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Abstract 
Different measures of spatial variability [MSV) calculated 
from several estimators of the variogmm function are used 
for lithologic discrimination in the framework of digital im- 
age classification. These measures are calculated in a local 
context using moving windows, which characterize the spa- 
tial variability of the radiometric data and represent textural 
indices to be used in image classification. Before applying 
this methodology, a spectral enhancement of the main geo- 
logical features of the image by principal component analy- 
sis [PCA) has been necessary. The variographic analysis of 
the selected pcs in the training areas has shown important 
differences in the spatial behavior between lithologic classes. 
The MSv assessment was carried out by discriminant analy- 
sis in the training areas and supervised classiflcation of the 
Landsat TM image. The results have shown that the use of 
TM radiometric data together with MSV improves the overall 
accuracy of the lithologic discrimination. 

Introduction 
Digital satellite imagery provides abundant multispectral in- 
formation characterizing the interaction of electromagnetic 
radiation with terrestrial surface materials. This radiometric 
information is expressed by digital numbers that present spa- 
tial and temporal characteristics that usefully complement 
the study of natural resources. 

In satellite image processing, digital classification is an 
important step to automatically categorize all the pixels in an 
image into land-cover classes or themes. In practice, the clas- 
sical mathematical algorithms of supervised and non-super- 
vised classification, mainly based on the application of 
pixel-by-pixel strategies, do not consider the spectral de- 
pendence existing between a pixel and its neighbors, i.e., 
spatial correlation. Therefore, the results obtained from 
pixel-by-pixel classifiers could be improved by taking into 
account additional information on the spatial autocorrelation 
of the digital numbers, jointly with the spectral data in the 
same classification strategy (Swain et a]., 1979). This im- 
provement would arise as a consequence of the hypothesis 
that a pixel is not independent of its neighbors, and that this 
dependence can be quantified and incorporated into the clas- 
sifier. 

The autocorrelation or variability between pixels, which 
is related to the textural aspects of the image, can be charac- 
terized through spatial analysis of radiometric data (Abarca, 
1997). Texture refers to the apparent roughness or local vari- 
ability of the pixels, which is analyzed in practice by means 
of parameters that consider the spatial variation of the digital 
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numbers, which can be obtained by considering either the 
whole image or by operating in a local moving window. 
Some of the most common textural descriptors are based on 
local statistical parameters (Sun and Qin, 1993), entropy 
(Haralick and Shanmugham, 1974), fractal dimension (Clarke, 
1986), measures of the matrix of co-occurrence (Carlson and 
Ebel, 1995), and recent techniques that have involved the 
use of geostatistical parameters deduced from the variogram 
function (Carr, 1996; Lark, 1996). 

This paper is intended to analyze the spatial dependence 
of radiometric data by geostatistical methods and include it 
in the classification algorithms. For this purpose, the digital 
number (DN) is interpreted as a regionalized variable (Math- 
eron, 1965; Curran, 1988; Woodcock et al., 1988), character- 
ized by structural and random aspects, quantified by the 
variogram function. In our approach, the variogram calcula- 
tion is made in a neighborhood using a moving window, en- 
abling us to quantify the spatial variability of radiometric 
data at this local level. The experimental value of this func- 
tion at a specific lag of distance h (in pixels) is assigned to 
the central pixel of the window, resulting in a geostatistical 
measure regarding the local textural character of the image. 
This measure represents a new variable to be used within 
the classification strategy. 

This geostatistical methodology based on the analysis of 
the spatial dependence of the radiometry has been used to 
evaluate a set of measures of spatial variability (MSV) consid- 
ering local textural indices. These measures are derived from 
the calculation of different geostatistical estimators of the 
variogram function, which are applied to the lithologic dis- 
crimination and classification of Landsat TM images. 

Study Area and Satellite Images 
The image used to illustrate the practical aspect of this study 
covers an area located in the southeast of Spain in the region 
of Cabo de Gata, province of Almeria, Spain (Figure 1). Min- 
eral exploration studies have traditionally been carried out in 
this area to map hydrothermal gold deposits, and, due to its 
environmental importance and unique landscapes, the region 
has been declared a Natural Park. 

The geomorphologic modeling of the region is condi- 
tioned by the volcanic nature of the outcropping materials as 
well as by the typical plains of quaternary deposits associ- 
ated with the erosion of the volcanic rocks in a semiarid cli- 
mate. In a geological context, the main outcrops are neogene 
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Natural Park limits 

Figure 1. Location of the study area in southeastern 
Spain. 

volcanic materials of chalco-alkaline character, andesite, dac- 
ite, and rhyolite. These materials were subsequently affected 
by hydrothermal alteration processes intensified by the pres- 
ence of fractures and fissures, with which important mineral- 
izations of gold are associated (Arribas et al., 1989). These 
predominant volcanic rocks sometimes present mineralogical 
compositions that are relatively alike, though the structural 
and textural aspects of their formation processes such as sub- 
volcanic intrusions, ignimbrites, flows of volcanic material, 
domes, etc., are rather different. There also exist smaller 
quantities of important outcrops of tertiary materials repre- 
sented by reef limestone deposits. Table 1 summarizes the 
main rocks outcropping in the study area, with their most 
noteworthy structural characteristics. 

For this application, one Landsat TM subscene (07 July 
1991) was selected in which a test area of 55 km2 was taken 
(230 by 260 pixels) and was co-registered using the nearest 
neighbor method so as not to change the spatial autocorrela- 
tion structure of the digital numbers. No radiometric correc- 

TABLE 1. CHARACTERISTICS OF PREDOMINANT LITHOLOGIES I N  THE STUDY AREA 

Lithology Main characteristics 

Amphibole dacite Domes of volcanic material outcrop- 
ping as massive rocks. 

Amphibole andesite Subvolcanic intrusions formed by au- 
toclastic breccias. 

Rhyolite Ignimbrites with variable texture. 
Altered rhyolite and dacite Domes formed by altered and frac- 

tured rocks. 
Reef limestone Reef limestone and bioclastic calcar- 

enite. Miocene. 
Quaternary deposits Clays, sands, and conglomerates. 

tions were applied to the image because we preferred to re- 
tain the structure of the original data. This aspect does not 
represent any drawback because this methodology can also 
be applied to radiance or reflectivity data. 

Methodology 
The Varlogram Concept 
From a geostatistical point of view, the digital number of a 
satellite image is considered to be a regionalized variable 
(Curran, 1988; Atkinson, 1993; Chica-Olmo and Abarca, 
1997). This variable is interpreted as a function DN(X) that 
provides the radiometric digital number DN of a pixel x lo- 
cated by its geographic coordinates or by its row and column 
in the image. The regionalized variable DN(X) behaves like a 
random variable, and "an image" may therefore be consid- 
ered as a particular realization of the random function DN(X), 
which is composed of a set of random variables [DN(x,), 
DN(x,), ..., DN(x,)] located at the pixels x,, x,, ..., x,. 

The intrinsic hypothesis leads to the semivariogram 
function concept, in practice also called variogram, which is 
expressed as (Matheron, 1971). 

where y(h) represents half of the mathematical expectation of 
the quadratic increments of pixel-pair values at a distance h. 
So, it is deduced that y(h) is a vectorial function depending 
on the modulus and the angle of the distance vector h be- 
tween the pixels x+h and x. 

In image processing, the variogram is considered a pow- 
erful tool to analyze the regionalization of the radiometric 
data (Ramstein and Raffy, 1989). This term refers to the spa- 
tial variability characteristics of these data, and their study is 
usually based on the calculation, interpretation, and model- 
ing of the experimental variogram. Variographic analysis is 
important because it provides valuable information about the 
variability of the radiometric data of the image at both a 
global and a local scale, and because it represents a measure 
of the textural features of the image used for lithologic dis- 
crimination by means of supervised classification. 

Considering the raster structure of satellite imagery, the 
computing of the variogram does not represent any major 
difficulty, except that computing time could be lengthy de- 
pending on the size of the image. The interpretation of the 
variograms of the radiometric data is based on the knowl- 
edge of the lithologic aspects of the area, enabling us to de- 
duce spatial variability parameters such as the range of the 
variogram, which is defined as the distance at which the spa- 
tial autocorrelation between digital data disappears; the be- 
havior at the origin of the variogram, providing information 
on the degree of continuity of the digital numbers &om small 
scale radiometric variations (nugget effect); and the spatial 
anisotropy, revealing different directional behavior in the 
distribution of the radiometric values. Furthermore, it is 
usual for the radiometric data to present different variability 
scales such that the overall variogram is defined by a sum of 
several elemental structures associated with different varia- 
tion scales of the radiometric data. 

The variogram modeling is required to fit the experimen- 
tal variogram to a theoretical model. Journel and Huijbregts 
(1978) and McBratney and Webster (1986) provided a list of 
the most commonly used variogram models for variographic 
fitting: spherical, Gaussian, exponential, etc., but this process 
is only required in geostatistical applications in satellite im- 
age processing based on spatial estimation or conditional 
simulation (Atkinson et al., 1994; Dungan et al., 1994). 
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Measures of Spatial Variability (MSV) 
The methodology used for the lithologic discrimination of 
Landsat TM images is based on the calculation of geostatisti- 
cal measures of radiometric local spatial variability derived 
from the variogram function. In addition to Equation 1, rep- 
resenting the classical expression of the direct variogram, 
other expressions for estimators of spatial variability have 
also been proposed involving both the uni- and multivariate 
cases. In this study, the following five functions are consid- 
ered: direct variogram, madogram, rodogram (Deutsch and 
Journel, 1992; Cressie, 1994) in the univariate case, and cross 
and pseudo-cross variograms (Wackernagel, 1995) in the 
multivariate one. All these experimental functions inform us 
about the local spatial variability of the radiometric data and 
represent a textural descriptor of the image that can be used 
for discrimination or classification purposes. The following 
spatial variability estimators have been used: 

Direct Variogram (V) 
The statistical inference of the direct variogram is obtained 
from the estimator of Equation 1: i.e., 

where n(h) is the number of distant pairs h, dn (.) are the 
digital values of pixels xi and xi + h and k is the sensor 
band. 

Madogram (M) 
The Madogram is similar to the direct variogram but, instead 
of squaring differences, the absolute difference is taken. This 
function is equivalent to the first-order variogram proposed 
by Matheron (1982): i.e., 

Rodogram (R) 
The Rodogram is also similar to the direct variogram, but 
this considers the square root of the absolute difference in- 
stead of squaring difference~: i.e., 

Cross Variogram (CV) 
The cross variogram quantifies the joint spatial variability 
(cross correlation) between two bands. It is defined as half of 
the average product of the h-increments relative to the radio- 
metric bands j,k: i.e., 

Pseudo-Cross Variogram (PV] 
The pseudo-cross variogram considers the variance of the 
cross increments instead of the covariance of the direct in- 
crements as above: i.e., 

For the application presented in this paper, the experi- 
mental computation of these measures of spatial variability 

was performed by calculating them within a neighborhood 
using moving windows of 7 by 7 pixels. 

Selection of the Study Variables 
The application of the above defined variograms has been 
done not on the original TM data but on variables trans- 
formed as below. For this purpose, two new variables were 
obtained from the radiometric information of the TM bands 
using principal component analysis (PCA) to characterize and 
highlight the spectral properties of the studied lithologic 
classes. These variables were obtained from the Feature Ori- 
ented Principal Component Selection (FPCS) method, pro- 
posed by Crosta and McMoore (1989) and later applied to 
hydrothermal alteration mapping by Loughlin (1991). This 
method is based on the detailed examination of the weights 
of the eigenvectors to determine the principal components 
best related to the theoretical spectral signatures of the stud- 
ied lithologies. Specifically, we selected the two principal 
components related to the presence of two outstanding geo- 
logical features of the volcanic rocks, iron oxides, and hy- 
droxyl-bearing minerals [hydrothermal alteration). 

Table 2 gives the eigenvector loadings obtained by PCA 
from the covariance matrix of the original image. PCI pres- 
ents similar positive weights for all the bands, except the 
TM5 band which presents a greater weight due to its greater 
variance depending on the gain and offset parameters of the 
sensor. This component is related to the albedo of the image, 
a factor which is responsible for the high correlation between 
the multispectral channels (Loughlin, 1991). The remaining 
PCs therefore account for the spectral differences between 
bands: PC2 represents the differences between the visible and 
the infrared, with high values corresponding to a high infra- 
red reflectance; and low ones related to a high visible reflec- 
tance; PC3 provides information on iron oxides with a high 
weight in TM1 and a low one in TM3; and PC4 presents a high 
weight in the TM5 band and a low one for TM7, which sug- 
gests hydroxyl-bearing minerals. Summarizing all of the 
above, we can state that iron oxides and hydroxyls are 
mapped into P C ~  and P C ~ ,  respectively. 

The decision process for of the above six-band PCAs is a 
long and complex one because analysis of all the TM bands 
does not unequivocally separate the iron oxides and the hy- 
droxyls into a simple PC image. As observed by Crosta and 
McMoore (1989), if the number of input channels is reduced, 
the chance of defining a unique PC for a specific mineral 
class will be increased. Consequently, we have decided to 
select two groups of bands representing each of the above- 
mentioned geological factors. In this sense, the TM1, TM3, 
TM4, and TM5 bands were chosen for the iron oxide analysis 
(Group I), and the TM3, TM4, TM5, and TM7 bands for the 
analysis of hydroxyl-bearing minerals (Group 2). 

In Group 1, the spectral contrast of the iron oxides is in- 
creased by omitting one mid-infrared band, which is sensi- 
tive to the presence of alteration minerals. Similarly, in order 
to highlight the alteration minerals, Group 2 omits two bands 
from the visible, i.e., those that demonstrate the presence of 
iron oxides. 
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TABLE 3. EIGENVECTOR LOADINGS OF THE PRINCIPAL COMPONENTS OF THE TWO GROUPS OF TM BANDS 

Group 1: Iron oxide Group 2: Hydroxyl 

PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 

TM1 0.4039 -0.6166 0.6549 -0.1665 TM3 0.4024 -0.6810 0.2769 -0.5455 
TM3 0.4384 -0.3485 -0.4163 0.7162 TM4 0.3690 -0.4818 -0.4928 0.6236 
TM4 0.3941 -0.1881 -0.5923 -0.6771 TM5 0.7312 0.5267 -0.3272 -0.2843 
TM5 0.6995 0.6804 0.2165 0.0288 TM7 0.4089 0.1631 0.7572 0.4824 

Table 3 gives the results of the PCAs for bands of the two 
groups, showing the weights of the eigenvectors obtained for 
each component. The methodology for iron oxide mapping 
by PCA is to examine the eigenvector loadings for the TMI 
and TM3 bands; such loadings will be moderate to strong for 
both bands; and their signs will be reversed, which, indeed, 
is observed in PC3 of Group 1. The rule for hydroxyl map- 
ping is similar to the previous one, i.e., the magnitude of ei- 
genvector loadings for TM5 and TM7 should be moderate to 
strong and opposite in sign, which is observed in P C ~  of 
Group 2. 

As a conclusion to this analysis, the P C ~ S  of each group 
of bands were chosen due to their significant relationship 
with the outcropping lithologies in the study area. Thus, be- 
sides the TM radiometric information, these two new varia- 
bles are available, and can then be spatially analyzed by 
means of the methodology described. 

Application of MSV for Lithologic Discrimination 
Lacaze et al. (1994) have shown that the variogram function 
can be used for quantifying spatial variability of the radio- 
metric data, revealing that each class or object in the image 
has a different spatial variability pattern. From one point of 
view, this pattern can be considered a "spatial variability sig- 
nature" of the class. To show this previous aspect before cal- 
culating the M ~ V ,  different training areas for the six lithologies 
were variographically analyzed using the two selected ~ ~ 3 s .  
Experimental computation was performed by a computer 
program developed in our laboratory which allows us to de- 
fine parameters such as direction, maximum distance, lag 
spacing, variogram type, and even variogram fitting. Figure 2 
represents the omnidirectional variogram for the PC3s of the 
six lithologies at a lag spacing of one pixel (30 m). In general 
terms, the variograms reveal different spatial behavior of the 
lithologies with respect to their sill and range parameters: 
The ranges represent the spatial correlation of the variables 
and vary from low values, less than 100 m in the reef lime- 

stone, to high ones, around 300 m in the case of the amphi- 
bole dacite. The sill (variance) presents marked differences 
between the lithologic classes: the reef limestone and amphi- 
bole andesite present low sills, whereas the amphibole dacite 
and rhyoIite are more heterogeneous and present a greater 
variance, although spatially they are a little more continuous. 

These differences observed in the spatial variability pat- 
terns of the lithologic classes, some of which have a similar 
composition, are not only due to the mineralogy but also to 
the structural and textural aspects related to the processes of 
their formation. Thus, for example, the amphibole dacite out- 
cropping as massive rocks (domes) show a greater spatial 
correlation (range) than do the amphibole andesite formed by 
autoclastic breccia of little extent. Also noteworthy is the 
similarity, in relative terms, of the variograms of the two 
PC%, probably due to the high correlation between them. 

These results show that the spatial variability of the ra- 
diometric data quantified by the variogram function can be 
used for lithologic discrimination purposes. 

MSV Calculation and Dlscrlmlnant Analysis 
In order to add the spatial variability infonnation to the clas- 
sification strategy, the geostatistical measures of spatial vari- 
ability were calculated on the P C ~ S  using a moving window 
of 7 by 7 pixels and assigning the M ~ V  values to the middle 
pixel. This window size gave the best results in the tests per- 
formed. The calculated uni- and multivariate M ~ V  were direct 
variogram (v), madogram (M), rodogram (R), cross variogram 
(cv), and pseudo-cross variogram (PV), and their values were 
used only for the lag spacing of one pixel (30 m) as the aver- 
age of the respective functions for the main directions (N-s, 
E-W, N45E, and ~ 4 5 ~ ) .  Although in this case study a unique 
lag spacing was selected, which shows the best separability 
between classes, the method could also be applied by adding 
other values for different lag spacings, whenever the size of 
the window allows it. 

As a result of this process, eight new variables were ob- 

PC3 (Group 2) 

Figure 2. Omnidirectional experimental direct variograms in the training 
areas: (a) Amphibole dacite, (b) Rhyolite, (c) Altered rhyolite and dacite, 
(d) Reef limestone, (e) Amphibole andesite, and (f) Quaternary deposits. 
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TABLE 4. RESULTS OF DISCRIMINANT ANALYSIS IN THE LITHOLOGIC CLASSIFICATION: TM (THEMATIC MAPPER BANDS), V (VARIOGRAM), M (MADOGRAM), R (RODOGRAM), 
CV (CROSS VARIOGRAM), PV (PSEUDOCROSS VARIOGRAM) AND o2 (VARIANCE) 

Combination o f  variables # variables overall accuracy (%) Combination o f  variables # var iab les  overaraccuracy (%) 

tained: six univariate measures, three for each P c ~ ,  and two 
multivariate ones corresponding to the two cross variograms 
of the PC%. This may seem a high number of complementary 
variables and, indeed, they probably contain redundant infor- 
mation. To select the most relevant measures of variability, 
discriminant analysis was performed on a set of 41 training 
areas representing the six lithologies. For each pixel of these 
training areas, 16 variables were available: the six TM bands, 
the eight calculated M S ~ ,  and the two values of the statistical 
variance (&) calculated on the P C ~ S  in the moving windows. 
The use of the variance instead of the standard deviation is 
because the neostatistical expressions are mainly quadratic. 

~ifferenr combinations bf the above variabieH were stud- 
ied to obtain the classification functions by standard discri- 
minant analysis using the Statistics program (Statsoft, 1993). 
As the "truth," it considered sampled ground points located 
in the training areas. The results are summarized in Table 4, 
which includes the percentages of correctly classified pixels 
for the most significant combinations of the variables. Two 
important points are evident: first, the joint use of spectral 
and spatial information (TM bands and MSv, respectively) 
leads to a noteworthy increment in the rates of successful 
classifications; and second, the incorporation of the multivar- 
iate measures (CV and PV) plays an important role in improv- 
ing the results, equivalent to those obtained from the univar- 
iate measures (v, M and R). It might also be mentioned that 
the redundancy of information provided by the madogram 
and rodogram is due to the similarity of these functions. An- 
other consideration is that the local variance also contributes 
to improving the results, especially when it is used jointly 
with the univariate measures of variability. 

Supervised Classlflcatlon: Maximum Likelihood Declsh Rule 
Along the lines of the results of discriminant analysis, the 
following combination of variables was chosen to classify the 
Landsat TM image: the six TM bands and six MSV, the direct 
variogram and madogram for each P C ~ ,  and the cross and 
pseudo-cross variograms between PC%. 

TABLE 5. RESULTS OF THE SUPERV~SED CLASSIFICATION IN THE TRAINING AREAS 
SHOWING THE PERCENTAGE OF PIXELS CORRECTLY CLASSIRED FROM JUST TM 
DATA (TM) AND USING BOTH TM DATA AND THE BEST COMBINATION OF THE 

MEASURES OF SPATIAL VARIABILITY (TM+MSV) 

overall overall 
# accuracy accuracy 

pixels w i t h  w i t h  improve- 
b y  TM TM+MSV ment  

Lithology classes (%) (%I (%I 
Amphibole dacite 309 72.2 94.8 3 1 
Amphibole andesite 190 56.3 85.3 51 
Rhyolite 116 87.1 90.5 4 
Altered rhyol i te and dacite 150 87.3 99.3 14 
Reef limestone 475 77.1 90.7 18 
Quaternary deposits 570 77.4 91.9 19 
Total 1810 75.6 91.9 21 

In the study area, 41 training areas of similar size, cover- 
ing 3 percent of the total surface area, were selected to define 
the spectral signature of the lithologies in which the ground 
truth was known. We compared the classification results ob- 
tained from a classical procedure, using only TM data, with 
the results derived from the proposed methodology, using 
jointly TM and MSV data. In both cases the maximum-likeli- 
hood decision rule was employed, expressed in the following 
equation (Erdas, 1997): 

D = ln(aJ - [0.5 In( I Cov, l )I 
- [0.5(X - MJT (Cov;l)(X - M,)] (7) 

where D is the weighted distance of a class, c is a particular 
class, X is the vector of measures of the candidate pixel, M, is 
the mean of samples of class c, a, is the a priori probability 
that a pixel candidate will belong to class c, Cov, is the matrix 
of covariance of the pixels in the sample from class c, I Cov, I 
is the determinant of Cov,, Covyl is the inverse of Cov,, In is 
the natural logarithm, and T is the transposition function. 

Table 5 gives the percentages of pixels correctly classi- 
fied in the training areas for both classification cases. The 
increment in the success rate is very acceptable, as was fore- 
seeable from the results of discriminant analysis. The im- 
provements in the results of the classification vary depending 
on the lithologic class being considered. The improvements 
ranged from 51 percent for amphibole andesite to only 4 per- 
cent for the rhyolite, giving an average increment of around 
20 percent. The extreme values are surprising, and we sup- 
pose they are due to the physical and textural characteristics 
of these outcropping rocks. 

It mav be seen from the results obtained in the super- 
vised claskfication incorporating the measures of spatial var- 
iability that not only does the success rate increase but the 
classification also seems more homogeneous (Figure 3). 

Discussion and Conclusions 
Radiometric information from Landsat TM images is often 
used exclusively in digital classification, without considering 
other features of interest such as the spatial autocorrelation 
or variability of pixels within a local context. The use of this 
additional information improves remarkably the classification 
results. In this study, the classification was improved 51 per- 
cent compared by our methodology to the results obtained 
by classical methods. 

The presented approach has been applied to lithologic 
mapping, from which the spectral enhancement of the main 
geological features of the outcropping materials-iron oxides 
and hydroxyl-bearing minerals-must be performed previ- 
ously. To achieve this, the FPcS method was used to select 
one principal component representative of each of these geo- 
logical features ( P C ~  in both cases). Variographic analysis 
performed in the training areas on these two components 
showed differences in the radiometric spatial patterns of the 
lithologies, even when some of them presented a similar pet- 
rological composition, due to the influence of the structural 
and textural features of the outcropping. 
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Figure 3. Classification images of the Cabo de Gata study area applying the maximum-likelihood decision rule considering (a) 
just the Landsat TM multispectral information and (b) Landsat TM data and the best combination of the measures of spatial 
variability (variogram, madogram, cross variogram, and pseudocross variogram) calculated within a moving window of 7 by 7 
pixels for the lag spacing of one pixel. The black class corresponds to misclassified pixels and non classified lithologies. 

The proposed measures of spatial variability are based 
on different uni- and multivariate estimators of the variogram 
function, and were calculated in a neighborhood over the 
P C ~ S  at the specific lag spacing of one pixel. Both window 
size and lag spacing were experimentally checked and se- 
lected for this specific application; in particular, we note that 
other lags can be used separately or jointly. 

The evaluation of these geostatistical measures was car- 
ried out by discriminant analysis in the training areas. From 
this analysis, it was verified that the joint use of TM radio- 
metric information and MSV improves the results, in agree- 
ment with established hypotheses. The best lithologic 
discrimination was obtained using jointly the TM data, the 
variogram and madogram for each PC3, and the cross and 
pseudo-cross variograms between these principal compo- 
nents, reaching an average increment in accuracy of around 
20 percent. The improvement in the visual aspect concerning 
the class spatial homogeneity was also noteworthy. 

We can conclude that measures of spatial variability 
should be considered for lithologic discrimination purposes, 
as they provide useful context information and they improve 
considerably the results obtained by the classical methodolo- 
gies. 
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