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Abstract 
Detection and location of objects is a challenging issue in 
mobile mapping data processing for reducing human opera- 
tions and enhancing efficiency, considering the vast amount 
of data and information acquired by mobile mapping sys- 
tems. This paper describes research results of algorithms 
based on Hopfield neural networks for utility object detection 
and location. Specifically, street light poles are modeled in 
the three-dimensional ( 3 ~ )  scene domain and detected by the 
network with neurons formed by vector edge features from 
the model and the mobile mapping images. The established 
Hopfield neural network is able to detect light poles at spe- 
cifc locations. It can also be used to detect and locate all 
light poles from a mobile mapping sequence, regardless of 
their positions. Such automation is particularly important for 
automatic generation of special layers in a utility GIs, for ex- 
ample, traffic signs, fire hydrants, road centerlines, and oth- 
ers. The developed algorithms and implementation results 
are described. 

Introduction 
Mobile mapping technology has demonstrated an innovative 
way for large-scale spatial data acquisition (Bossler et al., 
1991; Li et al., 1994; Novak, 1995; Schwarz and El-Sheimy, 
1996; He, 1996; Li, 1997). The rich information contained in 
the mobile mapping image sequences can be extracted and 
used for generating spatial databases in a wide range of ap- 
plications. Despite many advantages, current mobile map- 
ping data processing techniques are limited by the following 
factors: (1) most data processing procedures are manual, (2) 
the great scale variation in images causes difficulties in accu- 
rate photogrammetric measurement and object recognition, 
and (3) geometric constraints provided by navigation sensors 
are not fully utilized. 

Automation of mobile mapping image processing has 
been prioritized as an important research issue ever since the 
early development stage of the technology. He and Novak 
(1992) initiated research on automatic analysis of highway 
features from images. Tao et al. (1998) presented an im- 
proved approach by using a "snake" based physical model. 
Enhancement of the point accuracy by selecting an optimal 
set of images along a mobile mapping sequence was reported 
by Li et al. (1996). Multiple image matching techniques were 
applied in processing the image sequences by Xin (1995) and 
Braess (1997). Such research efforts improved the accuracy 
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and efficiency of mobile mapping image processing. How- 
ever, the automation is supported by primary features such 
as pixels and extracted lines. Thus, the level of automation 
and reliability of results may be limited. In contrast, ap- 
proaches using neural networks recognize objects from im- 
ages considering characteristics of objects at the object level 
(Lin et al. 1991; Bishop 1995). 

Object detection and location from stereo images have 
been researched based on principles of pattern recognition 
and photogrammetry. Human operators perform object recog- 
nition most efficiently, although in some cases object location 
can be automated by digital image matching and triangulation 
techniques. It is so far not possible to fully simulate the bio- 
logical process of object recognition by a computer system. 
Computational approaches have been used in artificial neural 
networks. In fact, Hopfield neural networks demonstrated 
promising potential in finding corresponding primitives and 
objects from stereo images (Hopfield and Tank, 1985; Li and 
Nasrabadi, 1989; Lin et al., 1991; Zhang, 1996; Tseng et al., 
1997). In the present research, it was expected that a vector- 
based Hopfield neural network would solve some of the prob- 
lems faced by traditional raster-based pattern recognition 
methods when applied in mobile mapping data processing. 
The objectives were 

To develop algorithms for automatic detection of utility ob- 
jects from mobile mapping images, 
To study neural networks and apply them to recognition at 
object level, and 
To integrate geometric constraints existing in mobile mapping 
image sequences. 

This paper presents the algorithms based on Hopfield 
neural networks considering geometric constraints that are 
derived from GPSlINS data and mobile mapping image se- 
quences. Specifically, street light poles are modeled in the 
three-dimensional ( 3 ~ )  scene domain and detected by the 
network with neurons formed by vector edge features from 
the model and the mobile mapping images. The Hopfield 
neural network is able to detect light poles at specific loca- 
tions. It can also be used to detect and locate all light poles 
from a mobile mapping sequence, regardless of their posi- 
tions. Such automation is particularly important for auto- 
matic generation of special layers in utility GIs, for example, 
traffic signs, fire hydrants, road centerlines, and others. The 
developed algorithms and implementation results are de- 
scribed. 
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Figure 1. A Hopfield neural network for recogn~tion of corresponding face 
features. 

Mobile Mapping Image Sequences 
A mobile mapping system is usually equipped with a mobile 
platform, navigation sensors, and mapping sensors. The mo- 
bile platform may be a land vehicle, a vessel, or an aircraft. 
Generally, navigation sensors, such as Global Positioning 
System (GPS) receivers, vehicle wheel sensors, and inertial 
navigation systems (INS), provide both the track of the vehi- 
cle and position and orientation information of the mapping 
sensors. Objects to be mapped are sensed directly by map- 
ping sensors, for example, charge-coupled-device (CCD) cam- 
eras, laser rangers, and radar sensors. Because the orientation 
parameters of the mapping sensors are directly supplied by 
the navigation sensors, complicated computations such as 
photogrammetric triangulation are reduced or avoided. Spa- 
tial information regarding the objects is extracted directly 
from the georeferenced mapping sensor data by integrating 
navigation sensor data. In this paper, our focus is on a typi- 
cal land-based mobile mapping system with a land vehicle, 
GPS receivers, an INS unit, and a pair of synchronized CcD 
cameras. Stereo image pairs taken by such a system form a 
georeferenced image sequence with known camera orienta- 
tion parameters, namely, the exposure center positions and 
camera attitudes in the scene domain. Interactive measure- 
ments in the image domain lead to object positions in the 
scene domain (Li et al., 1994). The algorithms introduced in 
this paper will automate the measuring procedure by object 
detection and subsequent object location. 

Hopfleld Neural Networks and Object Recognition 
So far it has not been possible to fully simulate in a com- 
puter system the human biological process of object recogni- 
tion. Instead, computational approaches have been used in 
artificial neural networks. The vector-based Hopfield neural 
network applied in this paper is based on the network mod- 
els published by Hopfield and Tank (1985) and Lin et al. 
(1991). A Hopfield neural network has the following key be- 
havior characteristics: (1) it is completely described by a 
state vector V = (v,, v,, ..., v,) of all neurons, (2) there are a 
specific set of stable states V, = (v,, v,, ..., v,) that correspond 
to the stored patterns, and (3) the system evolves in time 
from any arbitrary starting state V, to the stable state V, by 
decreasing its energy E. The Hopfield neural network is built 
from a single layer of neurons (units), with feedback connec- 
tions from each unit to every other one (except itself). The 
change of the unit states is associated with an energy func- 
tion. It uses a two-dimensional array for storing the neuron 
states V (Figure 1). The rows represent features of Image I, 
for instance, faces numbered i = 0, 1, 2, and 3. The columns 
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represent face features of Image I1 numbered k = 0, 1, 2, and 
3. Faces 2 and 3 in Image I, for example, may not be the 
same as faces 1 and o in Image 11 because of camera orienta- 
tions. The Hopfield neural network is to find the correspond- 
ing faces between the images. Such correspondences are 
represented in the state array of V = (v,,, u,,, ..., v,,) where a 
high correspondence between face i in image I and face k in 
Image I1 is expressed by a high state value (0 5 vik 5 1) of 
neuron (i, k). The final state V, is obtained by a minimization 
of the following energy function: 

E = -EZCC i k j 1 ~jkjjvjk~jj 

+ z (1 - F vikl2 + (1 - Zvik)' (1) 

where the first term is a compatibility constraint; the second 
and third terms are uniqueness constraints. vik converges to 
1.0 if face i in Image I matches face k in Image I1 perfectly. 
Otherwise, it is greater than or equal to 0. According to Lin 
et al. (1991), CikjI is the interconnection strength between 
neuron (i, k) (row i and column k) and neuron (j, I )  (row j 
and column I): i.e., 

where x, is the n-th measuring feature of neuron (i, k) and y,, 
is the n-th measuring feature of neuron (j, I); w, is a weight 
with W, = 1; and the transfer function F is 

1 i f l x -  
-1 

where e is a threshold. The measuring features xn and yn 
evaluate the differences between characteristics of objects to 
be recognized in the two images. Examples of the measuring 
features may be shape similarity, orientation consistency, 
and conformance to constraints. If the measuring features 
from the two images do not match through the thresholds, 
the transfer function, and the weights, the energy function in 
Equation 1 will be penalized by a large value. Otherwise, the 
measuring features will have a smaller contribution to the 
energy function. In applications, it is very important to de- 
sign the detailed measuring features, weights, and thresholds. 
We separate the energy terms into two groups and give them 
different weights. Group 1 is the first term and Group 2 con- 
tains the second and third terms. Two weight coefficients p, 
and p, (p, 2 0, p, 2 0, and p, + p, = 1) are assigned to the 
groups, respectively: i.e., 

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING 



(a) 

\ // 
(b) 

Figure 2. Back-projected edges from a 
model (a) and extracted image edges (b). 
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Figure 3. Definition of measuring features 
of a light pole. 

I 

The following steps depict the algorithm developed for 
recognizing light poles from the mobile mapping data: 

Step 1. Create a matrix with a dimension of M by I (M is the 
number of back-projected model edges and I is the 
number of edge features in the image) to store neu- 
ron states V. Figure 2 shows an example of a pair of 
back-projected edges from a light pole model and the 
extracted image edges. M = 2 and I = 10. 

Step 2. Set the initial states of V as (Lin et a]., 1991) 

ve = g (uo,)= [I + exp (-2u$./u0)l-l and 
u $ = u , + d = u , + d  

where u, is called input voltage. u, = 0.0002 and d 
is a random number uniformly distributed between 
- 0 . 1 ~ ~  and 0 . 1 . ~ ~  

Step 3. Build the C coefficients in Equation 2: i.e., 
= PI [-  FFFT cikjlvikvjII 

+ p2[7  (1 - F + 7 (1 - Z vy)4. (4) G.. = W * F(61f.~J9 6 ~ ~ , )  + W2 * F(ar,u,, %) 

+ w3 * F(ao, a,,) + W4 * F(Ar,, 
If we increase p,, unique matches between features in + w, * F(A4, AM,) + We * F(GI1, Gm) 

rows and'columns will be favored. A high value of p, will + w7 * F(G4, GM,) + W, * F(Gm, GIM) 
allow a feature in a row/column to match multiple features 
in columns/rows. The minimization of Equation 4 is per- The measuring features of 6, a,  A, and G are defined. 
formed by updating the state array V iteratively. Note that Their subscripts of M and I are those of the model 
the image features in Figure 1 may also be edge or point fea- and image, respectively. Wi (i = 1, 2, ..., 8 are 
tures. weight factors of the measuring features ( 2 Wi = 1). 

They are set as W,, = W3, W, = W,, We = W, = W8/2. 
Automatic Object Detection and L0~ats0n The weights are adjusted according to the object to 
In the context of this paper, object detection involves finding be recognized and the images. Note that F(x,y) = 0 if 
all image features of a certain object to be detected in the im- i = j o r k = l .  
age domain. Subsequently, object location requires the deter- Step 4. Set the current number of iteration as t = 1 and the 
mination of corresponding stereo features among the de- limit of iterations as n. 
tected image features and the photogrammetric triangulation Step 5. Update the values of u, and V, (Lin et al., 1991) for 
of object positions in the scene domain using the corre- (i = 0; i < M; i++) and for (k = 0; k < I;k++): i.e., 
sponding stereo features. We use street light poles as an ex- 
ample of objects to explain the principles. To detect and 

~ $ 1  = u h + - ( K 1 + 2 * K z + 2 * K , + K 4 )  1 (6) locate other objects, only those parts that are object specific, 6 
for example, measuring features in Equation 2, need to be 
modified. In the scene domain, a light pole can be modeled where 
as a cylinder with a certain diameter and a certain length. It 
should stand vertically not far from the mobile mapping van. K1=hXf(u:,  
Because the images are georeferenced, given its approximate = h x (E C, Vj, - Vj, - Z Vb - uL + 21, 
location in the scene domain, the 3D light pole model can be j I J 

back-projected onto images using the camera orientation 
1 K, = h X f (u:, + -Kl), 

parameters. The light pole model is then represented as two 2 

parallel edges in the images (Figure 2a). The measuring fea- 1 
K3 = h X f (uk  + ;K2), 

tures in Equation 2 evaluate differences between the back- 
projected pole edges and the extracted image edge features K, = h x f ( u g  + K,), and 

(Figure 2b). Two groups of measuring features are defined in 
the image domain, namely, local measuring features and re- h is a constant (0.0001). 
lational measuring features. The local measuring features in- step 6. Vgl = g ( ~ 2 ' )  and repeat and n. 

clude (Figure 3) Step 7. Calculate the final states 

Length (A): length of an edge, 
Azimuth (a]: azimuth of an edge (measured clockwise from 
the x-axis), 
Distance (6): distance between two edges, and 
Local gradient ( + l  or -I),: east-west gradient ( + I  for the 
case from background to the interior of the pair, -1 other- 
wise). 

The relational measuring features are 

Ratio (6/h): width-height ratio, and 
Relative gradient (+1 or -1Iiq; relative gradient dehed  on 
edges i-j and k-1 similar to the local gradient. 

The Hopfield neural network uses various combinations of 
the above measuring features to recognize poles in different 
situations. 
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Figure 4. Extracted and labeled edges (a) and the original 
image (b). 

1 if v, > 0, = 0.8 v;, = 
0 otherwise 

Detectlon and Location of a Speclflc Object 
In Figure 4a, the extracted edges are labeled and overlaid on 
an original image. The same extracted edges and the back 
projection of the 3D pole model are shown in Figures 5a and 
5b, respectively. Data in the scene domain include a light 
pole model defined as a cylinder with a given radius and 
length of 0.212 m and 6.795 m, respectively. The values 
were obtained by manual photogrammetric measurements of 
light poles from the images in the project area. Data in the 
image domain are the edge features in images that are sup- 
posed to be extracted by digital image processing. At this 
time, they are manually extracted by an operator. Each edge 
has a label ID, a starting node and end node with coordi- 
nates, and a gradient. The image format is 512 pixels by 480 
pixels. 

The initial position of the pole in the scene can be given 
by an approximation from the vehicle navigation data and 
common sense. It can also be from a spatial utility database. 
The neural network is supposed to answer questions such as 
"is there a light pole in the immediate neighborhood of the 
approximate position in the scene domain?" or "does the 
light pole described by the utility database remain in the 
same place?" Among the edges in Figure 5a, 4 and 5, 8 and 
9, and 12 and 13 are pairs of edges of light poles. Edges 44 
and 45 represent a partial light pole. The parallel edges 10 
and 11 represent a trashcan. To detect the specific light pole 
represented by edges 4 and 5 with a known approximate po- 
sition in the scene domain, we use the measuring features of 
edge length (scale variant), edge azimuth (close to vertical), 
and local gradient (compatibility of an edge pair to form a 
pole). Edges 0 and 1 in Figure 5b are artificial lines back pro- 
jected from the 3D light pole model. The weights p, and p, of 
the two energy groups are set equal in the energy function. 
Numerical values of the measuring features of some typical 
pole(s) in the images can be calculated and analyzed to de- 
termine thresholds (8)  and weights (W,) in Equations 2 and 
3. The maximum number of iterations is set at 1,000. The 
unit of the thresholds of A  and 6  are in pixels. That of the 
threshold of a is degrees. A partial differential equation is 
used to link the updated neuron states and the energy de- 
creaselincrease in Equation 4. This differential equation is 
solved iteratively by the aforementioned algorithm. Table 1 
lists the final states of the neurons, indicating the recognition 
result with the following parameters: 

Threshold of A  = 4.0 
Threshold of a = 3.0 

Weight of A  = 0.25 
Weight of a = 0.25 

5,4 

- - 
(a) Co> 

Figure 5. Extracted edges (a) and the back projection of 
the model (b). 

Threshold of S  = 4.0 
Threshold of 6 t h  = 0.05 
Threshold of gradient = 0 
p1 = 0.5 

Weight of 6  = 0.25 
Weight of 6 / A  = 0.00 
Weight of gradient = 0.25 
p2 = 0.5. 

According to Table 1, the system found the specific pole 
with edges 4 and 5 successfully by giving high state values 
of 1 for neurons (model line 0, extracted line 4) and (model 
line 1, extracted line 5). Other light pole edges gained rela- 
tively high state values, while nonpole edges have low val- 
ues. In the same way, the 3D pole model is projected to the 
right image and compared with the extracted edges in the 
right image by the neural network. The final coordinates of 
the pole in the scene domain are determined by a photo- 
grammetric intersection of the corresponding image poles in 
the left and right images detected by the neural network. 

Detection of NonspeciRc Objects in the image Sequence 
To detect all light poles in the image (Figure 4a), regardless 
of their positions, measuring features that are not signifi- 
cantly affected by object positions in the scene domain 
should be applied. It is clear that lengths of pole edges in the 
image domain vary because of pole positions and the per- 
spective projection. The selected measuring features include 
azimuth of edges (close to vertical), width-length ratio 
(photo-scale invariant), and relative gradient (compatibility of 
a line pair to form a pole, photo-scale invariant). Other meas- 
uring features are excluded by setting the corresponding 
weights to 0. For the image data, the applied parameters are 

Threshold of A  = 0.00 Weight of A  = 0.00 
Threshold of a = 3.00 Weight of a = 0.25 
Threshold of S = 0.00 Weight of S  = 0.00 
Threshold of 6 / A  = 0.05 Weight of 6 / A  = 0.50 
Threshold of gradient = 0 Weight of gradient = 0.25 
p1 = 0.5 P, = 0.5 

IABLE 1. FINAL STATES (VJ OF THE NEURONS FOR DETECTING THE LIGHT POLE 

REPRESENTED BY EDGES 4 AND 5 IN FIGURE 4A. 
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The pole model can be placed in an arbitrary position in tion parameters are known, there are four collinearity equa- 
the scene domain covered by the image. It is then back pro- tions from two spatial lines in the scene domain, namely, the 
jected onto the image. It should be expected that the back line from the pole bottom in the image (xb, yb, -f) through 
projected model edges would match all image pole edges. the exposure center [Xo, Yo, 2,) to the pole bottom in the 
Table 2 gives the final states (v,J of the neurons for detecting scene domain (X,, Y,, Z,), and another line from the pole top 
all light poles in the image. The neural network recognized in the image (x,, y,, -f) through the exposure center (X,, Yo, 
all light poles correctly by indicating matches of model Zo) to the pole top in the scene domain (X,, Y,, Z, + I ) :  i.e., 
edges 0 and 1 with image pole edges of 4 and 5, 8 and 9,12 
andl3, and 44 and 45 with large state values of 0.98, respec- xb = - f  a,, (XB - xo) + a,, (YE - Yo) + a,, (Z, - Zd 
tively. a,1 (X, - Xo) + a,, (YE - Yo) + a,, (ZB - Zd' 

This detection process can proceed to detect all light 
poles in the image sequence. a,, (XB - xo) + a,, (YE - Yo) + a,, (ZB - Zo) 

Yb = - f a 3 ,  (XB - XJ + a,, (YB - Yo) + a,, (Z, - Zo)' 

Location of Detected Objects In the Scene Domain a,, (XB - XO) + al2 (YB - Yo) + a,, (Z, + I - Zo) and 
Figure 6 depicts a sequence of 25 stereo image pairs from a xt = - f  
mobile mapping survey line. Exposure stations of stereo im- a,, (XB - Xd + a,, (YB - Yo) + a,, (ZB + 1 - Zo)' 

ages taken simultaneously by the mobile mapping system are a,, (xE - Xo) + a,, (YB - Yo) + a,, (ZB + 1 - Zo) 
indicated by + + symbols. The exposure stations are num- Yt = - f a 3 ,  (X, - Xo) + a,, (YE - Yo) + a,, (Z, + 1 - ZJ (7) 

bered from 102 to 127. The two stereo images at each station 
are distinguished by their station numbers with an L (left) or In the above four equations, there are three unknowns 
R (right) extension, for example, 11 2L and 112R. Six light (x,, Y,, Z,) which can be solved for by a least-squares adjust- 
poles, from LP1 to LP6* are marked symbols- The ment. The coordinates are then used to back project a 3D 
sure stations andfor images are listed for each light pole that pole model to the right image 1 0 2 ~ .  ~h~ two back-projected 
appears in the images- The algorithms discussed above are model edges are then used to match the image pole edges in 
able to detect and locate a position specific light pole or to the right image by a neural network (position specific). Once 
detect all light poles in the image sequence in the image do- the corresponding image pole feature in the image is 
main. found, the location of the pole in the scene domain can be 

In order to locate the detected poles in the scene do- calculated by a photogrammetric triangulation. To obtain a 
main, corresponding image pole features in stereo images more precise location of a pole, for example LP2, the pole 
have to be identified. Subsequently, their locations in the whose location is first calculated from Equation 7 is back 
scene domain can be triangulated from the detected corre- 
sponding image features. Thus, the major task at this stage is 
to find the corresponding image pole features in the image 
domain. Such corresponding features are mostly found in 
stereo image pairs with "hard" baselines at the same expo- 
sure stations, but they may also be found in stereo image 
pairs with "soft" baselines formed by images of preceding 
andlor following exposure stations. Considering the effective 
baseline (baseline component vertical to the line that links 
the pole and the middle point of the baseline) of possible 
combinations of stereo pairs with hardlsoft baselines, for 
each pole, only three stations that are close to the pole are 
used for location of the pole. For example, light pole LP2 in 
Figure 6 is covered by images of exposure stations 102, 103, 
104, 105, 106, 107, and 108. However, only three stations 
(1 06, 107, and 1 08) are used. 

To start the location process of the sequence, a detected 
image pole feature (a pair of edges) with the greatest length 
[closest to the cameras) in either image at the first station 
(I@), for instance 102L, is automatically selected. The image 
coordinates of the pole bottom and pole top are known as 
(x,, y,) and [x,, y,). Their corresponding coordinates in the 
scene domain are (X,, Y,, Z,) and (X,, Y,, Z,). Assume that 
the pole is vertical and the pole length is I: we then have X, 
= X,, Y, = Y,, and Z, = Z, + 1. Because the camera orients- 

I TABLE 2. FINAL STATES (v,~) OF THE NEURONS FOR DETECTING ALL LIGHT POLES 
1 IN FIGURE 4A.  
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Figure 6. Light pole detection and location from an image 
sequence. 
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Figure 7. Distribution of locations of light pole LP2 esti- 
mated by various combinations of stereo pairs and a 
bundle adjustment. 

projected onto multiple images (1 06L, 106R, 107L, 107R, 
108L, and 108R). The neural network finds all corresponding 
image pole features in the selected images. A bundle adjust- 
ment is applied to estimate the optimal location of the pole 
in the scene domain using all corresponding image pole fea- 
tures. This process is performed on the entire image se- 
quence, so that all light poles in the sequence are located. 

Figure 7 presents locations of light pole LP2 estimated 
by 11 combinations of stereo image pairs and a bundle ad- 
justment. Ideally, the locations should be at the same point 
or within a very small area. However, because of the rela- 
tively short effective baselines (small intersection angles) the 
locations are spread along the track direction. In the middle 
of the distribution are points calculated from the stereo pairs 
with large effective baselines (e.g., 106R & 108L and 106L & 
108L) and those close to the pole. Two image pairs, namely 
107L & 108R and 1 07R & 1 08R, have very small effective 
baselines and the locations calculated thereby are far away 
from the average location. A bundle adjustment using all de- 
tected corresponding image features of LP2 from three close 
exposure stations is performed and leads to the location that 
matches the results of triangulations with large effective bas- 
elines, instead of the average location from all individual lo- 
cations. This confirms the conclusion from a previous study 
on optimization of photogrammetric triangulation using mo- 
bile mapping data (Li et al., 1996). 

Conclusions 
Algorithms based on Hopfield neural networks for object de- 
tection and location, especially for street light poles, from 

mobile mapping image sequences have been researched and 
developed. A software system NZMZ (Neural Networks for Mo- 
bile Mapping) is developed based on the C++ programming 
language in the Microsoft Windows 32-bit environment. Ma- 
jor contributions of this research are 

Establishment of a Hopfield neural network for object recog- 
nition from mobile mapping image sequences using 3D object 
models, 
Application of the developed algorithms for detection and lo- 
cation of light poles from a single image pair and/or from an 
image sequence, 
Understanding of the behavior of the neural network when 
applied in various mobile mapping situations, and 
Development of the NzMZ system. 

The measuring features of the network are crucial for 
characterizing objects and thus are object dependent. If dif- 
ferent objects are to be recognized, new measuring features 
should be defined and integrated in the network. A further 
challenge is to develop a systematic learning process of the 
neural network for handling mobile mapping data. We be- 
lieve that such research will result in a generic method for 
the optimal determination of thresholds and weight values in 
the network for different objects. 
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In October 2000, the American Society for Photogrammetry and Remote 
Sensing will devote its issue of Photogrammetric Engineering and Remote 
Sensing (PEPRS) to Remote Sensing and Decision Support Systems 
(DSS). DSS would include the science-based predictive models, remote 
sensing information, verification and validation, and the communities 
that conduct the decision support. Authors are encouraged to submit 
manuscripts addressing remote sensing and GIs contributions to opera- 
tional Decision Support Systems. 
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Flood Plain Risk Assessment (Disaster Management) 
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developing or operating decision support systems using remote sensing1 
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