to shift 
downward in 1986 to a new position for 1986, 1987, 
and 1988 with an upward transition in 1989, and return- 
ing to a position in 1990, 1991, and 1992 which is very 
similar to that in 1982, 1983, 1984, and 1985. These 
shifts in pixel values follow the pattern in the loadings for 
PAL Component 2. 
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