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Abstract 
In this paper, we explore the feasibility of implementing surface 
continuity and ordering constraints by tracking connected 
local peak points in the space of matching similarity. We 
present a new image matching algorithm based on match 
paths directly extracted in the similarity space. The main 
advantage of these kinds of tokens over fokens extracted from 
the left and right images is that the geometric distortions caused 
by perspective effects and description inconsistency caused 
by independent extraction of tokens in the left and right images 
are automatically eliminated. Through the tracking process, 
the computation is greatly reduced. In addition, global 
information available to support a local match for resolving 
matching ambiguities is fully utilized in such a way that 
unrelated global information is excluded. Thus, the new image 
matching algorithm is reliable and efficient. By eliminating the 
interpolation process a t  the levels except the finest, the 
occluded regions and depth discontinuities can be well 
localized. 

Introduction 
One of the vital problems in automatic DEM (digital elevation 
model) generation is to match a set of identifiable physical 
points over a stereo pair to derive a disparity map. This problem 
is known as the image matching problem and the physical 
points are referred to as matching tokens (or features). Image 
matching is an integral part of automatic DEMgeneration in dig- 
ital photogrammetry. Many solutions have been proposed (Bar- 
nard and Fischler, 1982; Dhond and Aggarwal, 1989; 
Heipke,1996). 

A general image matching procedure includes four steps: 

Extract matching tokens (e.g., intensity windows, edges, and 
linear segments) and their descriptions; 
Compute similarity values based on the descriptive information 
of a token to find candidate matches in a search range; 
Resolve matching ambiguity by employing constraints such as 
surface continuity and ordering constraints (Jones, 1997) 
through a global process; and 
Interpolate unmatched points to derive a final dense dispar- 
ity map. 

It is not an easy task to develop a successful image match- 
ing algorithm. Many factors should be taken into consider- 
ation. The diversity of matching tokens is large, and they 
should be carefully chosen. Common matching tokens include 

intensity windows (Griin, 1985; Rosenholm, 1987; Kang et al., 
1994; Luo and Burkhardt, 1995), groundels (Helava, 1988), 
edges (Grimson, 1985; Hongo et al., 1996), linear segments 
(Medioni and Nevatia, 1985; Ayache and Faverjon, 1987; Hor- 
aud and Skordas, 1989; Sherman and Peleg, 1990), and rela- 
tional structures (Shapiro and Haralick, 1987; Christmas et al., 
1995). The choice depends on the image data and the character- 
istics of the imaged physical scene. For example, in urban 
areas, geometric structures are rich and, thus, edges and linear 
segments are more suitable matching tokens than are other 
kinds of matching tokens while, in open areas, textures are rich 
and, thus, intensity windows are a good choice. Because simi- 
lar tokens occur frequently over a token's search range, match- 
ing ambiguity should be resolved by employing constraints. 
Identified constraints include the epipolar constraint (Baker 
and Binford, 1981; Jones, 1997), the surface continuity con- 
straint (Grimson, 1981; Jones, 1997), the figural constraint 
(Jones, 1997), the ordering constraint (Ohta and Kanade, 1985; 
Jones, 1997), and the hierarchic structure constraint (Shapiro 
and Haralick, 1987; Jones, 1997). Among these constraints, the 
most difficult constraint which can be augmented into an algo- 
rithm is the continuity constraint because in the real world this 
constraint is frequently violated by depth or orientation discon- 
tinuities. Methods such as relaxation (Christmas et al., 1995) or 
artificial neural networks (Cruz et al., 1995; Grant et al., 1998) 
can be employed to implement the continuity constraint 
through a compatible relationship description model or a 
weight connection description model derived from the conti- 
nuity and other constraints among the potential matches. In 
these methods, the local information is propagated to other 
places through iteration. In order to increase the reliability and 
efficiency of the image matching process, a hierarchical strat- 
egy such as from coarse to fine (Terzopoulos, 1983; Rohaly and 
Wilson, 1993) or multi-primitives (Marapane and Mohan, 
1994; Venkateswar and Chellappa, 1995) is frequently applied. 
In this mechanism, the matches from the coarser levels are 
used to predicate matches at the finer levels. Thus, the search 
range is decreased and image matching becomes more reliable. 
Correspondingly, the computation is also greatly reduced. The 
main problem in this mechanism is that it is difficult to control 
error propagation from the coarser levels to avoid blunders in 
the final disparity map. A combination of interpolation and 
matching in grids having some intervals or employing high 
level tokens such as edges, linear segments, and relational 
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Figure 1. An epipolar stereo pair (the black lines are the corresponding epipolar 
lines used to generate Figure 2). 

structures instead of matching every pixel can further reduce 
the computation and improve matching reliability. Other fac- 
tors include matching uncertainties caused by perspective dis- 
tortions between the left token and its corresponding right token 
and by signal noise during the imaging and scanning process. 
The solutions to this problem may be referred to as the shaping 
window technique (Okutomi and Kanade, 1992). 

In this paper, we implement the surface continuity and 
ordering constraints by tracking connected local peak points in 
the matching similarity space in a new image matching algo- 
rithm. The algorithm is a "from-coarse-to-fine" algorithm 
based on match paths directly extracted by tracking connected 
local peak points in the similarity space. Our algorithm was 
implemented on a low-end DEC 3000 Alpha workstation. ?tvo 
stereo pairs-an urban scene and an oak woodland scene- 
were used. 

Image Matching by Tracking Connected Local Peak Points in 
the ~imilarlty $ace 
The surface continuity constraint rests on the observation that 
the real world can always be considered as piecewise continu- 
ously smooth. In practice, this may be formulated in a number 
of different ways. For example, two neighboring points in the 
image space should have a "similar" disparity, i.e., the disparity 
difference should be small and within some threshold. We can 
construct an image in which the I-axis represents an epipolar 
line in the left image and the J-axis represents its correspond- 
ing epipolar line in the right image. A pixel (i, j )  in this space 
represents a potential match. Every pixel is filled with a simi- 
larity value. The brighter the pixel, the more likely that the 
pixel is a correct match. We may find that bright pixels, espe- 
cially those pixels at local peak points along their columns, will 
be clustered together to form bright segment paths in the simi- 
larity image because of the surface continuity constraint. As an 
example, Figure 1 shows that segments of ab112, cd/23, de145, 
and 9/67 lie on continuously smooth surfaces. Figure 2 is a 
similarity space constructed based on the two black epipolar 
lines shown in Figure 1. The brightness values are cross-corre- 
lation coefficients calculated from the epipolar lines. In Figure 
2, the cross-correlation coefficient image presents salient bright 
paths of AB, CD, EF, and GH. Those paths appear to be con- 
nected local peak points in the column direction. The corre- 
spondence between segments that lie on continuously smooth 
surfaces and those segment paths in the similarity space in the 
form of connected local peak points makes it possible to treat 
image matching as a bright-path tracking problem. We can ben- 
efit from turning image matching into a bright-path tracking 
problem in three aspects: 

We do not need to employ computationally complex shaping 
window techniques (Okutomi and Kanade, 1992) or adaptive 
least-squares image matching (Grttn, 1985) to address the match- 
ing uncertainty problem caused by the geometric and radiomet- 
ric distortions between a left token and its corresponding right 

I 

Figure 2. The correspondence between segment paths 
formed by local peaks along the column direction and 
the connected matching paths in the similarity image. 

token. In the tracking process, the geometric distortions are 
implicitly eliminated, and the extracted segment paths in the 
similarity space correspond automatically to two segments hav- 
ing geometric distortions in the left and right image. For exam- 
ple, segment AB in Figure 2 corresponds to segments ab and 12 
in Figure I. Segment ab is a little shorter than segment 12. 
Traditionally, features such as edges (Grimson, 1985; Hongo et 
a]., 1996) or linear segments [Medioni and Nevatia, 1985; Hor- 
aud and Skordas, 1989; Sherman and Peleg, 1990) are first 
extracted from the stereo pair, then image matching based on 
these features is performed. This preprocess makes image 
matching error-prone because the feature extraction process 
cannot guarantee extraction consistency between the left and 
right images. For example, in the left image a physical linear 
segment may be extracted partially and in the right image this 
physical linear segment may be over-extracted or split into 
several small segments. The inconsistency between the left fea- 
tures and their corresponding right features makes these fea- 
tures unmatchable. Features such as segment paths that are 
formed by local peak points in the similarity space always 
correspond to those segments physically lying on the continu- 
ously smooth surfaces in the left and right images. Because 
these features are extracted once, the consistency between the 
corresponding left and right features is always preserved. 
Globalmatching evidence can be fully collected while unrelated 
global matching evidence is ignored, leading to higher match- 
ing reliability. The tracking process will stop at places where 
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occlusions or different continuously smooth surfaces occur. 
Thus, the segment path extracted by such techniques will 
always lie on the same continuously smooth surface. Because 
different continuously smooth surfaces are unrelated, a correct 
match on a continuously smooth surface will not provide sup- 
portive matching evidence to another match on a different sur- 
face. In Figure 1, segment ab and segment cd are not related; 
segment ab is on a polynomial ground surface while segment 
cd is on a flat building top. 

The ordering constraint is based on the observation that the 
order of any two points (i.e., left to right and right to left) in an 
epipolar plane in the real world will remain in the stereo pro- 
jection. This makes the tracking more feasible because correct 
segment paths will extend along the diagonal. Vertical or hori- 
zontal segment paths are those paths which correspond to 
occlusions or "NULL" matches. 

Tracking is not feasible under some circumstances. In Fig- 
ure 3, if the minimum distance between any two neighboring 
local maximum points along the column direction of the simi- 
larity image is too small, then segment paths that are formed by 
connected local peak points will be clustered into bright 
regions of non-separable segments. This phenomenon occurs 
in texture-free images. Integration of shape-from-shading (Pan- 
kanti and Jain, 1995) may be a possible solution. Another case 
is that the corresponding matching tokens between the left and 
right images are not sufficiently similar. Thus, no bright seg- 
ments can be formed in the similarity space. This phenomenon 
occurs when the perspective distortions between the left and 
right images are very large. For example, tokens on a vertical 
building wall or a deep slope of a tree crown will not appear 
similar in the left and right images. Thus, they are dark points 
in the similarity space. Employing multi-baseline stereo 
images (Fua, 1997) may help solve this problem. 

The characteristics ofthe similarity image not only depend 
on the characteristics of the imaged scenes but also on the defi- 
nition of the similarity measure. Two typical scenes can be 
found in the real world, natural scenes and urban scenes. In 
our experiments, stereo pairs of an urban scene and a natural 
scene were tested. There are many definitions of similarity mea- 
sures. We tested three similarity measures. They are the abso- 
lute difference of gray value, the absolute difference of average 
gray value, and the cross-correlation coefficient. We found that 
the distance between any two local peak points along a column 
in the similarity space of the cross-correlation coefficient is the 
largest, and that most formed bright paths are separable. There- 
fore, we adopted the cross-correlation coefficient as the similar- 
ity measure for this study. 

The New Image Matchlng Algorithm 
Before the algorithm is run, a stereo pair of the epipolar image 
pyramids must be prepared in advance. This is done through 

Pixels along the column Man of the simhity image I 
Figure 3. The distance between any two neighboring 
local peak points along a column. 

image resampling. At each level, a line-by-line based matching 
is executed. First, the algorithm initializes the corresponding 
disparity map at that level. Second, the whole image pair at that 
level is processed line by line. The final disparity map is 
obtained through a filtering process along the y-direction. The 
disparity profile along each epipolar line is derived in three 
steps. At the first step, a similarity image is constructed. At the 
second step, paths formed by connected bright spots in the 
similarity image are tracked. At the third step, the tracked paths 
are used to derive the final matches whose brightness values 
are the highest. The final matches must also satisfy the ordering 
and smoothness constraints. The new algorithm is a "from- 
coarse-to-fine" algorithm (Figure 4). It is developed to recover 
scenes with weak depth discontinuities, especially scenes of 
wild lands. For scenes with some strong depth discontinuities, 
for example, urban scenes, an interpolation process at coarser 
levels except the finest level should be excluded. The reason for 
not using the interpolation process at the coarser levels for 
scenes with strong depth discontinuities is that unmatchable 
regions often correspond to the occluded regions. Their dispar- 
ity values at the coarser level may mislead image matching at 
the finer level. The idea here is that points on continuous sur- 
faces should be matched while the occluded points should be 
ignored during the image matching process. 

The Number of Hlerarchlcal Levels 
The number of hierarchical levels depends on the search range, 
the computation, and the control of error propagation. Theo- 
retically, 3- by 3-pixel-window averaging requires the lowest 
computation. However, a small averaging window causes too 
many levels. The more the levels of the hierarchical image pyra- 
mid, the more difficult it is to prevent errors at the coarser lev- 
els from propagating to the finer levels. Thus, very small 
averaging window sizes should be avoided. In our algorithm 
the averaging window size is 5 by 5 pixels. Thus, the disparity 
search range (predicated by the coarser level) at each level will 
be within 5 pixels, and its corresponding global maximum- 
minimum disparity search range i s  computed with the follow- 
ing formula: 

Here Dm= and D- are the global maximum and minimum 
disparity values at the finest level, I = 1,2, . . ., N; N + 1 is the 
number of hierarchical levels; it is computed using 

(&ax - Dmin) N = log, 

The global maximum-minimum disparity search range at 
each level is used to bound the tracking process into a diagonal 
strip in the similarity image. 

Tracking Seeds 
Tracking seeds can be those points that are local peaks in the 
similarity image along the column direction because local 
peaks are most likely to be correct matches. In order to reduce 
the number of "bad" local peaks, a conservative threshold is 
used. In each column of the similarity image, only one pixel 
whose value is above the threshold and has the highest value 
in the disparity search range of this column is considered as a 
tracking seed. Some columns will not have tracking seeds if no 
local peaks exceed the threshold value. The advantage of this 
process lies in the fact that tracking seeds will not be clustered 
into regions and be limited by the number. At the coarsest level, 
the disparity search range is computed by the global maximum 
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Figure 4. Procedures for the new image matching algorithm. 

and minimum disparity values, while, at the finer level, the dis- 
parity search range is predicted by the disparity map of the 
precedent matched coarse levels and is within 5 pixels. 

Although it is still possible for this process to throw away 
potentially correct matches and include error matches, only a 
small percentage of those seeds could be wrong matches, espe- 
cially at the coarsest level. The following process of tracking 
can recover those omitted potentially correct matches by prop- 
agating other correct matches in the same continuously con- 
nected path to those points. 

Tracking Process 
A scan is first made from the left to the right and from the top to 
the bottom in the similarity image. If a seed is found, then in its 
compatible neighboring region a local peak is labeled as the 
next tracking point. This procedure continues until no peakin 
the neighboring region exists. The tracking process is bi-direc- 
tional, i.e., the path segment before the seed and that after the 
seed are both tracked. During the tracking process, if other 
seeds are met, these seeds are labeled as processed seeds to 
avoid repetitive tracking; if the current path meets other paths 
that are already tracked out, then the tracking process stops to 
claim an intersection of two paths. The compatible neighboring 
region is defined by the following equations: 

Here (xo, yo) is the current point, (x,, y,) is the next tracking 
point, and TI and T, are thresholds. In our experiments, TI = 1 
and Tz = 2. Equation 3 is a representation of the surface conti- 
nuity constraint, while Equations 4 and 5 are representations 
of the ordering constraint. Because the ordering constraint is 
affected by the image resolution, i.e., the coordinates are inte- 
ger numbers while not continuously real numbers, Equations 4 
and 5 should be modified into the following equations includ- 
ing an equality: 

In order to avoid occurrence of long vertical segments 
which represent occlusions in the left epipolar line or horizon- 
tal segments which represent occlusions in the right epipolar 
line, the times of continuous occurrence of "equality" should 
be limited. 

The next tracking point is the point whose value is above a 
threshold and has the highest value in the region defined by 
Equations 3,6 ,  and 7. 

Path Dividing and Sorting 
In order to simplify our tracking process, two paths sharing 
common parts of x coordinates are divided into four short 
paths. The dividing is a recursive process because some paths 
have several component paths that share parts of the x coordi- 
nates, especially at the finest level. At the coarser level, this pro- 
cess is occasionally needed. Through this dividing process, 
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Pixels along the wlumn dimtion of the dbpsrity image 

Figure 5. A disparity profile along the column direction of 
the disparity map. 

which have very different disparity values from those wide 
segments immediately adjacent to them are violations of the 
surface continuity constraint (Figure 5). Thus, they should be 
replaced by interpolation using wide segments immediately 
adjacent to them. In our filtering operation, every profile along 
every column of the disparity map is first classified into narrow 
segments and wide segments. Then those narrow segments 
violating the surface continuity constraint are replaced by 
interpolation. In our experiments, the narrow segments are 
within 5 pixels and wide segments are those longer than 5 
pixels. 

Testing the Algorithm 
In this section, the efficiency and the reliability of our algo- 
rithm are examined. Two stereo pairs are used for this purpose 
(Figures 6 and 7). Figure 6 is a stereo pair patch of an oak wood- 
land with a scale of 1:12,000 and at a 25-pm pixel resolution, 
while Figure 7 is a stereo pair patch of an urban area with a scale 
of 1:2400 at a 125-pm pixelresolution. Because the scale of Fig- 

paths can be arranged according to their castings along the x- ure 7 is very large, occlusion phenomena are very heavy and the 
axis. Paths which share the same x coordinates are candidate disparity map is difficult to derive from previous algorithms. 
path matches. The disparity range is +20 to -40 pixels for Figure 6 and + lo  

to -40 pixels for Figure 7. In Figure 6,92 percent of the pixels 
The Slmllarity Value of a Path have a "similar disparity within a ?I-pixel difference" of their 
The similarity value along a path is a sum of similarity values of immediate neighboring pixels that physically lie on the same 
its connected points. In our experiments, the similarity mea- continuously smooth surface. In Figure 7,56 percent of the pix- 
sure is chosen to be the cross-correlation coefficient. Thus, the els have a "similar disparity within a + 1-pixel difference," and 
similarity value along a path is a sum of cross-correlation coef- 35 percent have a "similar disparity between 1 and 2 pixels 
ficient values of its connected points. absolute difference" of their immediate neighboring pixels that 

physically lie on the same continuously smooth surfaces. The 
Selection of Paths statistics shows that the scene in Figure 6 is smoother than that 
Methods such as relaxation (Christmas et. al., 1995), artificial in Figure 7. 
neural networks (Cruz et. al., 1995; Grant et. al., 1998), and Our algorithm is programmed using C language on a DEC 
dynamic programming (Ohta and Kanade, 1985) can be used to 3000 workstation. Figures 6C, 7C, and 7D are the derived dis- 
resolve matching ambiguities among candidate paths. In fact, parity maps. From these disparity maps, we can easily find that 
these computations are not necessary because the tracking pro- our algorithm can work in a wide array of complex images. Con- 
cess already coIlected global matching evidence available for a tinuously smooth surfaces are successfully recovered. Depth 
local point. Here we use a heuristic method to resolve matching 
ambiguities among candidate paths. The correct match among 
several candidate paths is selected by finding the path with the 
hiehest similaritv value. In order to remove some Door 

Figure 6. A stereo pair of oak wood land and its disparity 
map. A: left image. B: right image. C: the disparity map 
referenced to the left image. 

mitches, we use & average similarity threshold to detect bad 
matches. The average similarity value is computed by dividing 
the sum similaritv value bv the number of ~ o i n t s  forming that 
path. Then viola6ons ofcdntinuity and ordering constrakts are 
detected. The violation of the continuity constraint is detected 
by an interpolationmethod. If there is a large distance between 
the interpolated path and that to be checked and the distance is 
beyond the range defined by Equations 3,6, and 7, then the 
path is replaced by the interpolated path. For two paths that 
violate the ordering constraint, the longer path is preserved and 
the shorter one is discarded. The unmatched gaps are filled by 
interpolation. Our experiments show that this kind of pro- 
cessing not only leads to competitive results compared with 
those algorithms such as global optimization but also greatly 
reduces the computation. 

Figure 7. A large-scale urban area stereo pair. A: left image. 
B: right image. C: the disparity map referenced to the left 
image. D: the disparity map referenced to the right image. 

The flterlng Operation 
Because we use paths as our matching tokens, errors will be seg- 
ments along the x direction in the final disparity map. These 
errors lie in the fact that our algorithm is an epipolar-line-based 
method, and the surface continuity constraint between two 
neighboring epipolar lines is not implemented. Optionally, we 
may extend the current algorithm into a region-based algorithm 
while regions are extracted from the 3D similarity space. But, as 
we can see, this solution needs lots of memory practically, it is 
not feasible. Fortunately, these violations can be easily detected 
along the y direction of the disparity map through filtering. In 
a disparity profile along the y-direction, the narrow segments 
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discontinuities and occlusions are well localized and pre- 
served in Figure 7C and 7D. These features are essential for 
automatic mapping of urban areas (Weidner and Forstner, 
1995). Most algorithms in commercial softcopy photogramrne- 
try systems lack the ability to deal with depth discontinuities 
and occlusions because, in their algorithms, grids of some con- 
stant intervals are used as matching tokens, and points that are 
not grid points are not matched. In the final disparity map, dis- 
parity values of those points that are not matched are interpo- 
lated from matched grid points, while the interpolation process 
is a "blind" process because of the lack of knowledge of the sur- 
face characteristics, i.e., irrelevant matched grids that physi- 
cally lie on different surfaces may be improperly used to 
interpolate an unmatched point. This occurs where depth dis- 
continuities and occlusions exist. As a result, salient important 
features are smoothed. In our algorithm, the tracking will stop 
when occlusions and depth discontinuities occur because 
occlusions have "NULL" matches and they are dark points in 
the similarity space. Tree stands in Figure 6 are well recovered 
but not in Figure 7. Tree stands in Figure 6 are oaks with dense 
leaves and the crown surfaces are relatively flat, while tree 
stands in Figure 7 are heavily oblique, irregular, and semi- 
transparent. The geometric distortions between a left token 
and its right token that lie on the tree crowns cannot be easily 
modeled. Additionally, the matching difficulty is partially 
attributed to the large scale of the stereo pair. We sampled sev- 
eral epipolar lines which pass through tree crowns in Figure 7 
and found segments that represent tree crowns had no corres- 
ponding salient bright segment paths in the similarity space. 
Onlv some bright ~ o i n t s  that cannot be connected scatter occa- 
sioially in th&e skctions where tree crowns occur. This may 
be alleviated by employing multi-baseline stereo images. As 
pointed out earlier, under this special case our algorithm does 
not work well. As a matter of fact, this is a case that cannot be 
dealt with by any existing algorithm. 

In our implementation three hierarchical levels were 
derived based on the given search range in Figures 6 and 7. 
Table 1 lists the number of extracted segments at every level. 
Table 2 lists the average length of the extracted segments. Table 
3 lists the statistics on the number of candidate matches of the 

extracted segments. From Table 2, the average length of seg- 
ments is longer than 5 pixels at all levels for the two stereo 
pairs. At most levels (five of six levels as listed in Table 2), the 
average length of segments searched by our algorithm are 
greater than 10 pixels while, for other grid based image match- 
ing algorithms, the interval is only 5 pixels. This difference 
means that our tracking process can greatly reduce the number 
of matching tokens and thus saves the computation. At the 
coarse level, most segment paths correspond to an entire epi- 
polar line (see Table 2). Table 3 indicates that the extracted seg- 
ment paths are almost final because more than 85.3 percent of 
the segments have only one candidate. At the medium level, the 
average length of segments is greater than 10 pixels. Over 86.3 
percent of the segments have no more than two candidates. 
This is also true at the fine level. Generally speaking, from the 
coarse level to the fine level, candidate segment paths dramati- 
cally increase. Because over 80 percent of segment paths at all 
levels tracked by our algorithm have no more than two candi- 
dates, matching ambiguities are greatly reduced. This is 
achieved in our algorithm by the use of global matching evi- 
dence through tracking in the similarity space, while other 
algorithms use every point or local peaks as their candidates in 
the search range. Our algorithm further reduces the computa- 
tion for resolving matching ambiguities. Based on the observa- 
tion that over 80 percent of segment paths at all levels have no 
more than two candidates, the computation of our algorithm is 
mainly for calculating the similarity images. The similarity 
image for each line in the epipolar stereo pair is not necessarily 
computed in whole. The computation can be divided into two 
parts: one used to find the tracking seeds and the other used to 
find the next tracking point in the small neighboring region of 
the current tracking point. The search range of tracking seeds is 
5 pixels, while the tracking neighboring region is 3 pixels. 
Thus, with our algorithm, if the number of total tracking seeds 
is N, the sum of the length of all extracted segment paths is M 
pixels, and the computation of a cross-correlation coefficient is 
P, then the computation costs are 

Here Pis  a constant. Thus, C(N, M) is a linear function. 
Normally, Nand M increase linearly as image sizes increase. 

TABU 1. NUMBER OF TOTAL EXTRACTED SEGMENTS AT EACH LEVEL 
Some random variations may occur; i.e., ~ i n d  M will not 
strictlv follow the above rule. From this analvsis, our algorithm - " 

Fine Medium coarse can be considered as approximately compu~ationally linear. 

No. of segments in Figure 6 43,798 1,713 31 
The following further study reflects this analysis. 

No. of segments in Figure 7 4,777 234 13 Fifteen different sizes of stereo pairs were input into our 
algorithm and the computation time was recorded. In order to 

TABLE 2. THE AVERAGE LENGTH OF EXTRACTED SEGMENTS AT EACH LEVEL 

Fine Medium Coarse 

Natural (Figure 6) Average length (pixel) 21.2 17.3 25.5 
Percentage of image width 2.6% 10.5% 77.4% 

Urban (Figure 7) Average length (pixel) 15.6 10.4 5.5 
Percentage of image width 9.0% 29.9% 79.0% 

Percent of extracted segments (unit: %) 

Coarse 
Number of 

Medium Fine 

candidates Figure 6 Figure 7 Figure 6 Figure 7 Figure 6 Figure 7 

1 85.3 100.0 36.2 56.7 33.8 45.2 
2 14.7 0.0 50.1 36.7 49.0 40.1 

2 3  0.0 0.0 13.7 6.6 17.2 14.7 
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Figure 8. The relationship between the computation time 
and the image size. 

constraint and the correspondence between paths that are 
formed by local peaks in the similarity space and the surface 
profile paths in the real world. Because of the above-mentioned 
improvements, our algorithm is efficient and reliable and can 
work in a wide array of complex scenes. 
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make the running times comparable, we assigned all the test 
stereo pairs the same global maximum and minimum search 
range. A linear regression analysis between the computation 
time and the image size was made. Equation 9 is the result of 
the regression analysis: i.e., 

Here Tis the computation time and its unit is 1 minute, and 
B is the image size in units of 1000 bytes. The root-mean-square 
error is 20.63 minutes. From Figure 8, we can see that the run- 
ning time fluctuates around the regression line. According to 
Equation 9, for a standard 23- by 23-cm frame aerial stereo pair, 
if the scanning resolution is 25 p m  and the overlap along the 
flight direction is 65 percent, it will take about 28 minutes for 
our algorithm on a low end DEC Alpha 3000 workstation to 
derive the disparity map in the overlap region. 

Conclusions 
We propose a new image matching algorithm that tracks con- 
nected local peak points in the matching similarity space. We 
demonstrated the feasibility of implementing this algorithm 
with the surface continuity and ordering constraints during 
the best match tracking process. Global information available to 
support a local match to resolve matching ambiguities is fully 
utilized in such a way that unrelated global information is 
excluded. Thus, the solution to this problem is reliable and 
efficient. Our experiment indicates that our algorithm can work 
with a wide array of complex images. 

In summary, our algorithm consists of five steps at each 
level: 

Extract paths by tracking connected local peak points in the 
similarity space; 
Divide paths sharing parts of x-coordinates into shorter paths 
and rearrange them into a left-to-right sequence; 
Select paths with the highest similarity values and discard those 
matched paths violating the surface continuity and ordering 
constraints; 
Fill unmatched gaps by interpolation; and 
Construct the final disparity map by filtering along the y- 
direction. 

The algorithm can be considered as a feature-based algo- 
rithm. Such kinds of features extracted from the similarity 
space have not been reported in the literature. Features are nor- 
mally extracted from the stereo image space. The main advan- 
tage of these types of tokens over tokens extracted from the left 
and right images is that the geometric distortions caused by the 
perspective effect between every left token and its correspond- 
ing right token is automatically eliminated. In addition, the 
description inconsistency caused by independent extraction of 
tokens in the left and right images vanishes. From the point of 
optimization, our algorithm may be classified into a heuristic 
information-based algorithm compared to information itera- 
tion propagation such as relaxation. The heuristic information 
is directly derived from the continuity constraint and ordering 
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