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Abstract 
Various widely used radar image processing algorithms re- 
quire considerable computing resources but can take advan- 
tage of a parallel implementation. We focus on the shape- 
from-shading (s~s) algorithm in its application to radar 
images. A given serial version of the S ~ S  algorithm was paral- 
lelized and improved to handle large images. We experi- 
mented with parallelization techniques such as data decom- 
position, the manager/worker method, and dynamic load 
balancing with double buffering. The parallel version of sfS 
was ported to two supercomputers: Meiko's CS-.?HA and In- 
tel's PARAGON XP/S-A4 distributed memory machines, and to 
a cluster of workstations (Cow) made up of Silicon Graphics' 
Indies. Important results concerning the performance of the 
parallel sfs implementation with those architectures are pre- 
sented and compared to each other, showing that 14 proces- 
sors can speed up ~ f s  by up to 13 times over the use of a 
single processor. 

Introduction 
Raw radar data are subject to radar signal processing (Cur- 
lander and McDonough, 1991) and will result in conven- 
tional image pixel arrays. Due to the large quantity and high 
rate of raw radar signals, it is customary to configure parallel 
processing systems for radar signal processing. Radar image 
processing then is applied to improve these images, or to ex- 
tract information about the imaged surface, such as topo- 
graphic shape, surface roughness, types of materials on the 
surface, or changes which might occur in the surface over 
time. Such information extraction often requires the use of 
multiple images and of elaborate algorithms. 

While radar signal processing has traditionally been im- 
plemented on special purpose parallel processing hardware, 
radar image processing has scarcely been a topic of parallel 
processing research. An exception is early work with radar 
images from the Space Shuttle (Ramapriyan et al., 1986) and 
recent work in noise despeckling (Addison et al., 1996). 
However, parallel radar image processing is becoming a strat- 
egy of increasing importance and is motivated not only by 
complex algorithms, but also by the need to cope with ex- 
traordinary quantities of image data, and by increased avail- 
ability of affordable open parallel computing platforms. This 
need is being demonstrated with the radar image coverage of 
planet Venus, which was obtained by NASA in its Magellan 
mission from 1990 through 1992 (Leberl et al., 1992). Pro- 
cessing of the raw data signals acquired during the mission 
resulted in 400 Gbytes of image pixels. 

Our interest in parallel radar image processing derives 
from the desire to process these images in order to obtain a 
detailed topographic surface model or digital elevation model 
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(DEM), and to use this model for precise terrain corrections of 
the images (orthorectification, geocoding). NASA created a so- 
called Magellan Stereo Toolkit as a collection of sequential 
algorithms and functions that an individual data user could 
employ to process small subsets of the Magellan images 
(Curlander and Maurice, 1992). We briefly review four of the 
most frequently used algorithms. 

Image Matching establishes a set of corresponding points in 
two overlapping images in order to measure stereo parallaxes, 
mosaic images, or compare multiple images of a given ter- 
rain. Various appoaches exist, which for radar images are 
mainly based on correlation of pixel arrays, yet must cope 
with the radiometric differences due to illumination differ- 
ences. Therefore, some algorithms use additional information 
derived from edge filters and local image statistics (Gelautz et 
a]., 1996). Some of the algorithms are quite time-consuming 
and would therefore benefit from a parallel implementation. 
However, the structural complexity of available serial imple- 
mentations is high so that we decided that these algorithms 
should first be theoretically studied before parallel code gets 
written. 
Resampling and Gridding is used to resize DEMS and geocode 
images. The implemented resampling and interpolation algo- 
rithms are not very time consuming compared to other radar 
image processing algorithms. Thus, we are not concerned 
with parallelizing this code unless new time consuming algo- 
rithms or real-time needs exist. 
Shape-from-Shading (SfS] is based on the idea that the varia- 
tion of brightness, or shading, is a result of the terrain shape 
responding to the illumination by the radar sensor. A DEM be- 
comes locally refined by applying S ~ S .  We have chosen this 
algorithm due to its time complexity and its algorithmic 
structure. 
Visualization and Perspective Rendering employs the 3D DEM, 
adds the corresponding ZD terrain-corrected images, and pro- 
duces a perspective view of the combined data set. Ideally, 
this visualization provides the illusion that the human viewer 
is located on the terrain surface or experiences a fly-over in a 
fictitious aircraft. It will be useful to perform the computation 
in a parallel manner representing a classical computer graph- 
ics a ~ ~ l i c a t i o n .  Clearlv, this makes "rendering" a paralleliza- - - 
tion iipic, which wilcbe covered at a later time. 

Shapefrom-Shading 

Principle 
Normally, in radar image S ~ S ,  the assumption is made that 
the amount of light reflected by a particular part of the ter- 
rain surface is only a function of its orientation and its re- 
flecting properties a,: i.e., 

I,,,,, = R(0, ~ ~ ( 0 ) ) .  
- -  - 
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If we know the pixel's brightness, $,,, and its reflective be- 
havior, uo, then we should be able to compute the slope 0 of 
the surface patch with respect to the radar's antenna position. 
Slope values e,] in each pixel ij need to be integrated into a 
continuous terrain surface in such manner that they are con- 
sistent with the observed slant ranges as well as with the gray 
values 1,](1), Ilj(2), . . . , I,(n) in n input images (I), (Z), . . . , (n) 
(see Figure 1). 

Horn and Brooks (1989) collected ideas about sfs in gen- 
eral as they existed in 1989. Whereas some early solutions to 
the S ~ S  problem relied on solving the resulting differential 
equations directly, most recent approaches are based on the 
formulation of S ~ S  as a minimization problem which is math- 
ematically treated by calculus of variations techniques. 

Generally, the reconstruction of topography from image 
gray values faces the following two problems: (a) The re- 
flected energy is not only a function of the imaging geometry 
(e.g., local incidence angle), but is also influenced by the re- 
flectance properties. In the particular case of terrain recon- 
struction in planetary sciences, the reflectivity of the surface 
materials is normally not known. (b) Even if the reflectance 
behavior is known, sfs still constitutes mathematically an 
underdetermined problem: A particular image gray value 
may have been generated by a variety of surface orientations. 
In the example of SAR images, a given pixel intensity im- 
poses only a cone constraint on the corresponding local sur- 
face facet, with the axis being the radar look direction and 

. the half-angle being the local incidence angle. In some appli- 
cations, insufficient knowledge of the illumination direction 
poses further problems, which, hoewever, are not of concern 
when dealing with radar images. 

Problem (a) is often circumvented by assuming the al- 
bedo to be constant in a first approximation. Another tech- 
nique, which is adopted in the algorithm we employ, is the 
use of multiple images acquired with different look angles. 
The uniqueness problem (b) is generally tackled by adding 
either additional constraints, or a priori knowledge obtained 
from other sources. A frequently used constraint is the re- 
quirement of integrability, as defined by 

with Z(X, Y1 being the surface height above the (X, Y1 plane. 

In other words, the second-order partial derivatives are inde- 
pendent of the order of differentiation. If the integrability 
constraint is fulfilled, the surface height Z obtained by inte- 
gration over surface slopes is independent of the path of in- 
tegration. A second constraint is the requirement of smooth- 
ness, which regulates the amount of allowable oscillations in 
the reconstructed terrain surface. 

A notable approach to the S ~ S  problem which does not 
use the smoothness nor the integrability constraint was pre- 
sented by Wei and Hirzinger (1994). Their idea is to use a 
multilayer neural network to represent the terrain surface an- 
alytically. In this formulation, the problem is converted into 
the task of training the network so that a given cost function 
is minimized with respect to the network weights. The ob- 
tained surface Z is solved directly, and is therefore automati- 
cally smooth and integrable, which avoids the problems 
arising in most other solutions due to the smoothness and 
integrability constraint. 

The application of sfs to radar images, also denoted as 
radarclinometry, was pioneered by Wildey (1986) in the con- 
text of recovering the shape of the surfaces of other planets. 
In this work, uniqueness was enforced by assuming the ter- 
rain surface to be locally cylindrical. Further research on SAR 
imagery was carried out by Kirk (1987), Frankot and Chel- 
lappa (1989), Guindon (1990), and Thomas et al. (1991). 

Kirk (1987) used finite elements instead of the varia- 
tional approach, and points out the computational efficiency 
of his method. Guindon (1990) proposes the integration of 
individual SAR range lines into terrain elevation profiles in- 
dependently of each other. This one-dimensional approach is 
motivated by the observation that SAR image gray values are 
mainly indicative of the range component of terrain slope, 
rather than the full 3D surface orientation. 

Frankot and Chellappa (1989) presented a new solution 
to enforce strict integrability in an iterative S ~ S  algorithm. 
Their idea is to project the (generally) non-integrable surface 
estimates obtained in each iteration step onto a subspace 
which contains only integrable solutions. This leads to 
"nearest" integrable surface slopes which are then input to 
the next iteration step. The advantage of this algorithm over 
other approaches which incorporate integrability by use of a 
penalty function is the enforcement of strict integrability, 

Figure 1. Images from the planet Venus, at 2' South, 73' East, geocoded using a coarse DEM 
obtained from stereoscopy. The area is about 40 km by 40 km. Look angles off nadir are 42" (left 
image) and 23' (right image). Pixels are about 75 m by 75 m in size. 
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Figure 2. Description of shape-from-shading in terms of 
called subroutines. 

me, oui 
-- -.- , 

whereas the penalty term pulls the solution only "close" to 
integrability. 

Chosen Implementation 
For our parallelization experiments, we have chosen the algo- 
rithm presented by Thomas et al. (1991), which is an exten- 
sion of the work by Frankot and Chellappa (1989). Due to the 
use of multiple images, the simplified assumption of constant 
reflectance properties is no longer necessary. Furthermore, this 
technique has proven to be more robust to noise. Although 
the algorithm has been generally formulated for a set of n im- 
ages, we have currently considered only cases with n = 2. 
This is consistent with the idea of using two overlapping im- 
ages for a stereoscopic surface measurement, which is then 
followed by S ~ S  to "refine" the solution. 

In this algorithm, the calculus of variations problem de- 
rives from minimizing the following cost function (super- 
scripts refer to image number, assuming two images): 

s = $$ (I(') (X, Y) - RIII (Zx,Zy))' + (FZ1 (X, Y) 
I,) 

where I is the actual image gray value, R is the predicted 
image gray value, Z is the terrain height, Z, is the slope in 
the X (range) direction, Z, is the slope in the Y (azimuth) di- 
rection, Z, is the second-order partial derivative in the X di- 
rection, Z,, is the second-order partial derivative with 
respect to X and Y, Z, is the second-order partial derivative 
in the Y direction, and A is the regularization parameter. 

The fist term in Equation 3 is a measure of the differ- 
ence between the pixel gray values I in one of the real SAR 
input images and the gray values R predicted by simulation 
using the current estimated terrain model. The second term 
refers to the other input image. The third term serves for 
regularization. It acts as a penalty function that limits the 
amount of terrain oscillations. The solution to the minimiza- 
tion problem is obtained iteratively (see Figure 2, cost-com- 
pute). At each iteration step, the resulting estimates of the 
terrain slopes are integrated to calculate heights (integra-real). 
At this step, integrability is enforced according to the method 
by Frankot and Chellappa (1989). The original solution for the 
surface slopes is projected onto a subspace of surfaces which 
can be represented by a set of Fourier basis functions, and 
thus fulfills automatically the integrability constraint. This fre- 
quency domain formulation of the problem leads to the mas- 

sive use of Fast Fourier Transforms (FETS) in the code (see 
Figure 2, fourtl), which we will discuss later in more detail. 
The spectral domain representation also facilitates the incor- 
poration of low frequency information obtained from other 
sources, such as, e.g., stereoscopic analysis. The algorithm it- 
self is fairly complex, but extensively described in the litera- 
ture (Leberl, 1989; Thomas et al., 1991). We therefore abstain 
from repeating its full description here. 

The stereo process carried out in a preparatory step out- 
puts two geocoded images and a preliminary DEM with eleva- 
tions at each surface point XY. These surface elevations are 
combined with ephemeris data and assumptions about uo (0) 
(e.g., the Hagfors (1964) reflection model) to serve as input to 
the sfs computation, as illustrated in Figure 3. Experience has 
shown that S ~ S  should be applied to refine shape information 
obtained from other techniques. These might be altimetry, ste- 
reoscopy, or inaccurate DEMs from previous satellite missions. 
However, sfs should not be the sole source of shape informa- 
tion, because it produces large ambiguities in the surface 
shape, particularly at low frequencies (Leberl et al., 1992). As 
already mentioned before, the spectral representation of the 
DEM lends itself well to merge low frequency stereo or altime- 
try elevations with high-frequency sfs elevations (see Figure 2, 
cosfilter and frequency-enforce). 

Software Engineering Issues 
It is important to analyze the algorithm and especially the 
data flow carefully, because this point shows if and how effi- 
cient the algorithm can be parallelized. As illustrated in Fig- 
ure 2, several subroutines are called within the iteration 
loop. Logically, the loop begins at beta-compute to derive 
the incidence angles, which are then passed to slope-calc to 
calculate the slopes. To process the steps, Frankot and Chel- 
lappa (1989) proposed within the routines iterate-real-hg 
and integra-real, the Fourier transform (fourtl) has to be 
called in advance. Then, frequency domain constraints are 
applied for low (frequency-enforce) and high frequencies 
(cos-filter). After the inverse FFT, the refined DEM is com- 
pared to the reference DEM in height-chk and the cost func- 
tion (Thomas et al., 1991) is calculated in cost-compute as a 
means for iteration control. 

Each call to the subroutines in this loop results in an ad- 
ditional refinement step, requiring iteration Rk to be finished 
prior to the start of iteration Rk+,. All data items used are ei- 
ther read-only as the initial DEM and images, or they are re- 
written in each iteration, meaning that there is nothing 
during iteration R, that may be calculated in advance. Thus, 

surface parameters 
refined OEM 

Figure 3. Shape-from-shading data flow. 
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overlapping region 

Figure 4. Data decomposition. 
The input data set is divided 
into equally large, overlapping 
patches which then are refined 
independently of each other. 

trying to parallelize this loop according to the program de- 
composition paradigm (e.g., Zomaya et al., 1996) leads to a 
dead end. 

Nevertheless, all subroutines calculate one or several 
values for each pixel. For simplicity, let us assume that all 
images are square having n lines, each containing n pixels. If 
only one or a few pixels in the near neighborhood are neces- 
sary to compute the new one, the time complexity is O(nZ), 
and one out of several processors may compute just a small 
piece of the whole data set. 

We found that the near-neighborhood constraint is true 
for all subroutines except the FFT which has a complexity of 
O(nZ * log(n)) (Gonzalez and Woods, 1992). Thus, the overall 
complexity calculates to O(i * n2  * log(n)) where i represents 
the number of iterations. This estimate is mathematically 
correct, but says little about real-time behavior. Conse- 
quently, not using 00-notation leads to a better estimate for 
computing time T where the parameter c, is considerably 
larger than c,: i.e., 

The term c, * n 2  represents the time needed by all O(n2)-rou- 
tines during one iteration. The second term represents the 
time needed by the FFT, which is about 10 percent of the 
time described by the first term if n .J 1000, which reflects a 
common image size. Time increases linearly by the number 
of iterations as can be seen from the leading factor i. 

Handling Large Data Sets 
While the FFT works well for small images, the time needed 
by Fourier and Inverse Fourier Transforms rises according to 
their time complexity of O(n2 * log(n)). Calculating the FFT 
for an entire image would last too long and is not necessary 
because S ~ S  just refines the slope and terrain locally. 

Data Decomposition is the method being applied to di- 
vide the input images and the initial DEM into smaller parts. 
Figure 4 shows the partition scheme. The subimages or 
patches, each 128 by 128 pixels in size, overlap one another. 
This is necessary due to erroneous effects at the edges of the 
patches. 

Data decomposition of course influences the algorithmic 
behavior. On the one hand, the algorithm becomes very suit- 
able for parallelization. On the other hand, using just local 
FFTs has two further impacts. First, execution time is re- 
duced to O(nZ), because the FFT is applied to equally sized, 

small parts, regardless of the total problem size. Second, the 
lower frequencies, which are generated by the FFT in the 
spectral domain, must be replaced by the low frequencies of 
the initid reference DEM. This guarantees that the small ter- 
rain patches which can then be calculated independently fit 
together after the refinement operation. 

Putting the Patches Together is nevertheless difficult due 
to S~S'S behavior at the seams. The low-frequency enforce- 
ment guarantees that the patches do not differ with respect 
to medium height and average slope. However, local dispari- 
ties and oscillations occurring at the seams must be removed 
by an extra procedure, called "feather." To obtain satisfying 
results in conjunction with an acceptable amount of over- 
head calculation, the overlapping region was found to be 
about one quarter of the patch size. Due to the fixed size of 
all patches, the overlapping region is larger at the rightmost 
and bottom patches (see Figure 4). 

Within the overlapping region, about ten pixels are cut 
off and replaced by the neighboring patch, as illustrated in 
Figure 5. This is necessary because sfs tends to produce 
high-frequency oscillations in the range direction which are 
caused by the many operations in the frequency domain 
which are susceptible to typical "ringing" effects. In order to 
provide a smooth transition between the patches, interpola- 
tion is done in the middle part of the overlapping region, 
where the terrain is linearly interpolated from one patch to 
the next patch. However, this interpolation is not always sat- 
isfying and will be subject to further research. 

Parallelhation Approaches 
Because the data set has been split into smaller parts, a 
means for distributing these parts across all computing nodes 
must be found. Additionally, all nodes should be equally 
loaded. To reach these goals, we rely on well established 
paradigms. However, parallelization is meaningful only if the 
code on a single node is optimized as well. 

Single CPU Optimization therefore is necessary to later 
obtain a good parallel code. It is also much easier to opti- 
mize the code before parallelization. Modem computing 
nodes are equipped with RISC processors, most of them with 
a super scalar architecture. To facilitate all available integer 
and floating-point units (FPUS), as well as to advance the us- 
age of CPU registers and cache memory, a variety of compiler 
switches may be set. Sometimes, the source code must be 
slightly rewritten to enable the compiler's features. In order 
to help the compilers, code changes such as loop splitting, 
loop reversal, and loop blocking as well as some scalar op- 
timizations were encoded by hand. 

The ManagedWorker Method - a centralized approach - 

Figure 5. Interpolation strategy to merge adjacent DEM 
patches by means of a gradual transition weighing one 
patch less as one moves into its neighbor. 
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data decomposition (right). 
Figure 6. Managermorker method (left) combined with 

was taken to distribute the patches to all available proces- 
sors. One manager process does the 110 and controls all other 
processors, the workers. This scheme is illustrated in the left 
part of Figure 6. The manager reads the whole data set, parti- 
tions it, and sends the subimages to the workers. The work- 
ers themselves perform the real refinement calculations and 
then send the data back. The manager collects the results, 
postprocesses, and stores the refined and fitting patches back 
to disk. Because the manager performs no "real" computa- 
tion, it can control many workers concurrently. However, the 
manager remains the bottleneck in both, file 110 and comrnu- 
nication to the workers. 

Through our experiments, we found some advantages 
in the ManagerIWorker method. The simple communication 
structure and the well-defined tasks each processor has to 
perform led to an easy implementation. The work of porting 
the code onto other platforms was small as well, because the 
manager easily can be tested with dummy workers that only 
send back the received DEM patch. 

Load Balancing appears to be a problem because the 
subimages are rather large, and we have to cope with prob- 
lems when applying "coarse grain size" parallelization (Fox 
et al., 1988; Wenzel, 1991). Static load balancing, which cre- 

ates a schedule prior to the distribution of the subimages, 
cannot be used because the tasks the workers are charged to 
perform are slightly unequal in time, and not all COW (Clus- 
ter of Workstations) workers are equally powerful. 

In contrast, we used a simple paradigm for dynamic load 
balancing. The manager decides which subimages to send 
next while the workers perform computation. An easy and 
sufficient method is to take the patches in their natural or- 
der. When a worker sends back its result, this can be seen as 
a request for new work. Then, the manager sends the next 
available and not yet calculated subimage to this worker. At 
the beginning, or if some workers request new tasks nearly at 
the same time, they are served in a "round-robin" fashion. 
We found that the managerlworker paradigm as a basic com- 
munication structure is well suited to implement dynamic 
load balancing on top of this method. 

However, this simple way of dynamic load balancing 
suffers at three points. The tasks are not sorted with respect 
to the time they are expected to be needed. Thus, it is possi- 
ble that one of the last tasks submitted is one of the largest 
ones. This leads to the second problem. All workers must 
wait for completion of the preceding task. The remaining 
work cannot be redistributed. These two problems are not re- 
ally serious if there are many more subimages than available 
workers and if the amount of work per task is about the 
same. While the first restriction can be met only when pro- 
cessing large data sets, the second one is fulfilled implicitly 
because all patches are of the same size and the computa- 
tions for each patch do not differ significantly from one an- 
other. 

Third, if many workers request tasks concurrently, the 
manager is overloaded for a moment. In this case, the work- 
ers are again served in a round-robin fashion, and some 
workers are forced to wait until the manager has time for 
them. It happens routinely that in this time other workers 
request new tasks, too. Thus, the workers are virtually syn- 
chronized. This problem also occurs at the very beginning. 
Assuming tasks with an equal size, this problem cannot be 
solved just in time, causing the manager to be overloaded pe- 
riodically. These circumstances sometimes lead to dramatic 
losses in efficiency, especially if processors are intercon- 
nected via a bus system, or if there are other restrictions lim- 
iting the number of concurrent communications. 

To solve this problem, we extended the dynamic load 
balancing with double buffering. To explain this mechanism, 
in Figure 7 a manager is shown with only two workers for 
simplicity. Initially, every worker gets one piece of work. In- 
stead of requesting a new task after the first task was fin- 

time 

Figure 7. Communications behavior of the implemented dynamic load balancing 
technique introducing double buffering. For simplicity, only one manager and two 
workers are drawn. 
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Figure 8. Efficiency with a certain number of processors (p) versus problem size (s). Paragon (top 
left) and Meiko (top right) perform well in all areas of interest (bottom right, shaded area has p I 
s). The efficiency of the cow (bottom left) decreases when several processors are used ( i  repre- 
sents the number of iterations). 

ished, the worker immediately requests a second task. This 
overloads the manager heavily at first, but the workers do 
not care because they already have tasks to compute. The 
manager now has plenty of time to submit all requested tasks 
while the workers are calculating the first problem. Thus, all 
workers can start their next task immediately after they have 
finished their preceding task, and they can request a new 
task in advance. As can easily be concluded, this method 
theoretically reduces the idle time of workers down to zero. 

Hardware Description 
For this project, we had access to three different computing 
platforms, located in Vienna and Graz. All platforms are 
equipped with a set of general purpose microprocessors. Thus, 
they all can be classified as MIMD computers (Flynn, 1972). 
All nodes run an extended ~ I X  operating system. Communi- 
cation is according to the message passing paradigm, because 
the memory is distributed across all nodes. 

Meiko CSZ-HA - Computing Surface 2-High Availability 
(CS2-HA) from Meiko is located at a European Union facility, 
the European Centre for Parallel Computing at Vienna (VCPC). 
This supercomputer is equipped with 128 compute nodes, 
each performing 100 h@~~Ps/second. Disk capacity is about 40 
Gbytes, and each node is equipped with 64 Mbytes of RAM. 
The network is scalable and thus can be easily extended by 
adding 8 * 8 crosspoint switches (ELITE chips) (http://www. 
vcpc.univie.ac.at/meiko/overview/Meik~Ove~iew.htm~). 

Paragon XP/S-A4 is the second computer to which we 
had access. This supercomputer from Intel contains 56 com- 
pute nodes, each equipped with 16 Mbytes of RAM, and 
working at 75 ~~LoPs/second. The Paragon is equipped with 
15 Gbytes of disk space and the processors are intercon- 
nected via a ZD mesh. The Paragon is located at the Univer- 
sity Computing and Information Services Center (EDVZ) at the 
Technical University Graz. 

SGZ Indy-COW is an Indy-workstation cluster from Sili- 
con Graphics, Inc (SGI). Each Indy performs about 100 
MF~OPs/second and is interconnected with a 10 Mbitslsecond 
Ethernet line. A Power Challenge computer managing 47 
Gbytes of disc space is also connected to the Ethernet and 
serves as the master processor. However, this cluster is by no 
means a standalone facility. Although performance was mea- 
sured mainly during weekends and over night, results de- 
pend on the usage of the various workstations at that time. 

Performance Assessment 
Figure 8 shows the efficiency obtained on each computing 
system, measured for various values of p and s. p represents 
the number of processors involved, and s is the number of 
patches into which the whole data set was decomposed. 

Utilizing more than half of all processors is commonly 
agreed to be an acceptable efficiency for parallel applica- 
tions. In all three diagrams, the efficiency never drops below 
this 50 percent level in the area of interest (see Figure 8, bot- 
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Speedup of Concurrent SfS on 
Melko, Paragon and SGI Cluster 
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Name Number of Processors 

Figure 9. Performance comparison of all platforms rela- 
tive to an ideal parallelization. 

nication links, but also the Cow may be used as an inexpen- 
sive alternative. 

SfS Results 
Fast execution is valuable, but carefully comparing the re- 
sults to those from the sequential version are mandatory to 
prove the correctness of the parallelized program. Because 
we had already modified the sequential algorithm to handle 
large data sets, correctness must be checked by comparing (a) 
the original and the modified sequential algorithms and (b) 
the sequential and parallel versions. 

The outputs for comparison (b) are identical. However, 
because it was impossible to refine large images before this 
project, there were no data available for comparison (a). We 
therefore had to validate the output of the modified sequen- 
tial program for large images by a human quality control pro- 
cess. It is important that the transition from one refined 
patch to its neighbors is smooth, and that oscillations at the 
rim of each patch are removed completely. 

In Figure 10, we compared the input DEM as obtained 
from stereo processing and subsequent resampling, and the 
Sfs-refined output DEM in a rather analytical way. Each im- 
mediate jump from white to black corresponds to a contour 
line. Contour lines are set every 250 m. To illustrate the ter- 
rain's behavior within these lines, fractions of the steps be- 

tom right). This area excludes parts where s < p, because tween the contour lines are shaded linearly as different gray 
then the number of patches to distribute is smaller than the values. 
available number of processors. Consequently, some proces- A better visual impression can be received looking at the 
sors must be idle. Areas where s - p are also out of interest DEMS from a perspective view point near the lower left tor- 

because load balancing cannot work properly under s ~ &  cir- ner, as shown in Figure 11. Triangulation artefacts and   la in, 
c.stances. D~~ to the coarse grain parallelization applied, artificially looking slopes are replaced by a more realistic ter- 
we have to exclude the first row (s = 1) and half of the sec- rain 
ond row (s = 12,  p 2 7). 

The upper left diagram in Figure 8 shows the efficien- 
cies measured for the Paragon supercomputer. Efficiency is 
very close to 1 whenever s is large enough to keep the load 
balancing mechanism working. This holds for the region hav- 
ing s > 4 - p. Paragon can thus be said to be the best and 
most stable system examined. 

Next best is the Meiko supercomputer (upper right dia- 
gram). Execution times varied; repeatedly running S ~ S  with 
the same input data led to significantly different timings due 
to the operating system's way of invoking the parallel pro- 
cesses. We therefore took the average of five runs to obtain 
the one-processor timings. However, we measured the time 
just once for all other parameter settings, resulting in a rather 
spiky diagram, even showing efficiencies larger than 1. 

The efficiency of the Cow already decreases at a low 
number of processors, which can be seen in the lower left 
diagram. Mostly independent of the problem size s, the effi- 
ciency decreases linearly with the number of processors p, 
indicating a communication bottleneck. It is not only the 
poor communications bandwith of Ethernet but also the bus 
topology that allows only one process to send data any time. 
In particular, the latter fact causes many bus collisions when 
several workers try to request new work nearly at the same 
time. 

To obtain a better impression of the achieved perform- 
ance gain, all three platforms were compared to an ideal par- 
allelization, which only can be acchieved theoretically. A 
1024- by 1024-pixel DEM, or 121 patches, was therefore re- 
fined on up to 14 processors. Execution time on one proces- 
sor is about 1 1 2  seconds on a Meiko, 128.5 seconds on a 
Paragon, and 500 seconds on an Indy workstation. 

In Figure 9 the speedup is shown, pointing out again the 
very good utilization of the computing nodes on Meiko and 
Paragon. Supercomputers are likely to perform well in this 
area of image processing due to their high bandwith commu- 
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Conclusion and Outlook 
An existing serial version of a time-consuming radar image 
shape-from-shading algorithm was first extended to handle 
large data sets using the principle of data decomposition, 
and then parallelized by employing a managerlworker algo- 
rithm with load balancing based on double-buffering. The 
parallel implementation was ported to a Meiko CS-2HA, an 
Intel Paragon XPIS-A4, and a cluster of SGI Indy worksta- 
tions (COW). Performance measurements on these platforms 
have shown that the Meiko and Paragon perform very well 
with an efficiency of better than 98 percent when using up to 
16 processors, which was the maximum number of comput- 
ing nodes available for our experiment. The efficiency of the 
COW was found to decrease significantly when less than ten 
processors were used, reflecting mainly a communication 
bottleneck on the Ethernet. However, due to the good per- 
formance in smaller conf?gurations, the COW might be used 
as an inexpensive alternative to supercomputers if only a few 
computing nodes are available. 

Based on the knowledge obtained from this implementa- 
tion, we intend to proceed with the parallelization of other 
computationally intensive algorithms used in image process- 
ing. Work will be focused on radar image processing algo- 
rithms such as matching, gridding, and resampling in order 
to process Magellan's massive 400 Gbytes of image data and 
to obtain a DEM from these images. Prior to that step, signal 
processing code must be improved to compute more accurate 
images from raw radar echoes. Specifically, this elaborate 
task also has to be parallelized, exploiting insight and results 
from this ongoing work. 

The experiences gained in this work also will be valua- 
ble for processing data from Earth-orbiting satellites equipped 
with either electro-optical or radar sensors. Concurrent algo- 
rithms will become mandatory for processing high resolution 
data from future satellites. 
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Figure 11. Perspective vlsualization of both the lnltial DEM (left) and the reflned DEM (r~ght) of F~gure 
10. All scales are in km. 
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