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Abstract
One of the primary app)ications of the global 7-km land-cover
DISCover product is to derive biophysical and ecological
parameters for a runge of land-surface models, including
biosphere-atmosphere, biogeochemical, and ecological
models. The validation effort reported in this special issue
enables a realistic assessment of the implications of mis-
classification erors for parameter estimates within the models.
In most land-surface models, cover types are aggregated to
coarcer groupings than the 17 IGBP classes for estimating
parameters, with aggregation schemes varying with individual
models and individual parumeters within each model. Mis-
classification errors ore consequential only when they occur
between covet types that are not aggregated by the model. We
use examples of two biophysical parameters-leaf area index
and surface roughness-as estimated for use in the Simfle
Biosphere Model (siB2) and other modeling applications to
quantify the effects of misclassification on parameter esti-
mates. Sinz relies on satellite data as well as |and-cover
information for estimating the biophysical parumeters. Con-
sequences of misclassification are likely to be greater for those
models that do not use satellite data. Mean class accuracy
based on those sites for which a majority of interpreters agreed
(percentage of validation pixels classified cotectly out of total
number of validation pixels, averaged over all classes), ad-
justed by area of each caver type in the IGBP Dlscover product,
is 78.6 when all misclassification errors are included. By
excluding misclassification etors when they are inconse-
quential for leaf area index and surface roughness length
estimates, mean class eccuracies are 90.2 and 87.8, rcspec-
tively. The results illustrate that misclassification eilorc are
most meaningfdly viewed in the context of the application of
the land-cover information.

lntroduction
One of the fundamental requirements of global land-surface
models is an accurate description ofthe vegetative cover on the
Earth's land surface. Biosphere-atmosphere models describing
exchanges ofwater, energy, and carbon between the land sur-
face and the atmosphere, for example, have become increas-
ingly sophist icated over the past 20 years (Sel lers et d.,1997).

Such models now allow more realistic representations of land-
atmosphere interactions within atmospheric general circula-
tion models than the greatly oversimplified representations in
previous generations ofmodels. These advances are essential
contributions towards fullv coupled land/atmosphere/ocean
models aimed ultimately toward a better underst-anding of the
biological and physical responses of the Earth system to
increasing atmospheric carbon dioxide concentrations, land-
use change, and other types ofglobal change.

Land-cover types are generally used indirectly in land-sur-
face models to assign values to parameters that are then used
for model calculations (Dickinson, t00S). For example, values
for albedo will be assigned at least partially according to land-
cover type based on local measurements or appropriate values
from the literature. Numerous other parameters are assigned
according to cover type, including surface resistance, leafarea
index, and a large number of optical properties of the vegeta-
tion (Dickinson, L995; Henderson-Sellers et o1., 1993). The
degree to which parameter estimates rely on knowledge of
land-cover type depends on the degree to which the particular
model uses other sources of information about the land sur-
face. Biosphere-atmosphere models, e.g., the second version of
the Simple Biosphere Model (Sellers ef 01., lss6), and biogeo-
chemical models, e.9., CASA (Potter et aL.,1993; Field ef o/.,
19s5), which use satellite data in addition to land cover, have
reduced reliance on a land-cover classification because the sat-
ellite data inherently describe the spatial heterogeneity and
other characteristics ofthe land surface. On the other hand,
models which do not rely on satellite data (Dickinson et a1.,
1993: Parton ef d1.. 1993) are more sensitive to errors in the
land-cover classification.

Prior to the develooment of land-cover classifications
derived from satellite dita such as the IGBP DISCover product
and others (DeFries and Townshend, tgg+b; DeFriei ef o1.,
1998; Hansen et al., in press), these models relied on global
land-cover data sets compiled from ground-based sources
known to have a number of sources of errors, notably a lack of
consistent definit ions of cover tvpes and source data collected
at varying times with varying.eiiabil i ty Townshend et al.,1gg1.;
DeFries and Townshend, 1ss4a). The creation ofglobal land-
cover data sets from satell i te data alleviates some ofthese
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sources of error because they are based on internally consistent
measurements, but, as described in this issue, errors do occur
from noisy data, erroneous ancillary data, or mislabeling. -
Errors in land-cover classifications, whether ground-or satel-
lite-based, propagate into the parameter estimates within the
model and ultimately affect the accuracy of the water, energy,
and carbon exchanges and, subsequently, the accuracy ofother
coupled models. While a systematic study of the_sensitivity of
model results to land-cover classification errors has not been
carried out (Henderson-Sellers et d., 1993) , clearly the sensi-
tivity depends largely on the particular details of the model. In
many cases, the lobk-up tables which assign parameter values
aggregate the land-cover types into coarser land-cov_er catego-
ries; for example, all forest types mightbe aggregated for_assigrr-
ment of a parameter which does not depend on knowledge of
whether the forest is needleleaf or broadleaf. In this case, enors
in land-cover classification between needleleaf and broadleaf
forest types have no adverse consequence for the parameter esti-
mate. Such information is essential in order to more fully inter-
pret the results of the validation effort and to set priorities for
luture revisions ofthe IGBP DISCover product.

In this paper, we explore the consequences of misclassifi-
cation errori in the IGBP DISCover product, as quantified by the
validation effort reported in this special edition, on parameter
estimation in biosphere-atmosphere models. Because of the
large number of models and the numerous parameters that are
at least partially dependent on cover type within each model,
we choose to illustrate the sensitivity of parameter estimates to
classification errors for two biophysical parameters, leaf area
index and surface roughness, as estimated for use in the Simple
Biosphere Model (sisz) and other modeling applications.

Defivation of Biophysical Panmetets fot the Simple Biosphete
Model
The Simple Biosphere Model (sisz) (Dorman and Sellers, 1989;
Los, 1998; Sellers et a).,1996) was designed for use in atmo-
spheric general circulation models to describe the climatogi-
cally important interactions between the terrestrial biosphere
and the atmosphere, including fluxes of radiation, momentum,
sensible heat, and latent (evapotranspiration) heat. Early ver-
sions of the model (simple siB) did not use satellite data to esti-
mate biophysical parameters. Later versions (siez) include a
more realistic model of leaf photosynthesis and conductance
and use satellite data along with maps of land cover and soil
type to drive the model (Sellers et 41., 1996).

In addition to a large number of time-invariant land-sur-
face properties stratified by land-cover type, siB2 requires
time-varying fields of three parameters-fraction photosyn-
thetically active radiation (r'pnn), leaf area index (rar), and sur-
face roughness length-to calculate the carbon assimilation or
gross photosynthesis in addition to fluxes of heat, water, and
momentum (Sellers et al.,1.9gE). Algorithms for calculating the
three parameters are given in Sellers ef 41. (1996) and Sellers et
d.l. (1994). These algorithms have subsequently been revised
based on field measurements as described in Los (tg9B) and
Los and Pollack (submitted).

In summary, monthly values of the Normalized Difference
Vegetation Index (Nlvt) are used to estimate FPAR, which in
turn are used to estimate leaf area index (Figure 1). Surface
roughness length is then derived from the leafarea index. The
FPAR derivation is according to the following:

FPAR = 0.SFPARNDVT + 0.5FPARSR

where

FPARppyl = (((NDVI-NDVI^1,)*9.94;75DVIas-NDVI611)

+  0 .01 ,
FPARsp : ((SR-SR*i,)*0.94/SR-*-SR-n) + 0.01,

sn: (1 + NDVD/(1-NDVI), and
NDVImd and NDVI-i. are the maximum and minimum NDVI
values for each cover type.

The only dependency on land-cover type in the FPAR deriva-
tion is the scaling of the NDVI value based on the maximum and
minimum NDVI for each cover type. Hence, the FPAR estimate is
primarily driven by the NDVI value and not the covertype.- 

Green leaf area index is subsequently estimated from the
FPAR estimate according to

L*,r, : log(1 -FPARru)L*u,i/log(0.05)

where L*.iu is the green leaf area index for vegetation cover frac-
tion fu, FIARfu : FPAR/fu, L^u,i : maximum leaf area index for

TABLE 1. MAXTMUM Lenr ARrn INDEX AND SuRrncr Roucnruess Leltcrs Vnrurs

FoR DERvATToN or Btopnvstcal PnneuereRs. SiB CLASSES AND THE
Connespollottlc IGBP CLASSES ARe Llsreo.

Surface
Roughness
Length (m)

Maximum for
LAI (m2lm'z) LAI = 2

2 Evergreen broad-
Ieaf forest

4 Deciduous broad-
leaf forest

5 Mixed forest

1 Evergreen nee-
dleleaf forest

3 Deciduous nee-
dleleaf forest

9 Savanna

10 Grasslands

B Woody savanna

7 Open shrubland

6 Closed shrubland
16 Barren
12 Croplands
14 Croplands/natu-

ral vegetation
mosaic

SiB Class IGBP Class

7
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I

I
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tr

5

tr

E

5

3 1 Evergreen
broadleaf

o.8 2 Broadleaf
deciduous

1 3 Broadleaf and
needleleaf

7.7 4 Evergreen
needleleaf

1.7 5 Deciduous
needleleaf

0.15 6 Subtropical
drought deciduous
woodland

0.15 7 Grassland and
shrub cover

0.15 8 Evergreen broad-
leaf woodland

0.1 I Shrubland with
bare soil

0.1 10 Tundra
0.15 11 Bare soi ls
0.15 12 Agriculture
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Figure 1. Derivation of biophysical parameters as used in
the Simple Biosphere Model (si82).
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Tnare 2. Corurustottl MArRrx FoR IGBP DlSCovEn Groenl 1-KNa Lnro-CovEn Crnssrrrcnrror Bnseo or THE VALTDATToN Snvples. SANIpLES FoR wHrcH A lvlA_,oRrry
or httERpRerrns AGREED oN THE CovER TYPE WERE Useo ro CorsrRucr rne MerRrx. Vncues ARg PgRcErvrncss or Snruples roR +tg CoveR Tvpe.

CoLuvttts ARr rle CoveR Tvpe lru rge IGBP DISCovER Pnooucr, Rows ARE CovER Tvprs loerurraeo rr rHe VlrrDnlot ErroRr.

1 7L 6t c141 31.21 11 0

1 75 .00  0
2  0  87 .50
3 0 0
4 0 0
5 4 .55  0
6 0 0
7 0 0
8 0 0
s 0 0

1 0 0 0
11 7 .69  0
L 2 0 0
1 3 0 0
1.4  8 ,70  13 .04
15 NA NA
1 6 0 0
17 NA NA

0 5 .00
0 0
0 0

62.50 6.25
4.55  68 .10
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 8 .33
0 4 .35

NA NA
0 0

NA NA

5.00 5 .00  0
4 . 3 5  0  0

0 0
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0 0

69.23 15.3 B
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0 0
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0 0
0 0
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0 0

NA NA

0
0
0
0
0

75.OO
0
0
0
0
0
0
0
0

NA
0
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0
0

J C . J O

0
0
0
0
0
0
0
0
o
0
0

NA
0
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0
0
0

1 3 . 6 4
0

87.50
0
0
5.00

38.46
0
0
0

NA
0

NA

0 5 .00  5 .00  0  5 .00  0  5 .00  0
o  4 .1 .7  0  0  4 .17  0  4 .1 ,7  0
o 2 2 . 2 2 2 2 . 2 2 0 0 0 0 0
0 0 1 8 . 7 5 D 6 . 2 5 0 0 0
0 0 4 . 5 5 0 4 . 5 5 0 0 0

0 0  0  5 ,00  10 .00
0  0  0  8 . 3 3 0

3 . 5 8 0 1 , 7 . 5 4 0 0 0 0 0
0 0 5 . 8 8 0 1 . 1 . . 7 6 0 0 0

75 .00  0  10 .00  0  5 .00  0  5 .00  0
7 .69  38 .46  0  0  0  0  7 .69  O
4 .76  0  85 .71  4 .76  4 .76  0  0  0
0  0  8 , 3 3  6 6 . 6 7  8 . 3 3  0  4 . 1 7  4 . 1 7
0  0  1 3 . 0 4  4 . 3 5  5 6 . 5 2  0  0  0

NA NA NA NA NA NA NA NA
0 0 0 0 0 0 1 0 0 . 0 0

NA NA NA NA NA NA NA NA

cover type i, and fv is estimated by scaling the maximum FpAR
value over the year in each grid cell by the maximum possible
FPAR [0.95). The value for maximum leaf area index varies
according to cover type (Table 1); hence, LAI is moderately
dependent on cover type.

Surface roughness length is calculated from leaf area index
using a cover type-dependent look-up table that was calcu-
Iated with a first-order closure modef(sellersef 01., 1gB9). The
Iook-up table provides values for surface roughness length for
each cover type for different values of lai. Roughness length is

TneLE 3. Serlstrtvtrv or tHe DsRtvntton or LEnr ARen lnoex (Tnere 3a) nno SuRrncE RoucHrusss LencrH lrnere 3b) FoR UsE rn Si82 ro Lnno-CovER
Crasstncartoru EnRoRs. 0 lruotcnres tHnr EsrtttarE ls ruor SErustrtvE ro Corunusto| BETWEEN rtE CovrR Types rru rte Rownruo Corurlru nro 1 l|orcnres

rHAT THE Esrrvnrc ls Srrsrrrvr. Covrn-Tvpe Cooes Ane FoR lGBp CussEs.
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highly dependent on vegetation type. Typical v-alues for Lat
greater thin 2 are approximately 3 m for tropical forests, 1 m for
other tall vegetation types, and 0.1 m for short vegetation types
(Table 1J.

The biophysical parameters calculated with this method
have been applied inbiosphere-atmosphere models such as
sinz, biogeoihemical models such as CASA, and models esti-
mating net primary production (Crameref o1., in press) and
have been made available through the International Satellite
Land Surface Climatology Project (ISLSCP) (Meeson et 41.,
1995 l .

Methods and Results
The misclassification errors reported by the validation effort for
the IGBP DISCover product (Table 2) represent the confusions
occurring between the validation and classification results' To
ensure confidence in the validation result, we use only those
samples from the validation effort for which a majority of inter-
preters agreed (Scepan, 1999, in this issue). Thevalues given
in Table 2 are percentages ofvalidation pixels identified cor-
rectly in the classification out of the total number of validation
pixels for which the majority of interpreters agreed for each
cover tvDe.

If eirors occur between cover types for which the model
does not make a distinction in estimating a particular parameter,
the error is essentially zero. With this in mind, we assess the
errors with respect to two parameters, leaf area index and sur-
face roughness. These parameters were chosen as examples
that are moderately and highly dependent on land-cover type,
respectively.

Leaf Area Index
The relationship used to derive LAI from FPAR for use in siBz
and other models depends on the maximum LAI value assigned
for the cover type (Table 1). As such, the sensitivity of this
parameter to misclassification occurs only when vegetation

tvoes with different values for leaf area index are confused
(Gtle sa). Taking this into account, the class accuracies can be
adiusted so that errors within cover types that_have the same
-raiues for maximum LAI are excluded. Mean class accuracy in
this case is 84.5 percent (90.2 percent when accuracies are
weighted by land area of each cover type in the IGBP DISCover
clasiificationl, compared with a mean class accuracy of z4.o
percent (zB.o percent when adjusted by area) if errors between
all land-cover types are considered equally (Table a).

Suilace Roughness
In the case of surface roughness length estimates within siBz,
estimates are more highly dependent on land-cover type (Table
1) and sensitivity to misclassification errors is greater than in
the case of lnr (Table 3b). Excluding the errors between cover
types that are aggregated for the purpose of estimating surface
roughness, mean class accuracy is 82.4 percent [87.8 percent
when adjusted by area) (Table a).

Simulations of leaf area index and surface roughness
length for an NDVI value of 0.5 illustrate the errors ftom land-
cover misclassification that propagate from the FPAR to the LAI
and finally to the surface roughness length estimates (Figrrre 2J
Fisure 2 shows the differences between the estimated value of
LAI (Figure 2a) and surface roughness (Figure 2b) for the correct
cover type and the estimated value if the land-cover type were
misclassified as broadleaf evergreen forest (tall vegetation),
mixed forest (medium vegetation), and open shrubland (short
vegetation). LAI estimates are less sensitive to misclassification
error than surface roughness because the former is more
strongly dependent on the FPAR estimate than is the latter. The
maximum error in LAI estimates occur when grassland is con-
fused with broadleaf evergreen forest (Figure 2a), and the max-
imum error in surface roughness length estimates occurs when
open shrubland is confused with broadleaf evergreen forest
(Figure zb). The examples show, as expected, that errors are
largest when tall vegetation is confused with short vegetation.

TneLe 4. CLAss AccuRncIeS WHEN ALL MIscLnss|ncnr|oII ERnoRs ARe WeIeIrEo EQUALLY nno WHEI ENNONS TO WHICH PARAMETER ESTIMATES ARE INSENSITIVE

ARE Excruoro.

Cover Type

Area in IGBP
DISCover
Product

(km'z x 106)

CIass
Accuracy for

all Errors
Equally

Weighted
('/')

Accuracy
Adjusted for
Derivation of
LAI in SiB2

( % )

A  n n r r r c n r r

Adjusted for
Derivation of

Surface
Roughness in

s iB2 (%)

1 Evergreen needleleaf forest
2 Evergreen broadleaf forest
3 Deciduous needleleaf forest
4 Deciduous broadleaf forest
5 Mixed forest
6 Closed shrubland
7 Open shrubland
8 Woody savanna
9 Savanna
10 Grasslands
11 Permanent wetlands
12 Croplands
13 Urban and Built-up land
14 Cropland/natural vegetation mosaic
15 Snow and ice
16 Barren
17 Water bodies
Mean*
Area adiusted mean* *

6 .3  7
1.2.O8

1 . 9 6
3 . 2 3
6 .25
2 . 5 8

18 .08
1 .O .L7

s .34
11..O4

1 . 3 0
14.92

o .26
13 .94
1 .6 ,57
1.8.4L

75.00
87,50
J J , J O

6 2 , 5 0
6 8 . 1 0
75 .00
87 ,50
69.23
64.71
75 .00
38 .46
85.71
66 .67
56.52

100 .00

i.ot
78 .56

75 .00
87 .50
5  5 .60
6 2 . 5 0
68 .10
8  5 ,00

100 .00
1  00 .00
1  00 .00
100 .00

95 .23

u*u

100 .00

'*nn
90 .21

75.00
87.50
J J . C O

62.50
68.00
75.OO
8 7 . 5 0

100.00
100.00
95.00

95.23

*u

100.00

82.37
87.80

*excluding classes 11 and 13 which do not have corresponding classes in Siszand classes 15 and 17 for which validation statistics are
not reDorted
**area adiusted mean is calculated by weighting the class accuracy by land area in the DISCover classification; excludes classes 11, 13,
1,5, aild 1.7
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Figure 2. (a) Differences in estimates of leaf area index and
(b) surface roughness length, if land-cover types are con-
fused, for NDV| : 0.5.

If the confusion occurs between short vegetation types, for
example, between open shrubland and savanna, errors in sur-
face roughness length are small. For the purpose of adjusting
the class accuracies, we assume that the parameter estimate is
equally sensitive to these two types of confusion, suggesting
that the values in Table 4 underestimate the class accuracies in
cases where the parameter estimate is only slightly sensitive to
misclassification error.

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

Conclusions
Here we show two examples of biophysical parameter esti-
mates for use in siBz and other models to illuitrate the sensitiv-
ity of parameter estimation to land-cover classification errors in
IGBP DISCover. Because land-cover types are aggregated within
the model for the purpose of estimaling parameters, area-
adjusted mean class accuracies are gO.2 pircent and BZ.B per-
cent for leaf area index and surface roughness length, respec-
tively, compared with 78.6 percent when all land-covei
misclassifications are weighted equally. There are many other
parameters estimated within sinz, and many other biosphere-
atmosphere and global biogeochemistry models. each with its
own aggregation scheme. These results serve only as examples
to illustrate that errors in Iand-cover classifications should be
viewed only in the context of the application of the land-cover
information. For some applicationJ, such as biodiversity
assessments and resource management, or for more sophisti-
cated biosphere-atmosphere models in the future, it is likelv
that detailed land-cover information will be reouired and mis-
classification errors will have significant consequences for a
particular application. For other applications where a coarse
description of the Iand surface is required, misclassification
errors may be oflesser consequence.
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