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Abstract 
Known geometric relationships between points, lines, and 
planes on a three-dimensional (30) object can be used as 
constraints in the camera calibration process to improve the 
accuracy of estimates. Ten constraints have been constructed 
and tested numerically. The accuracy improvement has been 
evaluated theoretically and empirically by comparing the 
variances and traces of the covariance matrix of the 30 
points obtained from the camera calibration without con- 
straints with those derived from the process with constraints. 
It is not uncommon to observe an order of magnitude im- 
provement in the variances of the estimates for problems 
having multiple constraints. Statistical tests comparing the 
theoretical prediction with the empirical observed data vali- 
date the approach. 

Introduction 
Camera calibration is a traditional topic in photogrammetry 
and computer vision. Originally, the camera calibration tech- 
nique was used for determining the interior orientation ele- 
ments (focal length, principal point, fidicial center, and 
radial distortion) (Karara, 1989). This concept has been gen- 
eralized by considering the exterior orientation elements (ro- 
tation and translation) and the three-dimensional ( 3 ~ )  points 
as parameters to be estimated in the process. Because the 
parameters of interior orientation and some additional param- 
eters are computed for every adjustment, as long as the photo- 
grarnmetrist checks to see that the magnitude of these 
parameters is "reasonable," no lasting importance need be at- 
tached to them. It is usually the results for the object point co- 
ordinates and their error estimates that are of concern (Karara, 
1989). The importance of camera calibration is not just for 
making accurate 3D measurement, but also for helping a 3D 
model-based vision system to model the performance or capa- 
bility of any particular sensing strategy (Tsai, 1989). Features 
in an image - points, edges (or lines), and areas - are useful 
geometric information that can be employed for the camera 
calibration (Tommaselli and Tozzi, 1996; Karara, 1989; 
Echigo, 1990; Liu et al., 1990). Some of these features may 
corres~ond to three-dimensional entities having a known rela- 
tion bkween them. The known relation can beused as a con- 
straint to improve the accuracy of the estimated 3D points. 
The major contributions of this paper are (1) the use of ten 
constraints which include the basic geometric relationships 
between points, lines, and planes on a 3D object; (2) the devel- 
opment of a method for the evaluation of the efficiency of the 
constraints; and (3) the proper handling of the "zero 
determinant" problem encountered in propagating the vari- 
ances using the method discussed by Haralick (1993). 
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Camera Calibration with Constraints 
The Camera Calibration with Constraints performs a simulta- 
neous estimation of the parameters of multiple cameras and 
some locations of the 3D passpoints under some specific con- 
straints (Thornton, 1997; Huang and Haralick, 1997). For 
each image, there are 11 camera parameters consisting of the 
focal length, coordinates of the principal point, coordinates 
of the perspective center, the rotation angles, and a scale fac- 
tor. Three-dimensional points whose coordinates are un- 
known are called passpoints. Three-dimensional points with 
known coordinates are called control points. Their coordi- 
nates are fixed in the camera calibration process. Two-di- 
mensional (ZD) points are the image points corresponding to 
the 3D points. The coordinates of the 2D points are the noisy 
observed values. Let @ denote the unknown vector 

where O stands for the vector of the camera parameters and 
X, denotes the vector of the coordinates of the passpoints. 
Let O* be the vector of the approximate values of the camera 
parameters and A 0  be the vector of corrections to the ap- 
proximate values of the camera parameters, X,* be the vector 
of the approximate values of the coordinates of the pass- 
points, and AX, be the vector of corrections to the approxi- 
mate values of the coordinates of the passpoints. The esti- 
mate of the unknown vector @ can be represented as follows: 

where @* and A@ denote the vector of the approximate val- 
ues of the unknown vector and the vector of corrections to 
the approximate values of the unknown, respectively. Let U 
be the observation matrix consisting of the coordinates of the 
2D image points and W be the weight matrix of observations. 
Assuming that the noise is normally distributed, the param- 
eter estimation problem is to determine A@ to minimize 

such that S(@* + A@) = 0. Here, S(@* + A@) = 0 is the con- 
straint equation. 

Assuming that the approximate values (a* and X,X ) are 
available, in order to solve the non-linear least-squares prob- 
lem, it is sufficient to linearize the objective function and 
linearize the constraints about the approximate values. When 
a plane is used to construct a constraint, we should know at 
least three points lying on the plane. These three points can 
be control points or passpoints. Their coordinates or approxi- 
mate coordinates are used for computing the normal vector 
and signed distance of the plane. Similarly, at least two 
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points lying on a line must be known if this line is used for points, ((xi, yi, zi); i = 1,  ..., n ) ,  on the plane. The coplanarity 
forming a constraint. The above assumptions provide suffi- constraint is expressed by 
cient information for establishing each of the ten constraints 
independently. Then, T(@) and S(@) are linearized and ex- a h i  + PAY, + yAz, = hi (4) 
pressed by a first-order Taylor series expansion, respectively: where hj = + pyi + yzi + d). The plane vector 
i.e., (a,  p, y)T and the signed distance d are calculated using the 

approximate coordinates of the n passpoints. The number of 
T(@) = TI@*) + 2 A@ = T(@*) + SA@ constraint equations is equal to the number of points used in 

the constraint. 
( 2 )  Collinearity is a constraint for the case in which the pass- 
points must lie on a line. Suppose that we have n pass- 
points, {(xi, yj, z,); i = 1, ..., n ) ,  on the line. The collinearity 
constraint equation is written as 

and 

where dT(@)ld@,. and dS(@)ld@,. are the first-order deriva- 
tives of T(@) and S(@) with respect to @ at a*, respectively. 

According to the mathematical model and solution of 
the standard photogrammetric block bundle adjustment pre- ,d hL is computed by 
sented by Brown et al. (1964) and Brown (1968) and consid- 
ering the constraint equation, the normal equation for the zal1 - (a2l + a31) bx - x, 
linearized problem is 

2a13 - (023 + ~ 3 3 )  bz - Z~ 

or simply 

NHT A@ 6 0 ) (A*) = (9 
in which 

where A h  is the Lagrange multiplier. Finally, the unknown 
vector A@ is computed by the following equation: 

and the covariance matrix of the unknown is 

where P is the projection matrix. 
This paper concentrates on the 3D point estimation in 

which the camera parameters are regarded as known values 
and the 3D point coordinates are estimated when using zD 
noisy perspective projections. Then the unknown vector A@ 
is reduced to AX, and the normal equation can be simply ex- 
pressed by 

Ten Constraints 
We consider ten geometric constraints: (1)  coplanarity, ( 2 )  
collinearity, (3) line to plane angle, (4)  line to line angle with 
intersection, (5) line to line angle without intersection, (6) 
plane to plane angle with common points, (7) plane to plane 
angle without common points, (8)  distance between points, 
(9) distance between point and plane, and (10) distance be- 
tween point and line. The following gives a brief introduc- 
tion to the mathematical models of the ten constraints. Refer 
to Huang and Haralick (1997) for more information. 
(1) Coplanarity is a constraint for the case in which the pass- 
points must lie on a plane. Suppose that we have n pass- 
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where 

all = 1 - e,e, a,, = 0 - e,e, a,, = 0 - exe, 
a,, = 0 - eyexazz = 1 - eyeyo,, = 0 - eyez 
a,, = 0 - ezex a,, = 0 - e,ey a,, = 1 - e,e, 

The direction cosines (ex, e,, e,) and the reference point (b,, 
by, b,) of the line are calculated using the approximate coor- 
dinates of the n passpoints. The number of constraint equa- 
tions is equal to the number of points used in the constraint. 
(3)  Line to plane angle is for constraining the angle between 
a line and a plane to be equal to a given angle (4). Let two 
points (points 1 and 2 )  lying on the line be unknown points. 
Then the angle constraint is expressed by 

where 

h = s[sin(+) - (ae, + Pey + ye,)]. 

The direction cosines (ex, ey, e,) of the line and the distance s 
between points 1 and 2 are calculated by the approximate 
coordinates (x,, y,, z,), (x,, y,, z,) of the two points. The other 
points are used for calculating the normal vector (a, P, yjT of 
the plane. 
(4)  Line to line angle with intersection is for constraining the 
angle between two intersecting lines to be equal to a given 
angle (4). Let three points be involved in forming the con- 
straint. Referring to Equation 1, the coefficient matrix H of 
this constraint equation is written as 

and the unknown vector AX, is 
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where 

Let 

and 

where the direction cosines (ex,, e,,, e,) and (e,,, e,, e,,) of 
the two lines are computed by the coordinates of the pass- 
points lying on these two lines, respectively, s, and s2 are the 
distances between points 1 and 2 and between points 2 and 
3, respectively. Point 2 is the intersection point. 
(5) Line to line angle without intersection is for constraining 
the angle between two non-intersecting lines to be equal to a 
given angle (4). Let four passpoints be used to form the con- 
straint equation. Each line is determined by two of the four 
points. The constraint equation is 

(7) Plane to plane angle without common points is for con- 
straining the angle between two planes to be equal to a given 
angle (4) in the case that no common points or the common 
points lying on the intersection line are not provided. Let six 
points be used to form the constraint equation and each 
three of them be located on these two planes separately. Let 
three points (points I, 2, and 3) lying on the first plane be 
the unknown points. Then the angle constraint equation is 
expressed as 

where 

where 
and 

(6) Plane to plane angle with common points is for con- 
straining the angle between two intersecting planes with a 
pair of common points to be equal to a given angle (4). Sup- 
pose that four passpoints, {(xi, yi, 2,); i = 1, ..., 4), are used to 
construct the constraint equation. Points 1 and 2 are located 
on the intersection line. The coefficient matrix H of the con- 
straint is 

(8) Distance between points is for constraining the distance 
between two passpoints to be equal to a given distance. Sup- 
pose that s is the distance between points p,(xl, y,, z,), p2(x2, 
y,, z,). Then the constraint equation is 

where 

(9) Distance between point and plane is for constraining the 
distance between a point and a plane to be equal to a given 
distance (s). Assume that point (x,, y,, z,) is the unknown 
point not lying on the plane ax + By + yz + d = 0. The dis- 
tance constraint is expressed as where 

The unknown vector AX, is 
where 

h =  daz+p + ~Z-I(YX,+PY,+ YZ,+ d l .  

and x,, y,, z, are three unknowns in this constraint. The other 
points are used for calculating the normal vector (a, P, y)T 
and distance d of the plane. h = COS(+) - + PP;E + y;yi), 
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(10) Distance between point and line is for constraining the 
distance between a point and a line to be equal to a given 
distance (s). Let point p (not lying on the line) be an un- 
known point and other points be used for computing the 
direction cosines of the line. The constraint equation is 

and 

1 
h = -is2 - ((x - xpy + ( y  - ypy + (Z - zp)2], 2 

where 

x - a  y - b  Z - c  -=-=-= A 
ex e~ ez 

and 

where (a, b, c) are the coordinates of any point located on 
the line. (ex, e, e,) are the direction cosines of the line. 

ing and, correspondingly, the geometry of the photogramrne- 
try should become more reliable. The trace stands for the 
"total accuracy" of the estimates. Its value is equal to the 
sum of the diagonal elements or the eigenvalues of the covar- 
iance matrix. So this evaluation is not related to noise. The 
comparison is implemented in four different aspects: (I) sin- 
gle constraint, (2) a group of the same constraints, (3) a com- 

(I3) bination of different constraints, and (4) an examination of 
the sum of squared residuals. The sum of squared residuals 
will, in general, become larger after adding the constraints to 
the camera calibration because adding a constraint to an esti- 
mate will force the estimate generally to be closer to its true 
value rather than to solve minimizing the unconstrained sum 
of squared residuals. 

The efficiency evaluation of the estimated 3D points is 
based on the comparison of "relative accuracy" (or relative 
variance), which is the ratio between the variance derived 
from the camera calibration with and without constraints. 
The reason we use the relative accuracy as the estimated 
quantity for the comparison is because the evaluation is in- 
dependent of the size of the variances. From Equation 2, the 
relative variance is expressed as 

Updating Algorithm 
The 3D passpoints as unknown points are updated in the 
camera calibration. For any particular constraint, however, 
some passpoints are left fixed and then updated. This is to 
facilitate the iterative computational process. For instance, 
let the approximate coordinates of five passpoints be given, 
in which the last four points lie on a plane. In addition, let 
the distance between the first point and the plane be known. 
Only the Erst point is regarded as an unknown point if ap- 
plying the constmint distance between point and plane to 
these five points. In the iterative process we call the first 
point a constrained point or constrained estimate. The last 
four points are termed non-constrained points or non-con- 
strained estimates because their coordinates are not affected 
by this constraint. The last four passpoints are, however, 
considered as the unknown points if applying the coplanar- 
ity constraint to those points. Therefore, a passpoint may 
play different roles in forming different constraints if it is 
related to more than two constraints. 

Efficiency Evaluation 
The following two methods have been used for evaluating 
the efficiency of the ten constraints: (1) general evaluation 
and (2) specific evaluation. 

General Evaluation 
The efficiency of the constraints has been evaluated by ana- 
lyzing the variances of the 3D passpoints obtained from the 
camera calibration with and without constraints. The covari- 
ance matrix consists of two parts: the unit weight variance 
(the standard deviation of observations) and the covariance 
structure matrix. The first one is also called the scalar factor 
which depends on the accuracy of observations. The second 
one depends on the geometry of the photogrammetry, con- 
sisting of the location of the 3D points, interior orientation el- 
ements, and pose of the camera. This method is based on the 
fact that the structure of the covariance matrices of the 3D 
passpoints should be improved by adding constraints to the 
corresponding passpoints in the camera calibration if the 
mathematical models and the code are correct. In other 
words, the variances and traces of the covariance structure 
matrices should become smalIer than those before constrain- 

Because the coordinates of the 2D image points are measured 
independently, the projection matrix P can be partitioned as 
follows: 

where 

H = (HI H, ... H"), 

and in which n is the number of the unknown points in a 
constraint equation. I ,  w, and Ni, i = 1,2 ,..., n are the 3 by 3 
unit matrices, 3 by 1 vectors, and 3 by 3 symmetric matrices, 
respectively. The relative variance matrix of the ith 3D point 
is expressed by 

and the trace of this variance matrix is equal to 

where Tr denotes the trace. 
Equation 16 and Expression 17  can be used to evaluate 

the theoretical accuracy improvement of each unknown 
point. The larger the value of the second term of Equation 
16, the better the accuracy improvement that can be 
achieved. As far as the effect of a constraint on the accuracy 
improvement is concerned, the accuracy improvement is 
mainly determined by k and Hi because Ni is not related to 
the constraints. 

H,N;'R, i = 1,2, ..., n are positive because the matrices 
Ny', i = 1,2, ..., n are positive definite if the vectors are 
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TABLE 1. RELATIVE VARIANCE: SINGLE CONSTRAINT type constraints except constraint 8 are second, and the an- 

No Pn vx/Vx* vy/vy* Vz/Vz, gle-type constraints are the weakest. 
The above discussion gives us a general idea about the 

1 0.88 0.99 3.2xloe-8 efficiency of the ten constraints. The following numerical ex- 
1 2 0.58 1 3.3Xloe-12 ample has been used to assess the efficiency of the ten con- 

3 0.58 1 9.4xlOe-8 straints in a particular case. The hdings  in this example 
4 0.88 0.99 3.3X10e-11 numerically verify the correctness of the two theoretical con- 

1 0.92 0.54 0.37 clusions we have made. In addition, some new ideas ob- 
2 2 0.73 0.65 0.37 tained from this example can be used to improve the accu- 

11 0.8 0.6 0.38 racy of the 3D points when applying the ten constraints to 
real data. Two images with 20 3D points have been employed 

3 2 0.58 1 0.82 
6 0.42 1 

in the example. The interior and the exterior orientation ele- 
Os7' ments of the two images, coordinates of the image points, 

1 1 0.78 1 and coordinates of the 3D points are provided in the Appen- 
4 2 1 0.69 1 dix. It should be pointed out that, regardless of the units in 

4 0.52 1 1 Tables A1 to A3, the results of the efficiency evaluation are 
1 0.91 1 0.99 not affected. 

5 2 0.59 1 0.83 Table 1 shows the accuracy comparison based on the 
3 0.59 1 0.55 relative variance. A relative variance that equals 1 indicates 
4 0.91 1 0.99 no accuracy improvement. The following is the explanation 

2 0.73 0.68 
of Table 1 (refer to Figure 2 for facilitating the explanation): 

0.28 
6 6 1 1 1 No. 1: The coplanarity constraint is used to force passpoints 

1 1 1 1 1, 2, 3, and 4 to lie on the plane 1-2-3-4, consisting of these 
3 1 1 1 four passpoints. The reason why the relative variances in z 

2 0.86 1 0.94 
are much smaller than the others is because the normal vec- 

1 
tor of plane 1-2-3-4 is parallel to the z axis. The next section 

7 0.89 0.99 0.71 
5 0.91 1 0.46 

will give a more detailed explanation of this. 
No. 2: The collinearity constraint is used to force passpoints 

8 1 0.83 1 0.98 1, 2, and 11 to lie on the line consisting of these three pass- 
2 0.17 1 0.65 points. 

No. 3: The line to plane angle constraint is used to constrain 
9 1 3.2XlOe-12 1 0.88 the angle between line 2-6, determined by passpoints 2 and 

1 
6, and plane 1-2-3-4, determined by points 1, 2, 3, and 4, to 

10 0.42 0.8 0.42 equal to 90'. Points 2 and 6 are two unknown points in the 
Note: The heading No and heading Pn denote constraint number and constraint. 
unknown point number respectively. The heading Vx, Vy, VZ and No 4: The line to line angle with intersection constraint is 
Vx*, Vy*, Vz* denote the variances of x, y, z of the passpoints used to constrain the angle between line 1-2 and line 1-4 

obtained from the camera calibration with and without constraints to equal 90". Point 1 is the intersection point. These three 
respectively. points are the unknown points. 

No. 5: The line to line angle without intersection constraint is 
used to constrain line 1-2 to be parallel to line 4-3. These 
four points are the unknown points. 

non-zero vectors. So k will become smaller when the number No. 6: The plane to plane angle with common points con- 
of the unknown points in a constraint is reduced, and then straint is employed to constrain the angle between planes 
the relative variances of the unknown points are decreased. 1-2-6 and 3-2-4 to equal 90". Points 2 and 6 are two common 

Reviewing Expression 17, the trace of the relative variance points lying on the intersection line between these two 

matrix of the ith 3D point is reduced when the trace of HT H, planes. The reason why the relative variances of point 2 are 
much smaller than those of the other points is because point 

becomes smaller. The trace of matrix H, is actually the 2 is the intersection point of three lines 1-2, 3-2, and 6-2. 
norm of vector HT. Summarizing the above discussion, two From a geometrical point of view, the influence of the con- 
conclusions on the efficiency evaluation could be made: (1) straint on improving the accuracy of point 2 is much larger 
the efficiency of a constraint is related to the number of un- than the others. 
knowns in the constraint equation (the smaller the number, No. 7: The plane to plane angle without common points con- 
the better the gain in accuracy improvement), and (2) the ac- straint is employed to consbain plane 2-1-5 to be parallel to 
curacy of the ith 3D point becomes better with an increase in plane 3-4-8. Points 1, 2, and 5 are three unknown points. The 

the norm of the constraint coefficient vector HT. Reviewing other three points are the non-constrained points for deter- 

constraints from 1 to 10, the coplanarity and collinearity mining plane 3-4-8. 
No. 8: The distance between points constraint is used to force 

constraints contain only one unknown point, the distance- the distance between points 1 and 2 to equal a given distance 
type constraints (constraint numbers 8 to 10) also have only (14.7043). These two points are the unknown points. 
one unknown point except that constraint 8 has two un- No. 9: The distance between point and plane constraint is 
known points, and the number of the unknown points in the used to force the distance between point 1 and plane 2-3-7-6 
angle-type constraints (constraint numbers 3 to 7) is equal to to equal a given distance (14.7043). Only point 1 is the un- 
or larger than three except that constraint 3 has two un- known point. Apparently, the x axis is parallel to the normal 

known points. The norms of are used to assess the effi- vector of the plane. So the relative variance UJU,. is much 

ciency of constraints with the same number of unknown smaller than the others. 

points. The efficiencies of the coplanarity and distance be- * No. 10: The distance between point and line constraint is 
used to force the distance between point 1 and line 2-12-3 to 

tween point and plane constraints are the same if these two be equal to a given distance (14.70431. Point 1 is the un- 
constraints are related to the same plane. The collinearity known point. This constraint and the distance between point 
constmint is not as strong as the former two constraints. In and plane constraint are the distance-type constraints with 
general, the coplanarity, distance between point and plane, the same major direction except that the geometrical "basis" 
and collinearity constraints are the strongest, the distance- (plane and line) are different. The reason why the relative 
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Figure 1. The trace of constrained 
points. 

variance of point 1 in the major direction derived from the 
distance between point and plane constraint is much smaller 
than that obtained from the distance between point and line 
constraint is because the basis in the first constraint is much 
stronger than the one in the second constraint from a geomet- 
rical point of view. 

The traces illustrated in Figure 1 are the so-called aver- 
age standardized traces. They are the average values of the 
sum of the relative variances of the constrained points. Trace 
equals 3 indicates no accuracy improvement in the estimated 
points. Reviewing Table 1 and Figure 1, we can make the 
same conclusions as we have made in the theoretical re- 
search above. 

Our experiment shows that the efficiency of the con- 
straints has been promoted by grouping the same types of 
constraints and by combining different types of constraints. 
Although the sum of squared residuals is increased with the 
number of constraints in the camera calibration, the variance 
of the estimated parameter is decreased. From Figure 1, it is 
apparent that a point which is involved in a few constraints 
can only have a reduction in variance by an order of magni- 
tude. Refer to Huang and Haralick (1997) for more informa- 
tion. 

Specific Evaluation 
Specific evaluation means that assessing accuracy irnprove- 
ment is conducted in "the major direction of accuracy irn- 
provement." Figure 2 shows that the axes of the 3D coordinate 
system are parallel to the edges of the house, which consists 
of 20 3D points. The advantage of such an arrangement is to 
provide a method to predict the largest reduction in the vari- 
ances a,, a,, and a, by adding a constraint to the camera 
calibration. For instance, let us assume that the distance be- 
tween points p, and p, is known. The constraint distance be- 
tween points is adopted for constraining the distance be- 
tween these two points to be equal to the known distance. It 
is easy to see from Figure 3 that the distance is actually the 
difference of the x coordinates between the two points. It 
could be expected that the a, should be reduced much more 
than the a,, and a, when applying the constraint to the two 
points. Therefore, the x axis is called the major direction of 
accuracy improvement. Table 1 shows apparently that the 
accuracy improvement in the major direction is much larger 
than in the other two directions. 

Correctness Test 
The statistical test for the correctness of the camera calibra- 
tion with constraints is based on the fact that the distribution 

10 

5 7 

I 3 

Figure 2. The structure of 3D points. 

of a linear combination of the normally distributed variables 
is also normal. This test is not related to the constraints. It is 
associated with the type of noise to be added in the camera 
calibration for generating the simulated sample data. The ba- 
sic assumptions for the test are (1) that the mathematical 
model employed can be linearized and that the scalar func- 
tion (objective function) has finite second partial derivatives 
and that the random perturbations are small enough so that 
the relationship between the scalar function evaluated at the 
ideal but unknown input and output quantities and the ob- 
sewed input quantity and perturbed output quantity can be 
approximated sufficiently well by a first-order Taylor series 
expansion; and (2) that the noise we add in the 2D image 
points is an additive random perturbation and that the esti- 
mated quantity produced by the camera calibration process- 
ing is also an additive random perturbation (Haralick, 1993; 
Anderson, 1984). The coordinates of the 3D passpoints and 
their covariances computed by the camera calibration with- 
out introducing noise to the 2D image are regarded as the 
population mean and population covariance of the 3D points. 
Let p = O be the population mean and Z= 2, the popula- 
tion covariance. The sample mean and sample covariance 
can be obtained by adding random noise to the 2D data in 
the camera calibration process. Let m be the number of repli- 
cations. From each replication, the result is a sample mean 
Si = M, and a sample covariance S = S,  where 

X .llby 9 -- : 

Figure 3. The major direction of 
accuracy improvement. 

2!54 March 1999 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING 



1. Test 1: P = Fo with known 2 = 2. 
2. Test 2: P ' F. with known P 
3. Test 3: 2 = 8, with known P 
4. Test 4: 2 = 2, with known CL = PO 
5. Test 5: 2 = 8, and P = PO 

in which n is the number of samples. Let us assume that the 
linearization was valid in the neighborhood of the estimate. 
The distribution of the sample estimates should be normally 
distributed if normal noise is added to the 2D points in the 
data processing. Then it is appropriate to test whether that is 
the case. Five tests (Table 2) can be conducted if a sample of 
data comes from a multivariate N[p, u) distribution (Kanungo 
and Haralick, 1995). The tests differ in what is assumed to 
be unknown. 

One-hundred replications, and 100 trials for each repli- 
cation, have been generated. Because the population mean 
and population covariance matrix of the 3D points are 
known, we choose "test 5" for testing the models used in the 
constraints. In this case, the question is whether or not the 
sample is from a Gaussian population whose mean is CL, and 
covariance is 8,. The statistical test consists of two steps: (1) 
check how many samples pass the test, and (2) examine the 
probability of each passpoint. Normally, about 95 percent 
(not less than 90 percent) of the samples should pass the test 
if significance level (Y = 0.05 is selected. The probability is 
important information to determine whether the estimate 
passes the test or not. If the probability is larger than 0.05, 
we pass the test. 

Statistical Test of the Camera Calibration without Constraints 
Before testing the camera calibration with constraints, the 
camera calibration without constraints should pass the test. 
Table 3 shows the test result of the camera calibration with- 
out constraints. One-hundred replications, and 100 trials for 
each replication, have been used in the test. The heading n% 
denotes the percentage of samples passing the test and head- 
ing Prob denotes the probability. The numerical results show 
that every point passes the test because the percentages of 
samples passing the test are larger than 90 percent and the 
probabilities are larger than 0.05. 

Statistical Test of the Camera Calibration with Constraints 
The constraints play a role in forcing the constrained esti- 
mate to converge to its true value so that its variance be- 
comes smaller. Particularly, its covariance converges to zero 
if the major direction is parallel to the axes of the coordinate 
system. On the other hand, the constraints lead to a linear 
correlation between the constrained estimates. As a result, 
the determinants of their covariance matrices are equal to 
zero. This is the reason that the constrained estimates fail to 
pass the test. 

Test in the Case that the Major Direction Is Parallel to One 
of the Coordinate Axes 
Table 4 shows the test result of the camera calibration with 
two coplanarity constraints. One-hundred replications, and 
100 trials for each replication, have been used in this test. 
Points 1, 2, 3, 4 and points 5, 6 ,  7, 8 lying on two separate 
horizontal planes (Figure 2) are used in these two con- 
straints. The eight points are not successful in passing the 

TABLE 3. STATISTICAL TEST: CAMERA CALIBRATION WITHOUT CONSTRAINTS 

Pn n% Prob Pn n% Prob 

1 91 0.28 11 92 0.07 

2 93 0.36 12 92 0.06 

3 96 0.85 13 93 0.6 

test because the determinants of their covariance matrices 
are equal to zero. In order to solve the problem in the test, 
consider the difference between the population mean and 
sample mean of one of the eight constrained points (d,, d,,, 
and d, of point 1): i.e., 

This shows that the difference in z coordinates is close to 
zero, which means that the coplanarity constraints make the 
sample mean converge to the population mean in the major 
direction of accuracy improvement because the major direc- 
tion is parallel to the z axis (Figure 2). This leads to the cor- 
responding variance converging to zero in the major direc- 
tion. The covariance matrices of point 1 in three different 
cases are shown as follows. 

The population covariance matrix of point 1 in the non- 
constrained case. 

The population covariance matrix of point 1 constrained 
by a coplanarity constraint. 

TABLE 4. STATIST~CAL TEST: CAMERA CALIBRATION WITH TWO COPLANARITY 
CONSTRAINTS 

-- 

Pn n% Prob Pn n% Prob 
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The sample covariance matrix of point 1 constrained by 
a coplanarity constraint. 

The determinants of the three covariance matrices above 
are 

Analyzing the above three covariance matrices and their de- 
terminants, two points can be summarized as follows: (1) an 
obvious accuracy improvement in the major direction has 
been achieved by applying the coplanarity constraint to the 
eight constrained points; and (2) the convergence speed to 
zero of the sample variance in the major direction is much 
faster than that of the population variance. Correspondingly, 
the determinant of the sample covariance matrix converges 
to zero much faster than that of the population covariance 
matrix. The zero determinant indicates that the covariance 
matrix is singular. In this particular case, the major direction 
is also the direction in which the estimates are linearly cor- 
related because the zero sample variance only happens to the 
constrained estimate. This provides an efficient way to solve 
the singular problem encountered in testing camera calibra- 
tion with constraints. That is to say, removing the estimates 
with zero sample variance is the way of removing the corre- 
lated estimates from the test data. Applying this new method 
to point 1, the population and the sample covariance matri- 
ces of point 1 become 2 by 2 matrices shown as follows: 

and 

and their determinants are 

These two determinants are not close to zero, which means 
that the singular problem has been solved. Table 5 lists the 
probabilities of the eight constrained passpoints by using the 
new method. The numerical results indicate that the eight 
points pass the test. 

Test in the Case that the Major Direction Is not Parallel to 
the Coordinate Axes 
It is true that the determinate of the covariance matrix of the 
constrained point is equal to zero due to the correlation be- 
tween its components (x, y, and z) derived from constraints. 
The variances of the estimated components may not neces- 
sarily be equal to zero if the major direction is not parallel to 
the coordinate axes. In order to solve the zero determinant 
problem using the proposed method in this case, applying an 
orthogonal transformation to the population mean and covar- 
iance, the sample mean and covariance is required: i.e., 

where matrix T is the orthogonal transformation matrix. The 
advantage of the orthogonal transformation is that the prop- 
erty of the matrix may not be changed by the transformation. 
In other words, the trace of the covariance matrix may not be 
affected by the transformation due to the symmetry of the co- 

TABLE 5. THE PROBABILITIES OF EIGHT CONSTRAINED POINTS USING THE NEW 
TEST METHOD 

Pn Prob Pn Rob Pn Prob 

1 0.08 2 0.06 3 0.39 I 

variance matrix. So the results of efficiency evaluation based 
on the transformed covariance matrix are the same as those 
obtained from the original covariance matrix. Three methods 
are presented as follows. Let X be the coordinate matrix of 
the constrained points in the original coordinate system and 
Y be a new coordinate matrix in which the major direction is 
parallel to one of the axes in the old coordinate system. The 
first method for calculating the transformation matrix T is 
written as 

The second method is more complicated than the first one. 
The general formula for the 3D coordinate transformation is 
expressed by 

where AX is the translation vector, n is the number of the 
constrained points, and k = 1 (the scale factor). The objec- 
tive function for computing T is 

n 

[(TX, + AX) - YilT = min, 
i=l 

in which AX is equal to zero if X and Y are centralized. 
Then the objective function can be simplified as 

n 

(TX; - y)Z = min 
i=l 

where X" and Y" are the centralized coordinates. The trans- 
formation matrix T is computed as follows: 

and matrix D is decomposed into (the singular value decom- 
position) 

The transformation matrix is the product of matrices U and 
VT: i.e., 

The third method is different from the above two methods. 
The transformation matrix consists of the eigenvectors de- 
rived from the covariance matrix of the constrained point. 
After transformation, the covariance matrix becomes a diago- 
nal matrix in which one of its diagonal elements is equal to 
zero. 

We suggest using the first two methods if one knows the 
relationship between the major direction and the coordinate 
axes. The population mean and sample mean remain un- 
changed in the first method and remain partly unchanged in 
the second method after transformation because these two 
methods are not involved in translation. The statistical test 
will be simplified if we can keep the population mean and 
sample mean unchanged in the transformation. The third 
method can be applied in the case that we have no idea 
about the relationship between the major direction and the 
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axes, but the values of the means will be changed after the 
transformation. 

Independence Condition 
The ten constraints can be used separately and simultane- 
ously. To achieve a desired efficiency, a good combination of 
the constraints in terms of the geometric structure of the 3D 
points is suggested. The constraints having high efficiency 
should have a high priority to be considered to be used in 
the camera calibration process. Before applying the con- 
straints to the camera calibration, the constraints should sat- 
isfy the independence condition. For instance, distances 
from a passpoint to several other points are given. The maxi- 
mum number of the distance between points constraints that 
can be applied to this passpoint is three. Adding more than 
three constraints to the passpoint will lead to an over-con- 
strained problem. As a result, the rank of the coefficient ma- 
trix of the constraints will not be full. 

Conclusion 
This paper discusses using ten constraints for improving the 
accuracy of the 3D passpoints. The efficiency and correctness 
of the constraints are two major problems in the discussion. 
The constraints play a role in forcing the constrained esti- 
mate to converge to its true values in the camera calibration. 
As a result, the variance of the constrained estimate con- 
verges to zero in the major direction. The zero variance 
strongly proves that the corresponding constraints are effi- 
cient and also verifies the correctness of the models being 
used in the construction of the constraints. The zero detenni- 
nant problem will be encountered in testing the correctness 
of models when adding the constraints to the camera calibra- 
tion. This problem can be solved by removing the estimate 
with zero variance from the test data. Removing the con- 
strained estimates from the data does not iduence correct- 
ness of the test. The methods presented in this paper can be 
used to test the correctness of any software as well as the ef- 
ficiency of the mathematical models used in the software. 

The mathematical models used in the paper can be eas- 
ily modified (for instance, by adding or deleting some of the 
unknowns in the constraint equations) to be suitable for a 
real application. In addition to the accuracy improvement of 
the estimated 3D points, the constraints can also be used to 
solve the rank-defect problem resulting when the number of 
the control points is not enough for determining the un- 
knowns. 
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Appendix 
TABLE A l .  INTERIOR AND EXTERIOR ORIENTATIONS OF TWO IMAGES 

Item Image 1 Image 2 

Note: f, x, and y are the interior orientation elements (the focal 
length and the coordinates of the principle points); X, Y, and Z are 
the exterior coordinates of the perspective center; and a, b, c, and d 
are the elements constituting the rotation matrices (R): i,e., 

dz + a2 - b2 - cZ 2 (ab - cd) 2ac + bd) 
R = ( 2[ab + bd) d2 - a2 + P - b 2[bc - ad) 

2(ac - bd) ~ ( b c - a d )  $ L - a 2 - b 2 + c z  

The coordinates of the 2D image points listed in Tables A2 and A3 
are needed to transform to the camera frame system. The 
transformation equation is 

where x, and y, aie the coordinates of the 2D points used in the 
camera calibration process. 
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TABLE AS. COORDINATES OF 2 0  3D POINTS 

Pn X Y Z 

Image 1 Image 2 

Pn x Y Pn x V 

- -  - - 

17 6.3857078 4.7130089 17 6.5939508 6.924067 

18 7.7966788 7.8165523 18 2.2033212 7.8165523 

19 5.2343786 6.8063795 19 4.7656214 6.8063795 

20 5 5 20 5 5 

Note: The coordinates are the numbers listed in Table A3 multiplied by 100. 
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