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Abstract

One of the primary applications of the global 1-km land-cover
piscover product is to derive biophysical and ecological
parameters for a range of land-surface models, including
biosphere-atmosphere, biogeochemical, and ecological
models. The validation effort reported in this special issue
enables a realistic assessment of the implications of mis-
classification errors for parameter estimates within the models.
In most land-surface models, cover types are aggregated to
coarser groupings than the 17 IGBP classes for estimaling
parameters, with aggregation schemes varying with individual
models and individual parameters within each model. Mis-
classification errors are consequential only when they occur
between cover types that are not aggregated by the model. We
use examples of two biophysical parameters—Ileaf area index
and surface roughness—as estimated for use in the Simple
Biosphere Model (SiB2) and other modeling applications to
quantify the effects of misclassification on parameter esti-
mates. SiB2 relies on satellite data as well as land-cover
information for estimating the biophysical parameters. Con-
sequences of misclassification are likely to be greater for those
models that do not use satellite data. Mean class accuracy
based on those sites for which a majority of interpreters agreed
(percentage of validation pixels classified correctly out of total
number of validation pixels, averaged over all classes), ad-
justed by area of each cover type in the IGBP DISCover product,
is 78.6 when all misclassification errors are included. By
excluding misclassification errors when they are inconse-
quential for leaf area index and surface roughness length
estimates, mean class accuracies are 90.2 and 87.8, respec-
tivelv. The results illustrate that misclassification errors are
most meaningfully viewed in the context of the application of
the land-cover information.

Introduction

One of the fundamental requirements of global land-surface
models is an accurate description of the vegetative cover on the
Earth’s land surface. Biosphere-atmosphere models describing
exchanges of water, energy, and carbon between the land sur-
face and the atmosphere, for example, have become increas-
ingly sophisticated over the past 20 years (Sellers et al., 1997).
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Such models now allow more realistic representations of land-
atmosphere interactions within atmospheric general circula-
tion models than the greatly oversimplified representations in
previous generations of models. These advances are essential
contributions towards fully coupled land/atmosphere/ocean
models aimed ultimately toward a better understanding of the
biological and physical responses of the Earth system to
increasing atmospheric carbon dioxide concentrations, land-
use change, and other types of global change.

Land-cover types are generally used indirectly in land-sur-
face models to assign values to parameters that are then used
for model calculations (Dickinson, 1995). For example, values
for albedo will be assigned at least partially according to land-
cover type based on local measurements or appropriate values
from the literature. Numerous other parameters are assigned
according to cover type, including surface resistance, leaf area
index, and a large number of optical properties of the vegeta-
tion (Dickinson, 1995; Henderson-Sellers ef al., 1993). The
degree to which parameter estimates rely on knowledge of
land-cover type depends on the degree to which the particular
model uses other sources of information about the land sur-
face. Biosphere-atmosphere models, e.g., the second version of
the Simple Biosphere Model (Sellers et al., 1996), and biogeo-
chemical models, e.g., CASA (Potter ef al., 1993; Field ef al.,
1995), which use satellite data in addition to land cover, have
reduced reliance on a land-cover classification because the sat-
ellite data inherently describe the spatial heterogeneity and
other characteristics of the land surface. On the other hand,
models which do not rely on satellite data (Dickinson et al.,
1993; Parton et al., 1993) are more sensitive to errors in the
land-cover classification.

Prior to the development of land-cover classifications
derived from satellite data such as the IGBP DiSCover product
and others (DeFries and Townshend, 1994b; DeFries ef al.,
1998; Hansen ef al., in press), these models relied on global
land-cover data sets compiled from ground-based sources
known to have a number of sources of errors, notably a lack of
consistent definitions of cover types and source data collected
at varying times with varying reliability Townshend et al., 1991;
DeFries and Townshend, 1994a). The creation of global land-
cover data sets from satellite data alleviates some of these
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sources of error because they are based on internally consistent
measurements, but, as described in this issue, errors do occur
from noisy data, erroneous ancillary data, or mislabeling.
Errors in land-cover classifications, whether ground-or satel-
lite-based, propagate into the parameter estimates within the
model and ultimately affect the accuracy of the water, energy.
and carbon exchanges and, subsequently, the accuracy of other
coupled models. While a systematic study of the sensitivity of
model results to land-cover classification errors has not been
carried out (Henderson-Sellers et al., 1993), clearly the sensi-
tivity depends largely on the particular details of the model. In
many cases, the look-up tables which assign parameter values
aggregate the land-cover types into coarser land-cover catego-
ries; for example, all forest types might be aggregated for assign-
ment of a parameter which does not depend on knowledge of
whether the forest is needleleaf or broadleaf. In this case, errors
in land-cover classification between needleleaf and broadleaf
forest types have no adverse consequence for the parameter esti-
mate. Such information is essential in order to more fully inter-
pret the results of the validation effort and to set priorities for
future revisions of the IGBP DISCover product.

In this paper, we explore the consequences of misclassifi-
cation errors in the IGBP DISCover product, as quantified by the
validation effort reported in this special edition, on parameter
estimation in biosphere-atmosphere models. Because of the
large number of models and the numerous parameters that are
at least partially dependent on cover type within each model,
we choose to illustrate the sensitivily of parameter estimates to
classification errors for two biophysical parameters, leaf area
index and surface roughness, as estimated for use in the Simple
Biosphere Model (siB2) and other modeling applications.

Derivation of Biophysical Parameters for the Simple Biosphere

Model

The Simple Biosphere Model (siB2) (Dorman and Sellers, 1989;
Los, 1998; Sellers et al., 1996) was designed for use in atmo-
spheric general circulation models to describe the climatogi-
cally important interactions between the terrestrial biosphere
and the atmosphere, including fluxes of radiation, momentum,
sensible heat, and latent (evapotranspiration) heat. Early ver-
sions of the model (simple SiB) did not use satellite data to esti-
mate biophysical parameters. Later versions (SiB2) include a
more realistic model of leaf photosynthesis and conductance
and use satellite data along with maps of land cover and soil
type to drive the model (Sellers et al., 1996).

In addition to a large number of time-invariant land-sur-
face properties stratified by land-cover type, SiB2 requires
time-varying fields of three parameters—fraction photosyn-
thetically active radiation (FPAR), leaf area index (LAI), and sur-
face roughness length—to calculate the carbon assimilation or
gross photosynthesis in addition to fluxes of heat, water, and
momentum (Sellers et al., 1996). Algorithms for calculating the
three parameters are given in Sellers et al. (1996) and Sellers et
al. (1994). These algorithms have subsequently been revised
based on field measurements as described in Los (1998) and
Los and Pollack (submitted).

In summary, monthly values of the Normalized Difference
Vegetation Index (NDV1) are used to estimate FPAR, which in
turn are used to estimate leaf area index (Figure 1). Surface
roughness length is then derived from the leaf area index. The
FPAR derivation is according to the following:

FPAR = 0.5FPARypy + 0.5FPARgk

where

Fl:}ARI\’I‘]\"] = [[[NDVI_NUVImin}*U-94”NDVIHHIK_NDVIUHIJ
+ 0.01,
FPARgg = ({SR_ Slean:[]-g'quanx'”SRmin] +0.01,
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Figure 1. Derivation of biophysical parameters as used in
the Simple Biosphere Model (SiB2).

SR = (1 + NDVI)/(1—NDVI), and
NDVIye and NDVI,;, are the maximum and minimum NDVI
values for each cover type.

The only dependency on land-cover type in the FPAR deriva-
tion is the scaling of the NDVI value based on the maximum and
minimum NDVI for each cover type. Hence, the FPAR estimate is
primarily driven by the NDVI value and not the cover type.

Green leaf area index is subsequently estimated from the
FPAR estimate according to

Lyw = log(1—FPARg )Ly, /10g(0.05)

where Ly, is the green leaf area index for vegetation cover frac-
tion fv, FPARfv = FPAR/fv, Ly ; = maximum leaf area index for

TaBLE 1. MaxiMum LEAF AREA INDEX AND SURFACE ROUGHNESS LENGTH VALUES
FOR DERIVATION OF BIOPHYSICAL PARAMETERS. SiB CLASSES AND THE
CorresPONDING IGBP CLasses ARE LISTED.

Surface
Roughness
Length (m)
Maximum for

LAI (m*/m?*) LAI =2 SiB Class IGBP Class

7 3 1 Evergreen 2 Evergreen broad-
broadleaf leaf forest

7 0.8 2 Broadleaf 4 Deciduous broad-
deciduous leaf forest

7.5 1 3 Broadleaf and 5 Mixed forest
needleleaf

8 1:1 4 Evergreen 1 Evergreen nee-
needleleal dleleaf forest

8 1.1 5 Deciduous 3 Deciduous nee-
needleleat dleleaf forest

5 0.15 6 Subtropical 9 Savanna
drought deciduous
woodland

5 0.15 7 Grassland and 10 Grasslands
shrub cover

5 0.15 8 Evergreen broad- 8 Woody savanna
leaf woodland

5 0.1 9 Shrubland with 7 Open shrubland

bare soil

5 0.1 10 Tundra 6 Closed shrubland
5 0.15 11 Bare soils 16 Barren
5 0.15 12 Agriculture 12 Croplands

14 Croplands/natu-
ral vegetation
mosaic
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TaBLE 2. ConFusion MATRIX FoR IGBP DISCOVER GLOBAL 1-KM LAND-COVER CLASSIFICATION BASED ON THE VALIDATION SAMPLES. SAMPLES FOR WHICH A MAJORITY
OF INTERPRETERS AGREED ON THE Cover TvPe WERE USED To CONSTRUCT THE MATRIX. VALUES ARE PERCENTAGES OF SAMPLES FOR THE COVER TYPE.
CoLumns ARe THE Cover Type IN THE IGBP DISCover ProbucT, Rows Are COVER TYPES IDENTIFIED IN THE VALIDATION EFFORT.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 7500 0 0 0 500 0 0 0 0 0 5.00 500 0 500 0 5.00 0

2 0 87.50 0 0 0 0 0 0 0 0 417 0 0 417 0 4.17 0

3 0 0 55.56 0 0 0 0 0 0 0 22.22 2222 O 0 0 0 0

4 0 0 0 62.50 625 0 0 0 0 0 0} 1875 0 6.25 0 0 0

5 455 0 0 455 6810 0 13.64 0 0 0 0 455 0 455 0 0 0

6 0 0 0 0 0 75.00 0 0 0 500 5.00 0 0 0 0 5.00 10.00

7 0 0 0 0 0 0 87.50 0 0 435 0 0 0 0 0 8.33 0

8 0 0 0 0 0 0 0 69.23 1538 3.58 0 11.54 0 0 0 0 0

9 0 0 0 0 0 0 0 17.65 64.71 0 0 588 0 11.76 0 0o 0
10 0 0 0 0 0 0 500 0 0 75.00 0 10.00 0 5.00 0 5.00 0
11 769 0 0 0 0 0 3846 0 0 7.69 3846 0 0 0 0 7.69 0
iz 0 0 0 0 0 0 0 0 0 476 0 85.71 476 476 0 0o 0
13 0 0 0 0 833 0 0 0 0 0 0 8.33 66.67 833 0 4.17 4.7
14 870 13.04 0 0 435 0 0 0 0 0 0 13.04 435 5652 0 0 0
15 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000 0
17 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
covertype i, and fv is estimated by scaling the maximum FPAR Surface roughness length is calculated from leaf area index
value over the year in each grid cell by the maximum possible using a cover type-dependent look-up table that was calcu-
FPAR (0.95). The value for maximum leaf area index varies lated with a first-order closure model (Sellerset al., 1989). The
according to cover type (Table 1); hence, LAl is moderately look-up table provides values for surface roughness length for
dependent on cover type. each cover type for different values of LAL Roughness length is

TABLE 3. SENSMIVITY OF THE DERIVATION OF LEAF AREA INDEX (TABLE 3a) AND SURFACE ROUGHNESS LENGTH (TABLE 3b) FoR USE iN SiB2 To LAND-CoVER
CrassiFicaTioN ERRORS. O INDICATES THAT ESTIMATE IS NOT SENSITIVE To CONFUSION BETWEEN THE COVER TYPES IN THE ROW AND COLUMN AND 1 INDICATES
THAT THE ESTIMATE IS SENSITIVE. CovER-TYPE CODES ARE FOR IGBP CLaSSES.

(a) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 == 1 0 1 1 1 1 1 1 1 — 1 — 1 — 1 =
2 1 — 1 0 1 1 1 1 1 1 — 1 = 1 — 1 —
3 0 1 — 1 1 1 1 1 1 1 = 1 — 1 — 1 —
4 1 0 1 e 1 1 1 1 1 1 — 1 — 1 — 1 —
5 1 1 1 1 — 1 1 1 1 1 == 1 — 1 — 1 =%
6 1 1 1 1 1 — 0 0 0 0 = 0 — 0 — 0 —
7 1 1 1 1 1 0 — 0 0 0 = 0 — 0 — 0 =
8 1 1 1 1 1 0 i — 0 0 — 0 = () — 0 =
9 1 1 1 1 1 1 0 0 - 0 = 0 — 0 — 0 —
10 1 1 1 1 1 0 0 0 0 — 0 = 0 —_ 0 ==
11 — R - _ = = - = — - — — — — — —
12 1 1 1 1 1 0 0 0 0 0 = — — 0 —_ 0 —
13 = - = — — = - —_ = - — = — — — - —
14 1 1 1 1 1 0 0 0 0 0 —_ 0 = = — 0 =
15 - = = = — - - - - — - — - — — - —
16 1 1 1 1 | 0 0 0 0 0 — 0 — 0 =2 — =
17 —_ — — — —_ — — — —_ — — = — = = == —
(b) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 — 1 0 1 1 1 1 1 1 1 = 1 — 1 — 1 =
2 1 = 1 1 1 1 1 1 1 1 — 1 — 1 — 1 —
3 0 1 — 1 1 1 1 1 1 1 — 1 — 1 - 1 =
4 1 1 1 — 1 1 1 1 1 1 e 1 = 1 — 1 ==
5 1 1 1 1 — 1 1 1 1 1 — 1 = 1 = 1 —
6 1 1 1 1 1 — 0 1 1 1 — 1 — 1 — 1 -
7 1 1 1 1 1 0 — 1 1 1 = 1 — 1 — 1 =
8 1 1 1 1 1 1 1 = 0 0 — 0 = 0 ~ 0 —
9 1 1 1 1 1 1 1 0 — 0 — 0 — 0 — 0 -
10 1 1 1 1 1 1 1 0 0 —_ —_ 0 — 0 — 0 —
12 1 1 1 1 1 1 1 0 0 0 — — — 0 — 0 =
13 - - - = = - - = — — — — — = — — —
14 1 1 1 1 1 1 1 0 0 0 — 0 = = = 0 —
15 — = - = = - = = = - — — — — — —_ ==
16 1 1 1 1 1 1 1 0 0 0 — 0 — 0 = = —
17 — e — — — — — — — - =
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highly dependent on vegetation type. Typical values for LAI
greater than 2 are approximately 3 m for tropical forests, 1 m for
other tall vegetation types, and 0.1 m for short vegetation types
(Table 1).

The biophysical parameters calculated with this method
have been applied in biosphere-atmosphere models such as
SiB2, biogeochemical models such as CASA, and models esti-
mating net primary production (Crameret al., in press) and
have been made available through the International Satellite
Land Surface Climatology Project (ISLSCP) (Meeson et al.,
1995).

Methods and Results

The misclassification errors reported by the validation effort for
the IGBP DISCover product (Table 2) represent the confusions
occurring between the validation and classification results. To
ensure confidence in the validation result, we use only those
samples from the validation effort for which a majority of inter-
preters agreed (Scepan, 1999, in this issue). The values given
in Table 2 are percentages of validation pixels identified cor-
rectly in the classification out of the total number of validation
pixels for which the majority of interpreters agreed for each
cover type.

If errors occur between cover types for which the model
does not make a distinction in estimating a particular parameter,
the error is essentially zero. With this in mind, we assess the
errors with respect to two parameters, leaf area index and sur-
face roughness. These parameters were chosen as examples
that are moderately and highly dependent on land-cover type,
respectively.

Leaf Area Index

The relationship used to derive LAl from FPAR for use in SiB2
and other models depends on the maximum LAl value assigned
for the cover type (Table 1). As such, the sensitivity of this
parameter to misclassification occurs only when vegetation

types with different values for leaf area index are confused
(Table 3a). Taking this into account, the class accuracies can be
adjusted so that errors within cover types that have the same
values for maximum LAl are excluded. Mean class accuracy in
this case is 84.5 percent (90.2 percent when accuracies are
weighted by land area of each cover type in the IGBP DISCover
classification), compared with a mean class accuracy of 74.0
percent (78.6 percent when adjusted by area) if errors between
all land-cover types are considered equally (Table 4).

Surface Roughness

[n the case of surface roughness length estimates within siB2,
estimates are more highly dependent on land-cover type (Table
1) and sensitivity to misclassification errors is greater than in
the case of LAI (Table 3b). Excluding the errors between cover
types that are aggregated for the purpose of estimating surface
roughness, mean class accuracy is 82.4 percent (87.8 percent
when adjusted by area) (Table 4).

Simulations of leaf area index and surface roughness
length for an NDVI value of 0.5 illustrate the errors from land-
cover misclassification that propagate from the FPAR to the LAI
and finally to the surface roughness length estimates (Figure 2).
Figure 2 shows the differences between the estimated value of
LAI (Figure 2a) and surface roughness (Figure 2b) for the correct
cover type and the estimated value if the land-cover type were
misclassified as broadleaf evergreen forest (tall vegetation),
mixed forest (medium vegetation), and open shrubland (short
vegetation). LAl estimates are less sensitive to misclassification
error than surface roughness because the former is more
strongly dependent on the FPAR estimate than is the latter. The
maximum error in LAl estimates occur when grassland is con-
fused with broadleaf evergreen forest (Figure 2a), and the max-
imum error in surface roughness length estimates occurs when
open shrubland is confused with broadleaf evergreen forest
(Figure 2b). The examples show, as expected, that errors are
largest when tall vegetation is confused with short vegetation.

TABLE 4. CLASS ACCURACIES WHEN ALL MISCLASSIFICATION ERRORS ARE WEIGHTED EQUALLY AND WHEN ERRORS TO WHICH PARAMETER ESTIMATES ARE INSENSITIVE
ARE EXCLUDED,

Class Accuracy
Accuracy for Accuracy Adjusted for
Area in IGBP all Errors Adjusted for Derivation of
DISCover Equally Derivation of Surface
Product Weighted LAI in SiB2 Roughness in
Cover Type (km* = 10") (%) (%) SiB2 (%)
1 Evergreen needleleal forest 6.37 75.00 75.00 75.00
2 Evergreen broadleal forest 12.08 87.50 87.50 87.50
3 Deciduous needleleaf forest 1.96 55.56 55.60 55.56
4 Deciduous broadleal forest 3.23 6:2.50 62.50 62,50
5 Mixed forest 6.25 68.10 58.10 68.00
6 Closed shrubland 2.58 75.00 85.00 75.00
7 Open shrubland 18.08 87.50 100.00 87.50
8 Woody savanna 10.17 69.23 100.00 100.00
9 Savanna 9.34 64.71 100.00 100.00
10 Grasslands 11.04 75.00 100.00 95.00
11 Permanent wetlands 1.30 38.46 — —
12 Croplands 14.02 85.71 95.23 95.23
13 Urban and Built-up land 0.26 66.67 e —
14 Cropland/natural vegetation mosaic 13.94 56.52 69.56 69,56
15 Snow and ice 16.57 — - —
16 Barren 18.41 100.00 100.00 100.00
17 Water bodies — — —
Mean* 74.03 84.49 82.37
Area adjusted mean*”* 78.56 90.21 87.80

*excluding classes 11 and 13 which do not have corresponding classes in SiB2and classes 15 and 17 for which validation statistics are

not reported

**area adjusted mean is calculated by weighting the class accuracy by land area in the DISCover classification; excludes classes 11, 13,

15, and 17
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Figure 2. (a) Differences in estimates of leaf area index and
(b) surface roughness length, if land-cover types are con-
fused, for NDVI = 0.5.

If the confusion occurs between shorl vegetation types, for
example, between open shrubland and savanna, errors in sur-
face roughness length are small. For the purpose of adjusting
the class accuracies, we assume that the parameter estimate is
equally sensitive to these two types of confusion, suggesting
that the values in Table 4 underestimate the class accuracies in
cases where the parameter estimate is only slightly sensitive to
misclassification error.
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Conclusions

Here we show two examples of biophysical parameter esti-
mates for use in SiBz and other models to illustrate the sensitiv-
ity of parameter estimation to land-cover classification errors in
IGBP DISCover. Because land-cover types are aggregated within
the model for the purpose of estimating parameters, area-
adjusted mean class accuracies are 90.2 percent and 87.8 per-
cent for leaf area index and surface roughness length, respec-
tively, compared with 78.6 percent when all land-cover
misclassifications are weighted equally. There are many other
parameters estimated within SiB2, and many other biosphere-
atmosphere and global biogeochemistry models, each with its
own aggregation scheme. These results serve only as examples
to illustrate that errors in land-cover classifications should be
viewed only in the context of the application of the land-cover
information. For some applications, such as biodiversity
assessments and resource management, or for more sophisti-
cated biosphere-atmosphere models in the future, it is likely
that detailed land-cover information will be required and mis-
classification errors will have significant consequences for a
particular application. For other applications where a coarse
description of the land surface is required, misclassification
errors may be of lesser consequence.
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