
An Image Processing Chain for 
Land-Cover Classification Using 

Multitemporal ERS-1 Data 
Jan Verhoeye and Robert De Wulf 

Given the frequent cloud cover, regular updating of land-cover 
maps of tropical areas using optical satellite data is problem- ! 
atic. As weather-independent ERS images are available on a 
regular basis, the question is mised as to whether they can be 
used to produce a land-cover map. 

A processing chain has been developed: it consists of cali- 
bration, resampling, filtering, segmentation, principal compo- 
nent transformation, and supervised classifcation of multi- 
tempoml mdar images. As input to this processing chain, any 
number of SAR.PRI images or derived texture images can be 
used. The output consists of a land-cover map and an accu- 
mcy assessment. The procedure has been applied to a series 
of four SAR images, taken over northeast Costa Rica, which 
yielded a map with an overall accuracy of 76 percent. The 
high precision with which the large banana plantations can be 
mapped is most interesting, both for its economic importance 
and for environmental monitoring. 

Introduction 
Land-cover maps are important tools for regional land-use 
planning. Not only should these maps contain the correct the- 
matic information, but this information should also be up-to- 
date. In tropical areas, the updating of the land-cover maps by 
use of optical satellite imagery, such as SPOT and Landsat, is 
often problematicd because of the frequent cloud cover. Quite 
often it will take years in order to procure a reasonably cloud 
free image; meanwhile, the value of the extant maps may de- 
crease to a point where they are almost useless. 

Since the launch of ERS-1 (1991) and ERS-2 (1995) by the 
European Space Agency (ESA), synthetic aperture radar (SAR) 
images are available that are weather-independent and which 
cover a large part of the globe on a regular basis. So it is quite 
understandable that the question has been raised as to what 
extent these images can be used to produce new land-use 
maps, and with what accuracy this can be achieved. 

These are the questions which will be addressed in this 
paper. 

Methodology 
A suite of tools has been designed for processing of ERS.SAR 
precision (PRI) images (Figure 1). One or more PRI images, in 
conjunction with synthetic channels such as texture images, 
can serve as input. The output consists of a classified image 
and a measure of accuracy. 

This processing chain consists of a number of links that 
will be discussed in more detail. As a rule, the chain has 
been implemented using commercially available software. 
When commercial software was unavailable, additional soft- 
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ware programs have been developed. This is the case for the 
calibration, segmentation, and evaluation modules. 

CalNwatlon, RescaHng, FNtering, and PC1 
First, the images are read from tape onto the computer hard 
disk, after which the header files of the PRI images are analyzed 
in order to extract the parameters needed for calibration. A pro- 
gram for calibration of ERS images has been developed using 
the formulas proposed by Laur (1992). Subsequently, the cali- 
brated images are imported into the image processing sohare.  
At this point, the -21-dB to +5-dB range, containing approxi- 
mately 95 percent of the pixels, is linearly rescaled to the 0 to 
255 range. Very little information is lost because the resulting 
precision (approximately 0.1 dB) is s uperior to the accuracy 
inherent in the data (0.5 dB; ESA, 1997). This enables storage 
in an 8-bit data format and results in a considerable data vol- 
ume reduction. 

After georeferencing, the images, originally measuring 
approximately 8000 by 8000 pixels, are reduced to 2000 by 
2000 pixels by applying an averaging procedure. While al- 
lowing faster processing by further reducing the data volume, 
the averaging also removes some of the speckle. The resolu- 
tion of resulting images is 60 meters. 

In an effort to further reduce the speckle, the images are 
subjected to filtering. Several techniques have been evalu- 
ated, both those specifically recommended for radar image 
processing (Lee, MAP, etc.), as well as those available within 
the image processing software (sigma filter). As an alterna- 
tive, omission of speckle filtering has also been considered. 

A principal components transformation (PCT) has been ap- 
plied to the Htered images. The analysis yields eigenvalues, which 
will be used as  weights during the segmentation. As an alterna- 
tive, not applying the transformation has also been considered. 

Basic Principles of the Segmentation Algorithm 
Due to the speckle inherent in radar imagery, data segmenta- 
tion is considered an important step in the processing chain. 

The segmentation algorithm described below has been il- 
lustrated using an example adapted from Rosenfeld (1984). 
For the sake of simplicity, the input image has been reduced 
to a single dimension (16 pixels), and a three-level pyramid 
is applied. 

The "Multiresolution Pixel Linking" algorithm (Burt, 1984; 
Rosenfeld, 1984) creates multiple versions of the original image, 
each with decreasing resolution. By stacking these images one 
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Figure 1. Processing chain. 

on top of the other, a tapering siructure is created, resembling a 
pyramid. 

The bottom layer (level 0) consists of the original image, 
measuring 2" rows by 2" columns. The next layer (level 1) 
measures 2" - rows by 2" - columns, while level k meas- 
ures 2" - rows by 2" - columns. Usually, the pyramid will 
consist of m layers, with m < n, meaning that the pyramid 
will be truncated. 

Between two consecutive layers (n and n + 1, called 
child and parent level, respectively), parent-child relations are 
defined, with each child being linked to the parent which it 
most resembles. 

A parent on row i, column j, and level n + 1 has, by def- 
inition, 16 potential children on level n. These can be found 
on rows 2 i  - 2, 2i - 1, 2i, 2 i  + 1 and on columns 2j - 2, 2 j  
- 1, 2j, 2 j  + 1. 

It can be proved that, by consequence, each child on 
row i, column j, and level n can choose from four potential 
parents, situated on row (integer)(i/2), (integer)(i/2) + 1, col- 
umn (integer)(j/2), (integer)(j/2) + 1 on level n + 1. 

The initial values of the base layer (level 0) of the pyra- 
mid are obtained by copying the original image. The initial 
values of level k (> 0) are calculated by averaging the pixel 
values of level k - 1. Hong (1982) obtained the best results 
when the averaging was done within windows measuring 
two by two pixels (Figure 2a). 

A parent on row i, column j, and level n + 1 is calcu- 
lated by averaging four children on level n. These can be 
found on row 2 i  - 1, 2 i  and column 2j - 1, 2j. 

When several channels are used for segmenting, the ini- 
tialization is performed for each channel separately. 

The h s t  step after the initialization consists of linking 
each child to the parent which it most resembles (Figure 2b), 
with the choice limited to the four potential parents described 
above. The criterion used for picking the parent is the Euclid- 
ean distance between the child and parent value, the child be- 
ing linked to the closest parent. 

When several channels are involved, the distance is cal- 

culated for each channel separately. When calculating the 
sum, each channel may be assigned a weight indicating its 
relative importance. 

The second step consists of the recalculation of each par- 
ent (Figure 2c). For each parent, all 16 potential children are 
evaluated. Only those that have been linked to the parent will 
be used for calculating a weighted average. The weights are 
the number of pixels in the base level (level 0) that have been 
linked to the current child through the child-parent links of 
lower levels. 

When several channels are involved, the new value is 
calculated for each channel separately. 

The newly calculated value for the parent can differ from 
the original one. For this reason, the linking and recalculation 
is reiterated until stable links emerge. This process is repeated 
for each pair of child-parent levels, starting from the base 
level upward till the top level is reached. 

By linking the pixels, starting from the base level up- 
ward till the top is reached, "treev-like structures are created 
within the pyramid. The "leaves" are formed by the pixels 
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Figure 2. (a) Initializing by averaging. (b) Linking the chil- 
dren to the closest parent. (c) Recalculating the values of 
the parents, using only the children which are linked to 
them and a weight proportional to the size of their sup 
port area. (d) Linking and recalculating are repeated until 
convergence is reached. Finally the value of the roots are 
dumped down to the base, following the links. 
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Figure 3. Principal components images, measuring 512 
by 512 pixels, with a relative variance content of 63 % 
(a); 16  % (b); 11 % (c); and 8 % (d). 

in the base level, and the "roots" can be found at the top 
level. Leaves and roots are connected by "branches," sym- 
bolized by the links between child and parent. Note that 
"dead branches" can exist, defined as branches that are not 
linked down to the base level and which thus do not have 
any leaves. 

When dumping the root values, the values of the top 
level nodes are moved downward, following the parent-child 
links (Figure 2d). As the number of pixels in the top level is 
relatively limited compared to the number of pixels in the 
base level, the base level will be well segmented. Boundaries 
will also be respected as the root values are transmitted fol- 
lowing the child-parent links. 

Results of the Segmentation 
A first set of input ERS-1 images used in the discussion of the 
results had been taken along the Pacific Coast of Costa Rica 
(Central America] in October and November 1993 and in 
May and August 1994 (Study area 1, Figure 7). 

The area is relatively flat and intensively used for agri- 
culture. In the center there is a large oil palm plantation, bi- 
sected by the Parrita River. Four villages are situated on the 
river banks, and isolated houses can be found in the planta- 
tion and along the coast. The plantation is bordered on the 
inland side by grassland and agricultural fields. Extensive 
mangrove forests occurring along the coast are in the right 
corner of the image. To the right of the estuary of the Parrita 
River, a complex of fish ponds can be discerned. 

After co-registrating the original images, the dimensions 
of the input images had to be adjusted to 1024 by 1024 pix- 
els, because the dimensions of the base layer of the pyramid 
is expressed as powers of two (2"). 

The four input images were subjected to a principal com- 
ponents transformation, which resulted in the four channels 
shown in Figure 3. At the same time, a statistical analysis was 
performed that determined the proportion of the total variance 
present in each of the output images. These values were fur- 
ther used as weights for the segmentation. 

Figure 4 shows the results of the segmentation using the 
four channels shown in Figure 3, with respective weights 63, 
16, 11, and 8 and using a pyramid five layers in height. At 
first sight, the resemblance between the input and output im- 
ages is striking. While performing the segmentation, each child 
has the opportunity to chose the parent which it most resem- 
bles from among four candidates, which assures that bounda- 
ries are being preserved to a large extent. Within the bounda- 
ries, on the other hand, the values are largely homogenized. 
The drawback is that point and linear elements, such as iso- 
lated houses and narrow waterbodies like the upstream reach of 
the Parrita River, tend to disappear as well. 

Although there is a very large resemblance between the 
input and the output images, it should be kept in mind that 
four channels were segmented simultaneously. This means that 
in every segmented channel there is also the effect of the 
other three to the extent indicated by their respective weights. 

As the number of pixels in the top level decreases expo- 
nentially as a function of the height of the pyramid, it is eas- 
ily understood that the segmentation result will be strongly 
iduenced as well. This effect is shown in Figure 5. It can be 
seen that initially the segments are small, but they grow in- 
creasingly larger as regions with similar values are merged, 
until finally only a few large segments persist. 

By confronting the result of the classification with the 
ground truth, it will be possible to determine the optimal 
values for the height of the pyramid. 

Variations on the Segmentation Algorithm 
As a side effect of the segmentation, small "islands" of a cer- 
tain value within more extensive areas of another value tend 
to disappear as they are "absorbed" by the larger areas. 

The problem can be illustrated by the case of the Parrita 
River, which at the estuary only measures five pixels. Values 
calculated exclusively using pixels that belong to the class 
"river" are found only on the lowest levels. On higher levels, 
nodes that belong to another class (the adjacent river bank) 
are included in the calculations, yielding very different val- 
ues. After dumping the values of the top level onto the base 

Figure 4. Segmentation result using four channels and a 
pyramid measuring five levels. 
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Figure 5. Segmentation result as  a function of the height 
of the pyramid: (a) 1, (b) 3, (c) 5, (d) 6, (e) 7, and (f) 8 
levels. 

level, pixels that belong to the class "river" contain values 
that differ markedly from the original value. 

Because the aim of the segmentation is to produce a more 
homogeneous image, valuable information can be lost from 
this type of data processing. Small point objects such as iso- 
lated constructions and fishponds as well as narrow linear 

This method can be very useful when one is interested 
in details that have a specific pixel value range. In radar im- 
ages, for instance, built-up areas and banana plantations typi- 
cally have very high values, whereas smooth water surfaces 
have very low reflectances. On the other hand, it is not possi- 
ble to retain details that do not have distinct values. The up- 
per reaches of the Parrita River and the roads crossing the oil 
palm plantation have values that overlap with the agricultural 
areas. As a result, they can not be conserved by defining a 
specsc interval. 

The effect of using a root interval can be seen by com- 
paring Figures 6a and 6b. In Figure 6a, an interval has been 
defined for the lowest pixel values, which typically corre- 
spond to water surfaces. As a result, the course of the river 
and the fish ponds are still clearly visible in the segmented 
image. In Figure 6b, on the contrary, no root interval has been 
used and the pixels belonging to the river have become mixed 
with those of the adjacent fields. 

A further improvement could be the introduction of a 
level below which it is not allowed for a child to become a 
root. This level will be called root level. By using these differ- 
ent techniques simultaneously (root interval with root level), 
an infinite number of combinations can be made. 

By confronting the result of the classification with the 
ground truth, it will be possible to determine the optimal 
values for the root level. 

Classification, Majority Filtering, and Accuracy Assessment 
The segmented images are then used as input to a supervised 
classification, using the maximum-likelihood algorithm. 

Finally, the result of the classification is subjected to a 
majority filtering, using a 7 by 7 window. 

The classification result has to be compared with the 
ground-truth data in order to assess its accuracy. Classifica- 
tion error matrices are used for computing the overall accuracy 
(Lillesand and Kiefer, 1994) and the Kappa value (Rosenfield 
and Fitzpatrick-Lins, 1986; Hudson and Ramm, 1987). 

Application of the Processing Chain for Land-Cover 
classification in Costa Rica 
Study Area 
The processing chain has been applied to a second set of ERS-1 
images taken over the Atlantic Zone of Costa Rica (Study area 
2, Figure 7). 

This study area is situated approximately between 
g030'N and l lON and between 83"W and 84"W (Figure 7) and 
covers 425,000 hectares. The area is flat, with a few isolated 
hilltops reaching 170 meters in elevation. Most soils are well 

structures such as rivers and roads are examples of features 
that mav d r o ~  out or be masked. I I 

A sblutiGn to this problem can be the optional linking of 
children and parents. A rule should be defined which deter- 
mines whether a child should link to its parent or whether it 
can exist as a root. In the latter case, trees can exist with leaves 
in the image (level O), but with its root somewhere within the 
pyramid (and not at the top level). 

One technique consists of defining a root interval. Nodes 
whose value lies within a predefined interval are not allowed 
to link with parents whose value lies outside this same inter- 
val. If they would choose such a parent, they are obliged to 
become a root. On the other hand, child nodes that lie out- 
side of an interval are allowed to link with a parent who lies 
within an interval. 

This method has the advantage that the existence of roots 
within the pyramid is limited to certain intervals. Pixels that 
lie outside of any defmed interval are forced to link up to the 
top level, ensuring a good segmentation. 

Figure 6. Segmentation result (a) with and (b) without 
root interval. 
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Figure 7. Study area (0 Microsoft). 

drained, with the exception of a more than ten-kilometer-wide 
zone along the Caribbean coast. The southern half is rather 
densely populated, with Puerto Viejo de Sarapiquf, Gucipiles, 
Gucicimo, and Siquirres as the main population centers. 

Until a few decades ago, the area was completely covered 
by wet tropical forest. The vegetation in the coastal swamps is 
characterized by the presence of the yolillo-palm (Raphia tae- 
digera) (Harcourt et al., 1996). 

Recent colonization of the area has brought important 
changes to the original vegetation. Land use in the southern 
part is dominated by cattle ranches. More recently, banana 
plantations have expanded dramatically. Less important ac- 
tivities include the cultivation of peach-palm (Bactris gasi- 
paes) and plantations of Gmelina arborea and teak (Tectona 
grandis) (Stoo~ogel and Eppink, 1995). 

The image data consist of four ERS-1 images, dating from 
09 November 1992, 16 August 1993, 20 September 1993, and 
25 October 1993. Collateral data consists of aerial photographs 
at a scale of 1:60,000, dating from 1992 and 1993, and cover- 
ing 70,000 hectares. More than 1200 field observations of land 
use were collected in 1995. 

Reference Classlflcatlon 
The four images serve as input to the processing chain de- 
scribed above. As each Iink in the chain can be varied inde- 
pendently, a large number of variations can be produced. In 
order to simplify the interpretation, only a single link at a 
time will be changed and the result will be compared to a 
reference classification. 

This reference classification is produced using the fol- 
lowing procedure: 

multitemporal input (four images), 
sigma filtering using a seven by seven window, 
principal components transformation, 
segmentation using a pyramid consisting of seven levels with 
root level at level one and two root intervals, 
classification in five land-cover classes using the maximum- 
likelihood algorithm, and 
majority filtering using a seven by seven window. 
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In addition to the field observations, ground truth is pro- 
vided by stereoscopic interpretation of the aerial photo- 
graphs. The independent test pixels in the confusion matrix 
(Table 1) refer exclusively to this digitized interpretation. As 
can be seen in Table 1, no ground-truth data are available for 
the yolillo class. This is due to the fact that, on the aerial 
ph&ographs taken over these extensive swamp forests, no 
landmark features (like cross-roads and bridges) exist that 
can be referenced to the topographical map< 

The classification result is presented in Figure 8. The 
patches "not classified" within the study area correspond to 
isolated hills that have been masked out because the effects 
of layover and radiometric distortion do not allow a correct 
classification. The general picture is largely consistent with 
the land cover as interpreted from the aerial photographs 
and the field observations: (1) yolillo swamps along the Car- 
ibbean coast, (2) forests in the northern half of the study area, 
(3) extensive grasslands, and (4) large-scale banana plantations 
in the south. A more detailed picture can be obtained by 
studying the confusion matrix (Table 1). Overall accuracy is 
76 percent. The rnisclassification of villages should come as 
no surprise because as houses in the study area are widely 
scattered along the roads and their surroundings are very het- 
erogeneous, typically containing a lot of trees and small fields. 
Considering the spatial resolution of the images used (60 me- 
ters), pixels inevitably are mixed. 

Considerable confusion exists between forest and grassland. 
The largest error is that of commission, with almost 45 percent 
of the forest land cover actually belonging to the grassland 
class. This is probably related to the ranching practices applied 
in the study area: even intensively used grassland contains a 
fair amount of trees and remaining hmks.  More extensively 
used pastures tend to be invaded rapidly by scrubs and bushes, 
eventually leading to a dense and entangled secondary vegeta- 
tion. This creates a rough surface and will lead to higher values 
of backscatter, which apparently are confused with those of for- 
est. Similar observations have been made in the Brazilian rain- 
forest (Keil et al., 1996) and on Borneo (Kuntz et al., 1996). 
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Confusion Matrix 
Ground Truth (pixels) 

Classified as banana forest villages grassland yolillo total 
- - -  - 

banana 24994 2043 364 2244 0 29645 
forest 2061 23795 125 21078 0 47059 
villages 426 250 23 344 0 1043 
grassland 1867 13666 378 98353 0 114264 
yolillo 43 431 4 172 0 650 
total 29391 40185 894 122191 0 192661 

Overall Accuracy (%) 76.39 
Kappa Value 57.02 
Variance 0.000003 

Producer's Accuracy (%) 
banana forest villages grassland yolillo 

banana 85 5 41 2 - 
forest 7 59 14 17 - 
villages 1 1 3 0 - 
grassland 6 34 42 80 - 
yolillo 0 1 0 0 - 
total 100 100 100 100 - 

- - 

Consumer's Accuracy (%) 
banana forest villages grassland yolillo total 

banana 84 7 1 8 0 100 
forest 4 5 1 0 45 0 100 

Figure 8. Land-cover classification for 1993 derived from 
ERS-1 data. 

villages 4 1 24 2 3 3 0 100 
grassland 2 12 0 86 0 Texture Channel 
yolillo 7 66 1 26 0 An adaptive-window variance-based texture image was de- 

rived from the first principal component. The value of a 
pixel in the texture image is the local variance in an adap- 

On the other hand, the accuracies for classifying grassland 
and banana are fairly high: both producer's and consumer's 
accuracy range between 80 percent and 86 percent. Monitor- 
ing of banana plantations in particular could prove to be an 
important operational application, because these plantations 
represent important economic values, but also pose severe en- 
vironmental threats (Hernandez and Scott, 1996). 

Variations on the Processing Chain 
As stated above, only a single link at a time will be changed 
and the result will be compared to the reference classification. 

Filtering 
The following alternatives have been considered: (1) no fil- 
tering, (2) sigma filter, (3) Lee filter, and (4) MAP refined filter 
within a 7 by 7 window. 

The results of the accuracy assessment are presented in 
Table 2, together with their respective Z-values. It appears that 
filtering dramatically increases the accuracy from 55 percent 
to 76 percent. The lowest accuracy is obtained without filter- 
ing, which indicates that the smoothing effect of the segmenta- 
tion does not make filtering superfluous. The highest accuracy 
is obtained using the sigma filter. Even though the filtering op- 
eration is rather time consuming (one hour processing time 
per image, Table 3), it certainly is a rewarding step. 

Principal Components Transformation (PCT) 
Table 4 illustrates that the application of a PCT yields a mod- 
est gain in accuracy. Nevertheless, the application of PCT can 
be valuable considering the modest amount of processing 
time involved (Table 3). 
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tively placed square window. The location of the window 
used to calculate local variance is the one with the lowest 
variance of all windows that include the pixel. The intent is 
to calculate texture while avoiding edge enhancements as 
much as possible (Ryherd and Woodcock, 1996). 

An extract from the texture image generated using a 3 by 
3 window can be seen in Figure 9. Two features are espe- 
cially striking: 

the high variances (bright tones) where sharp transitions oc- 
cur, for instance, at the borders of the banana plantations (I), 
or along the river banks (2) 
the low values (dark tones) in the coastal zone where yolillo 
dominates (3). This is presumably due to the closed smooth 
canopy without emergent trees which characterizes this vege- 
tation class. 

TABLE 2. COMPARISON BETWEEN CLASSIFICATION RESULTS WITH APPLICATION OF 
DIFFERENT FILTERS. 

No Filter Sigma Lee MAP 

Overall Accuracy (%) 55.07 76.39 59.40 62.87 
Kappa Coefficient (%) 32.72 57.02 38.73 41.62 
Variance 0.000002 0.000003 0.000002 0.000003 

z (*I No Filter Sigma Lee MAP 

No Filter 108.67 30.00 39.80 
Sigma 81.84 62.87 
Lee 12.97 
MAP 

- 

(*) Kappas are significantly different at 95 percent probability if Z 
1.96 
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TABLE 3. ESTIMATION OF PROCESSING TIME. TABLE 5. COMPARISON BETWEEN CLASSIFICATION RESULTS WITH ~ N C L U S ~ O N  OF 

TEXTURE IMAGES. 
Step Estimate 

Calibration (1) 2 h per image 
No Texture 3 by 3 5 by 5 7 by 7 

Rescaling and Georeferencing 2 h per image Overall Accuracy (%) 76.39 71.52 78.23 77.71 
Filtering 1 h per image Kappa Coefficient (%) 57.02 49.02 59.81 57.71 
PCT 0.25 h Variance 0.000003 0.000003 0.000003 0.000003 
Seementation (21 12 h 
classification (3) 
Evaluation 

Total Processing Chain 35 h for four images 

Remarks: (1) Includes analyzing the tape content, copying the files to 
the hard disk. (2) Segmentation of four images, each measuring 2048 
by 2048 pixels. (3) Does not include compiling the training set. 

TABLE 4. COMPARISON BETWEEN CLASSIFICAT~ON RESULTS WlTH APPLICATION OF 
PCT AND WITHOUT. 

No PCT PCT z (*) 

Overall Accuracy (%) 75.68 76.39 
Kappa Coefficient (%) 52.83 57.02 17.11 
Variance 0.000003 0.000003 

(*) Kappas are significantly different at 95 percent probability if Z > 
1.96 

The texture image was included in the segmentation as an ad- 
ditional information channel and was assigned the same weight 
as the first principal component. 

Three different window sizes have been evaluated, and 
the results can be seen in Table 5. For the 5 by 5 and 7 by 7 
windows, a small gain in accuracy can be noted, whereas the 
inclusion of the other texture image results in a decrease. Keil 
et al. (1996) and Kuntz et al. (1996) have successfully incor- 
porated texture images in their classification procedures, but 
Hoekman et al. (1994) conclude that texture is less useful as 
a tool for the interpretation of ERS-1 images due to the rela- 
tively coarse resolution. 

Because the extraction of textural features from the back- 
scatter images is a very time consuming process (several hours 
processing time) and, furthermore, the gains in accuracy are 
rather limited, it appears that the addition of a textural chan- 
nel can not straightforwardly be recommended. 

Figure 9. Texture image. 
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z (*I No Texture 3 by 3 5 by 5 7 by 7 

No Texture 32.66 11.39 2.82 
3 by 3 44.05 35.48 
5 by 5 8.57 
7 by 7 

(*) Kappas are significantly different at 95 percent probability if Z > 
1.96 

Segmentation 
As was pointed out in the description of the segmentation al- 
gorithm, two important parameters need to be determined the 
optimum height of the pyramid and the optimum root level. 

The minimum height of the pyramid is zero levels, which 
equals not applying the segmentation, while the maximum 
height is the number of levels where only two by two pixels 
remain. In the latter case, the image will probably be exces- 
sively homogenized. As the images used as input to the pro- 
cessing chain measure 2048 by 2048 pixels, the maximum 
height will be ten levels. 

By varying the height of the pyramid while keeping all 
other parameters constant, it is possible to describe the clas- 
sification accuracy as a function of the height [Figure 10). It 
can be seen that both the overall accuracy and the kappa 
value start at relatively low values. They increase gradually 
until a maximum is reached for a pyramid measuring seven 
levels. After this optimum, the accuracy rapidly decreases 
because very heterogeneous sets of pixels are merged. A sim- 
ilar decline has been described by Ryherd and Woodcock 
(1996) while applying a different algorithm to optical images. 

If the height of the pyramid is kept constant while the 
root level is being varied, the classification accuracy can be 
determined as a function of the root level (Figure 11). The 
maximum root level will be equal to the height of the pyra- 
mid (seven in the current case). It appears that the general 
tendency is a decreasing accuracy with increasing root level. 
This is due to the fact that a higher root level tends to re- 
duce the effect of the root intervals that have been defined, 
because no optional linking exists below the root level. In 
fact, the case where the root level equals the pyramid height 
corresponds to the case where no root intervals have been 
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Rgure 10. Acouracy as a function of the pyramid height. 
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Figure 11. Accuracy as a function of the root level. 

Belgium). The ERS-1.SAR images were made available by ESA. 
Mentioning trade names does not imply any kind of endorse- 
ment by the authors. 
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defined at all! From these observations, two conclusions can 
be drawn: the root level should be kept low and the defini- 
tion of root intervals is a valuable variation on the basic seg- 
mentation algorithm. 

Majority Filtering 
Table 6 shows that no significant differences can be found 
between the classification results with and without majority 
filtering. It appears that majority filtering should not be rec- 
ommended as an indispensable processing step. 

Conclusions 
From the evaluation of the processing chain, the following 
can be concluded: 

the classification of multitemporal ERS-1 data can yield a 
land-cover map with an accuracy of almost 80 percent, 
the accuracy with which banana plantations are detected is 
particularly high and indicates a potentially important opera- 
tional application, 
filtering and segmentation are essential links in the process- 
ing chain, and 
the use of texture channels yields only limited benefits. 
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