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Abstract 
Knowledge of tree-crown parameters such as height, shape, 
and crown closure is desimble in forest and ecological studies, 
but those pammeters are difficult to measure on the ground. 
The stereoscopic capability of high-resolution aerial images 
provides a method for crown-surface reconstruction. However. 
'existing digital photogrammet~packages, designed to map 
terrain surfaces. cannot accuratelv extmct tree-crown surfaces. 
particularb for-conifer-crowns d t h  steep vertical profilis. 

' 

In this paper, we integrate crown features derived from 
images with stereo matching, and develop a model-based 
approach for reconstructing conifer-crown sqfaces. The model 
is based on the fact that most conifer crowns are a form of 
solid geometry. We model a conifer crown as a genemlized 
hemi-ellipsoid, establish the optimal tree model using a geo- 
metric equation, and apply the optimal tree model to guide a 
conventional pyramidal image matching in crown-surface 
reconstruction. The effectiveness of the approach is illustmted 
using an example of a redwood tree on 1:2,400-scale aerial 
photographs. 

Introduction 
A description of three-dimensional ( 3 ~ )  crown shape is useful 
in estimating the amount of foliage and the photosynthetic 
activity of trees. In forest inventory, parameters about crowns 
sometimes are collected such as diameter, height, closure, etc. 
Crown width (i.e., crown diameter) and height are important 
inputs to forest models (Deutschman et al., 1997), and are criti- 
cal in modeling forest fires (Keane et al., 1999). 

It is a time-consuming and labor-intensive process to mea- 
sure crown diameter and height in the field, let alone measure 
the 3D crown surface. This led us to develop photo-ecometrics 
techniques for forest inventory (Gong et al., 1999). Aerial pho- 
tography provides a practical means for tree measurement. 
Large-scale aerial photographs have long been used for mea- 
suring such parameters. Andrews (1936) derived tree height 
from aerial images in a stereo oair as earlv as in the 1930s. Tree - ~ 

height reading&om 1:1,000-kale aeridphotographs using a 
stereoplotter were found even more accurate than field mea- 
surements using tapes and clinometers (Kovats, 1997). Moess- 
ner (1949) developed a crown-density scale as a reference to 
interpret crown closure. Sayn-Wittgenstein (1961) applied 
crown characteristics (e.g., crown density, size, and marginal 
and apex shape) to tree species recognition. Crown information 

is estimated most easily from aerial photos. However, the 
approaches are mainly based on visual interpretation. As a 
consequence, the process is less efficient, is subjective, and is 
error-prone (Biging et al., 1991). 

Precise measurement of crowns from aerial photographs 
requires relatively accurate crown surface data. Due to the per- 
spective view of aerial photographs, crown closure is overes- 
timated when a stand is located far away from the principal 
points of the photographs. Theoretically, the parameters 
derived from orthophotos are free from the displacement influ- 
ences. 3D crown surface data are needed to generate orthopho- 
tos from perspective photos. 

Another requirement for crown-surface data comes from 
automated photointerpretation for forestry applications. As 
both the computing power and spatial resolution of remotely 
sensed data improves, more attention is being paid to individ- 
ual tree-based photointerpretation (Gougeon. 1993; Gougeon, 
1995; Pollock, 1996; Larsen, 1998). Although high-resolution 
photos capture information on individual trees, the displace- 
ment of a crown surface is large when measured in pixels. Cur- 
rent work in this field has focused on tree delineation using 
spectral information from monocular images. When forest 
photointerpretation results are input into a geographic infor- 
mation system (GIS), the coordinate data contain errors due to 
the perspective view of aerial photography. To eliminate the 
geometric errors, we need to use the 3D crown coordinates to 
orthorectify the aerial photographs. 

Obviously, the marriage of crown-surface and spectral 
information will substantially benefit tree delineation, and 
crown-surface data can be used to produce orthographic tree 
maps for input into a GIs. Literature on crown-surface recon- 
struction is rather limited. Laser range detection (LIDAR: ~ ~ g h t  
Detecting ~ n d  ~anging), radar interferometry, and photogram- 
metry are three major techniques for surface reconstruction. 
Airborne laser scanning systems detect range using laser 
pulses in the visible or near infrared wavelengths. To measure 
crown-surface heights, a LIDAR records multiple echoes; the 
first one is supposed to be reflected from the outer surface of a 
crown while the last from the ground after penetrating through 
the canopy. Crown-surface heights can be derived by sub- 
tracting the first range reading from the last. The penetration 
ability of a laser pulse is critical to the quality of surface recon- 
struction. It was found that, with near vertical incident angles 
of laser systems, 20 to 40 percent penetration rates were ex- 
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pected through coniferous and deciduous forests. In particular, 
the penetration capability of laser through dense forests 
remains questionable (Ackermann, 1999). The requirements of 
high sampling rate, high signal-to-noise ratio, and multiple- 
echo recording capability for crown-surface measurement 
would make such a system quite expensive. 

Radar interferometry detects elevation by phase correla- 
tion of radar echoes received by two radar antennas or by the 
same antenna at two fixed locations. Height can be acquired at 
an accuracy of centimeters. Space-borne interferometric radar 
(around 30 m resolution) has been used in earthquake monitor- 
ing, glacier movement monitoring, and digital elevation model 
(DEM) generation. The only research found on tree-crown char- 
acterization was the use of 1.5-m resolution airborne interfero- 
metric synthetic aperture radar (SAR) data at X- and C-bands 
over tropical rain forests in Indonesia (Hoekman and Vare- 
kamp, 1998; Varekamp and Hoekman, 1998). The results show 
that the interferometrically derived tree heights are under- 
estimated. 

Stereoscopic surface reconstruction from digital images is 
an important field of computer vision and photogrammetry. 
Both computer vision and photogrammetry use image match- 
ing methods to reconstruct surfaces. Photogrammetry is com- 
monly used as the standard approach to terrain surface 
generation. However, photogrammetric efforts to generate 
crown surfaces are rare. Instead, trees are usually treated as 
undesired "disturbance" to be eliminated in photogrammetric 
operations. Gong et al. (2000) tested the use of digital photo- 
grammetry for oak woodland monitoring. They suggested that 
digital surface models (DSM) that contain the elevation of land- 
scape features such as buildings and tree canopies, rather than 
the commonly used digital elevation models (DEM) that only 
describe terrain heights, be used for land-change monitoring. 

It is a challenge to reconstruct crown surfaces using pho- 
togrammetry, particularly for conifers. In a recent test made by 
Quackenbush et al. (1999), a Desktop Mapping System (DMS") 
was used to derive tree canopy surfaces from aerial photo- 
graphs scanned at a 1-m spatial resolution. They concluded 
that canopy-surface reconstruction was unsuccessful due to 
the constraint of the package used. Our experiments with a 
number of other commercial softcopy photogrammetry pack- 
ages lead to the same conclusion. Current commercial packages 
are not designed to adequately extract tree-crown surfaces. 
There is a lack of algorithms for 3D information extraction for 
tree crowns. 

We also conducted experiments to measure tree height 
through visual stereo matching using the digital photograrn- 
metric programs in PCP and VirtuoZo? We found that it was 
possible to determine tree heights precisely as long as the cor- 
responding treetops on the left and right images could be visu- 
ally identified on the computer screen (Gong et al., 2000). 
Those experiments prove that stereoscopic images contain suf- 
ficient information for height measurements. This led us to fur- 
ther explore automated cGwn reconstruction algorithms. We 
aim to solve one of the most difficult problems in digital pho- 
togrammetry, that is, to reconstruct c6nifercrown &faces. 

Methods 
We took the photogrammetric approach to reconstructing 
crown surfaces for the following reasons: first, aerial photogra- 
phy is one of the most widely used remote sensing tools in for- 
estry. A large number of air photos are available; second, we are 
able to acquire both spectral imagery and surface spatial infor- 
mation with aerial photography. 

reconstruction. Current image matching algorithms in photo- 
grammetry are a sort of "blind matching." They do not use any 
prior knowledge during the matching process. The failure of 
photogrammetric methods in crown-surface reconstruction is 
that, when the algorithms match over a tree crown, they are not 
aware of the existence of a crown surface, and they do not treat 
the matching process with special care. The focus of this paper 
is on how to advise the matching algorithms with crown infor- 
mation. We propose a model-based image matching approach 
to solving this problem by introducing a tree model to guide 
the matching process. 

Maitre and Luo (1992) applied geometric models to 
improve stereo reconstruction of buildings. They first utilized 
a regular stereo matching algorithm to get an initial disparity 
map of buildings, and then segmented the images into features. 
For each feature, they modeled the disparity as either a planar 
or a quadratic shape. Their approach demonstrates the algo- 
rithm's potential in reconstructing urban scenes. To apply their 
idea to crown-surface reconstruction, however, we anticipate 
the following potential problems. The first is segmentation. In a 
forest scene, to delineate individual crowns from their back- 
ground is a difficult task (Gougeon, 1995). The second problem 
is the initial disparity because the sharp surface of coniferous 
crowns causes ~roblems in conventional stereo matching, and 
the initial disp&ity map derived from regular matching &go- 
rithms is not sufficiently reliable to subsequently serve the 
modeling purpose. 

Our model-based approach to crown-surface reconstruc- 
tion relies on three components: geometric tree model con- 
struction, disparity prediction from tree models, and 
integration of the model predictions into image matching. Tree 
models are developed from the original images. We propose the 
following model-based strategy to reconstruct crown surfaces: 

1. With an estimate of the ground disparity range, generate a 
smooth ground surface using conventional stereoscopic tech- 
nique, and fill the gaps using interpolation. Trees are usually 
the gaps. 

2. Identify the top of each individual tree on the left and right 
images, and calculate its coordinates in the ground coordi- 
nate system. 

3. Estimate tree height by subtracting the corresponding ground 
elevation from the elevation of the treetop. 

4. Based on the tree height and other parameters such as the 
maximum and minimum crown size, determine the optimal 
tree model of the tree. 

5. Apply the optimal tree model to predict an initial crown 
disparity. 

6. Integrate the predicted crown disparity into pyramidal stereo 
matching by using it as the initial disparity for the final level 
matching. 

Tree Models 
The form of tree crowns is related to environment. In northern 
and alpine environments, conifers are adapted to grow in a 
conical shape, due to strong selection pressures of snow, ice, 
and wind (Barnes et al., 1998). 

Biging and Gill (1997) gave a comprehensive summary of 
crown modeling, and applied stochastic ARMA (Auto-Regres- 
sive Moving Average) models in conifer-crown profile model- 
ing using time series analysis. Though crown margins are 
stochastic in nature, we adopted geometric models for their 
simplicity in parameterization. Horn (1971) proposed the fol- 
lowing equation as a general model for the 2D vertical profile of 
a crown envelope: 

A ModeCBased Strategy for Image Matching 
The algorithm for image matching or correspondence point 
finding in a stereo pair is the core of photogrammetric surface where ch and cr are the vertical and horizontal dimensions of a 
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Figure 1. Tree model parameters. 

crown, respectively, and cc is a positive adjusting coefficient 
for crown curvature. When cc = 1, the curve is a straight line, 
and cc < 1 indicates an increasingly upwards concave curve, 
while cc > 1 represents an increasingly downwards concave 
curve. To generate templates for the tree delineation purpose 
on monocular MEIS (Multi-detector Electro-optical Imaging 
Scanner) images, Pollock (1996) extended Horn's formula into 
3D, and modeled a crown envelope with a generalized ellip- 
soid: i.e., 

where (x, y, z) are the coordinates on the crown surface. We 
adopted Pollock's crown model for geometric crown modeling. 
For our purpose of applying the crown model to guide stereo- 
scopic image matching, we need to know the location of a 
crown. Our tree model is described by four parameters as illus- 
trated in Figure 1: ground coordinates of the treetop (Xt, Yt, Zt), 
crown height (ch), crown radius (cr), and an adjusting coeffi- 
cient for crown curvature (cc). Once these parameters are 
known, the ground coordinates (X, Y ,  Z) of any point on the 
crown surface can be modeled by 

(Z -I- ~h - Ztj"" ((X - Xt)2 + (Y - Yt)2)..'2 + = 1 
chcc cr CC 

whereZ- c h s Z s Z , .  
Figure 2 shows the geometric shapes of crowns with vari- 

ous dimensional parameters. The first three (Figures 2a, 2b, 
and 2c) are a 20-m-high, 6-m-wide conifer-crown with a curva- 
ture of 0.8,1.0,1.5, respectively. The last one (Figure 2d) mim- 
ics a rounded hardwood crown 10 m high and 14 m wide. 
Although this model over-simplifies crowns in the real world, 
it may be adequate to serve as an initial condition for guiding 
the crown-surface reconstruction process. Our objective is to 
reconstruct the true crown-surface coordinates through the 
guidance of such a model so that more precise measurements of 
the crown surface can be made. 

We determine the optimal tree model interactively in this 
paper, but the process can potentially be automated as was 
done by Larsen and Rudemo (1998) and Pollock (1996). The 
first step is to identify the top of a tree on images. The top of a 
conifer usually is not quite recognizable when it is viewed ver- 
tically; however, off-nadir views are more informative. In addi- 
tion, to ensure each point on a conifer crown may be viewed 
from two different directions for the purpose of disparity deri- 
vation, a stereo triplet was used in this paper (Figure 3). 

A triplet forms three stereo pairs: the left-right pair, the left- 
middle pair, and the middle-right pair. The ground coordinates 
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Figure 2. Examples of the tree model. 

of a treetop can usually be derived from the left-right pair. The 
elevation of a tree base can be roughly estimated from a stereo 
pair. Dimensional parameters about the crown can also be 
determined interactively from the images. 

Image Matching Scheme 
From a historical point of view, correspondence algorithms for 
stereopsis can be divided into two groups: the correlation- 
based (or area-based) methods and the feature-based methods 
(Sonka et al., 1999). In feature-based matching, features such 
as corners and, more often, edges have to be automatically iden- 
tified in the images before matching takes place. However, fea- 
tures in a natural forest scene are hard to define, and are often 
unidentifiable in the images. We used the area-based image- 
matching scheme. Area-based correspondence algorithms are 
based on the assumption that pixels in correspondence have 
similar intensities. The intensity of an individual pixel does 
not give sufficient information. Thus, intensities of several 
neighboring pixels are considered. 

The correspondence problem is inherently ambiguous due 
to factors such as noise, varying viewing direction, and per- 
spective distortion. Thus, the intensities of the corresponding 
pixels will differ in the two images. For a particular point in 
one image, there are usually several matching candidates in the 
other image, and the true candidate does not necessarily pro- 
duce the maximum similarity. Correspondence ambiguities can 
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Figure 3. A tree in triple views. 

be reduced with additional constraints. In Marr's original 
image matching theory (Marr, 1982), the following three con- 
straints were introduced: 

Photometric compatibility constraint: Pixels in correspondence 
have similar intensities; 
Uniqueness constraint: A pixel in one image can correspond to 
only one pixel in the other image; and 
Disparity continuity constraint: Disparity varies smoothly 
almost everywhere over the image. 

Other important constraints developed by others include 
Epipolar constraint: The matching points must lie on the corres- 
ponding epipolar lines of the two images. This constraint 
reduces the two-dimensional search space into a one-dimen- 
sional search space. 
Disparity limit constraint: This constraint limits the disparity 
search within a certain range. 

We adopt the image-matching algorithm by Sun (1997) as 
the basic matching scheme because it can make use of all the 
above constraints. Similarity (or dis-similarity) is the guiding 
principle for solving the correspondence problem. Similarity 
measures have been diversified, and their performance and 
computation costs vary. Among them, the cross-correlation 
coefficient has been used most widely due to its independence 
of variations in brightness and contrast. 

The result of the correlation calculation forms a cube con- 
taining the correlation coefficients (Figure 4). The epipolar 
constraint and the disparity limit constraint are used in the gen- 
eration of the correlation cube. Let the range of disparity limit be 
[-D, Dl, and the input left and right epipolar images be of size 
row*col; then, the correlation cube is generated by calculating 
the correlation coefficients between the left image and the right 
image shifted from -D to D along the epipolar direction. The 
column of the cube is along the epipolar direction, and the ver- 
tical dimension is disparity. The value at pixel (i, j, d) is the cor- 
relation coefficient of pixel (i, j )  on the left image when 
disparitv is d [- D I d 5 D) The size of the cube depends upon 
thLimage sik(row*col) &d the disparity range ( 2 ' ~  + 11.- 

One advantaee of such a correlation cube is that it allows " 
us to combine multiple constraints in determining the dispar- 
ity map by searching the cube. The simplest and often used 
algorithm is to find the maximum correlation under a thresh- 
old constraint. However, the disparity continuity constraint is 
ignored. We treat the task as finding a smooth surface in the cube 
that maximizes its total correlation and simultaneously uses 

Epipola direction - 

Figure 4. Correlation cube and slicing. 

the following constraints: photometric compatibility, unique- 
ness. and dis~aritv continuitv. 

L 4 

We simplify the 3D surface searching problem to a 2D path 
optimization problem by slicing the correlation cube along the 
epipolar direction. In a slicing plane, the horizontal dimension 
is along the epipolar direction, while the vertical dimension is 
the range of disparity. For each slicing plane, we search for the 
optimal path from the left to the right through the correlation 
matrix Ging dynamic techniiues to maximize 
the total correlation on the path. The position of the path indi- 
cates the best disparity for &is slice. A 

Dynamic programming techniques have advantages in 
solving the optimization problem. Image matching by dynamic 
programming is a global matching approach, which seeks for 
the optimal solution globally instead of locally. The length of a 
path here is defined as the summation of the correlation coeffi- 
cients along the path. The best path holds the longest length 
when the disparity continuity constraint is satisfied. To define 
the smoothness of a path, a pth-order path is introduced. A pth- 
order path searches the next cell up and down in the range of 
[-p, p] from the current cell (Buckley and Yang, 1997). In this 
sense, parameter p serves as a smoothness constraint. 

The effectiveness of a coarse-to-fine pyramidal matching 
strategy is widely recognized. An image $amid consists of a 
hierarchv of multi-resolution images, with the lower levels 
containihg finer resolution data th& the upper levels. The res- 
olution from one level to the next is typically increased by a 
scale factor of 2 or 3. The number of levels is determined by the 
disparity range and the scale factor of the pyramid. Pyramidal 
image matching is implemented in a coarse-to-fine manner. 
The matching starts at the highest level first, where the image is 
small. The disparity outputs at this level are then used as ini- 
tial values to restrict the disparity search at the next finer level. 
This continues to the finest resolution level. This strategy not 
only significantly reduces the computation because only a 
small range needs to be searched on a small image at each level, 
but also increases the reliability of image matching by matching 
both globally for overviews at upper levels and locally for 
details at lower levels. 

We use scale = 3 as the scale factor of the pyramid in our 
algorithm because this is more computationally economic. 
The average of a 3 by 3 neighborhood makes a pixel at a higher 
level. In addition to its computational efficiency and reliabil- 
ity, the pyramidal structure has additional advantages in our 
model-based matching scheme: (1) it makes the correlation 
cube as small as [2*scale + l)*row*col at each level; (2) it can 
focus on different levels of details; and, more importantly, (3) 
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Figure 5. Integrating tree models into pyramidal image 
matching. 

it allows us to add geometric models at any level. This is desir- 
able in integrating tree models into the above conventional 
image-matching scheme. 

lncorporatlng the Tree Model in Image Matchlng 
Our goal is to let the matching algorithm know the characteris- 
tics of a crown surface during image matching. In a conven- 
tional matching scheme, very little prior knowledge about the 
objects is needed. In crown-surface reconstruction, however, we 
have a rough idea of crown shape through establishment of the 
optimal tree model. Conifer-crowns in natural forests usually 
have solid geometric shapes, a conical shape for young trees 
and a parabolic shape for mature trees. We integrate a geomet- 
ric tree model into image matching by using the model as a new 
constraint, the geometric shape constraint. Once we know the 
tree model from image analysis, we can calculate the ground 
coordinates of each point on the crown, and then we can pre- 
dict crown disparities in any image. The predicted disparity 
map serves as a guide to find correspondence. The correspon- 
dence search can be limited to a small range, usually a couple 
of pixels, around the predicted disparities. Therefore, we can 
introduce the tree model only at the final level of the pyramidal 
matching scheme for a minor adjustment. Because trees are 
specially treated at the final level, the other levels of pyramidal 
matching can concentrate on matching for ground objects, by 
setting the disparity limit range specifically for the ground. The 
ground is relatively smooth, and can usually be well handled 
by conventional image matching approaches. The output dis- 
parities at the second level from the last are modified by the 
predicted disparities from tree models before they are used as 
the initial disparity map at the final stage (Figure 5). That is, 
the initial disparity map at the final level is composed of two 
different sources: (1) the disparities obtained with a conven- 
tional image matching algorithm at the previous level, and (2) 
the crown disparities predicted from tree models. 

When the dynamic programming algorithm searches for 
disparity paths in the correlation cube at the final level, the 

Figure 6. Epipolar images in the three stereo pairs formed 
with triple images. 

order of the paths, p, can be set to various values from 0 to scale, 
depending on the confidence in the optimal tree model. If the 
tree model perfectly describes the crown surface, then set the 
order p to zero, which means no adjustment is needed. If the 
tree model is only a rough approximation of the real crown sur- 
face, then p needs to be increased, and this will introduce more 
variations into the reconstructed crown surface. 

Experimental Results 
We performed the test with a redwood tree at the campus of 
University of California at Berkeley (122.38"W, 3 7.6Z0N) using 
1:2,400-scale color aerial photographs. The photos were taken 
around 1410 hours on 23 May 1994 under clear sky conditions 
with an aerial camera having a focal length of 152.888 mm. The 
sunlight illuminated the ground from the southwest (AZ 
= 234.44') at an elevation angle of 71.80". This redwood tree 
was visible on three overlapping photos. These photos were 
scanned and digitized at 250 DPI, making the pixel resolution 
approximately 24 cm on the ground. The photographic station 
locations and camera attitudes were solved for through orienta- 
tion procedures (Table l). The three photos form three stereo 
pairs. The green-band epipolar images covering the tree of 
interest are shown in Figure 6. More parts of the tree-crown are 
visible on the middle-right pair (Figure 6c), so we focused on 
this pair. The periodical patterns in the images caused by lay- 
ered stretching branches make the matching task more difficult. 

Both conventional image matching and the model-based 
approach were implemented and applied for a comparison. We 
first generated the crown surface of this tree using the conven- 
tional image-matching algorithm described in the image 
matching section. With the tree-crown disparities considered, 
the disparity range is estimated as [-30,241 for the middle- 
right pair. For pyramid matching efficiency, we use [-27,271 
after a centralization as the disparity limit in the surface recon- 
struction. The resulting disparity map is shown in Figure 7a. 

TABLE 1. PHOTOGRAPHIC ORIENTATION ELEMENTS 

Photo Name Flight Station Coordinates [ X ,  Y, Z) in Mutc!r.s Can~c:r;~ Attiiutle (I,c. or K )  in radians 

The Lttft Imagc! (4172.145, 3999.740, 399.0115) (0.007112. 0.00259, 0.00023) 
The Middle Image (4370.708, 4002.312, 402.<)07) (0.01 269. 0.00455, 0 . 0 0 4 0 4 )  
The Right Image (4576.447. 4003.478. 404.708) ( -0.006 ti:(. - 0.00543. -0.0031lj) 
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(b) 

Figure 7. Results from the regular image matching 
approach. (a) Disparity map. (b) Surface model. 

Figure 8. Predicted disparity map from the tree model. 

Figure 7b is the reconstructed digital surface model. The red- 
wood tree of interest (circled by the white line in Figure 7b) is 
flattened so seriously that the tree turns out to be only 7 meters 
high. Though having taken many constraints into consider- 
ation, the conventional matching scheme does not work well. 
It is necessary to introduce the model-based approach. 

In the model-based approach, we need to determine the 
optimal tree model for this tree. The 3D ground coordinates of 
the treetop were acquired horn the left-right pair (Figure 6a). 
The treetop coordinates are (col: 88, row: 28) in the left image, 
and (col: 68, row: 28) in the right image. Its ground coordinates 
were thus calculated as 4366.60 m, 4056.94 m, and 49.47 m). 
The elevation of the tree base was determined to be 25.15 m. 
Therefore, the tree height was roughly estimated as 24.32 m. 
The dimension of the crown was determined interactively. The 
parameters of this tree model turned out to be: (X,, Yt, Z,) 
= (4366.60 m, 4056.94 m, 49.47 m), ch = 21.8 m, cr = 4.8 m, cc 
= 1.1, bh = 2.5 m. 

Figure 8 shows the crown disparity map predicted from the 
tree model. Because special care has been paid to the crown, 
we can focus on the ground in the upper-level pyramidal image 
matching. We narrow the disparity limit range down to [24,30] 
for the ground surface in this example. The algorithm mainly 
matches for the ground surface at the high levels of the pyra- 
mid. At the final level, we modify the output disparity map 
from the higher level with the predicted crown map, and use it 
as the initial disparity map in the final matching. 

The path order p can be specified between 0 and 3. When 
specifying path order p = 1, the algorithm has a ? 1-pixel flexi- 
bility in controlling path smoothness, corresponding to about 
0.4 m in the ground coordinate system. A l e e r  p gives the 
crown matching more freedom in the disparity search, and 
therefore allows for more variations in &e reconstructed 
crown surface. When the crown is not well defined by the opti- 
mal tree model, a larger p may give more realistic results. 

The results using p = 1 are shown in Figure 9. Figures 9a 
and 9b are the derived disparity map and the reconstructed 
surface map, respectively. Because the east side of the crown is 
occluded in both imaees. eaDs are found in this area in the sur- 
face map. After fillinithkiips using interpolation techniques, 
the final surface map is shown in Figure 9c. Corresponding 
maps obtained using p = 2 are shown in Figure 10. Comparing 
Figure 10 with Fieure 9, we can see that there is no significant 
diyference betwe& the two surface maps, though t& one 
derived using p = 2 has slightly more elevation variations. On 
both maps, the tree of interest turns out to be 25.14 m high. This 
indicates that this tree has a regular crown shape and that the 
tree model well describes this tree. We use the surface of p = ? 
in the following analysis. 

A field measurement was conducted on 24 October 1999. 
Because it is very difficult to directly measure a crown surface 
on the ground, tree height, base height, and crown radii from 
eight directions were measured using clinometers and tapes. 
Ground observations and corresponding plots from the recon- 
structed crown surface are illustrated for a comparison in the 
upper row and the lower row of Figure 11. Ground pictures of 
the tree were taken from the west and the south (Figures l l a  
and l lb) ,  respectively. The measured crown radii are plotted in 
Figure l lc .  The ground observations indicate that this tree is 
conical in shape. The profiles of the reconstructed crown sur- 
face are shown in Figure l l d  (west view), Figure l l e  (south 
view), and Figure l l f  (crown contours at a 2 m interval). Com- 
paring these profiles with the corresponding ground observa- 
tions, we can see that they are mostly consistent. The stretching 
branch marked at A in the photo from a west view (Figure l l a )  
is also visible in the profile (marker A in Figure l ld) .  The 
marked points B and C in the profile from a south view (Figure 
l le) ,  however, do not have matching features in the corres- 
ponding ground photo (Figure l l b )  because they are the results 
of gap filling in the digital surface model. They are on the east 
side of the crown, and invisible under this imaging config- 
uration. 

The reconstructed height of this redwood tree is 25.1 
meters, while it was measured as 27.4 meters in the field, 
which is underestimated by 2.3 meters. These photos were 
taken (in 1994) five years earlier than the field measurements 
(in 1999). It is possible for a redwood tree to grow by this 
amount during this period. This underestimation may also be 
partially caused by the fact that the very sharp tip of a conifer 
may not be captured during the photo imaging and scanning 
stages. 

We draped the original middle image on the top of the 
reconstructed surface to view the surface in 3 ~ .  The northeast, 
southeast, northwest, and southwest views are shown in Fig- 
ures 12a, 12b, 1212, and 12d, respectively. The redwood tree 
looks realistic from all these directions. 

Discussions 
From the above experiment, we can see that the crown-surface 
reconstruction can be considerably improved after a tree 
model is introduced into a conventional image matching algo- 
rithm. Although we have demonstrated the potential of such a 
model-based approach to crown-surface reconstruction, many 
problems still exist. 

An optimal tree model may not precisely describe a tree 
surface, especially when the tree is in an irregular shape. Con- 
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Figure 9. Madebbased crow surface reconstruction (order: 
p = I), fa] Disparity map. (b) Dlgltal surface rnodsl. Ec) Fill& 
surface model. 

I (a) I 

Ffgure 20. Model-based crown surface reconstnrction 
(atder: p = 23. (a) Disparity map. (b) Digital surface modal. 
(c) Filted surface modal. 

sequently, the model-based approach may not produce an ade- 
quate surface even with a large path order. The approach 
discussed in this paper can be implemented as an iterative pro- 
cedure. When our knowledge about tree height and canopy 
shape is poor, we can begin with a rough tree surface model 
with approximate tree parameters for the model-based 
approach. The output from the first round of model-based 
matching can be used as an initial condition in the next round 
of model-based matching for gradual adjustment. This proce- 
dure can be repeated until the improvement converges. 

It is difficult to obtain an optimal tree model. We dealt only 
with a single tree in our example, and determined the optimal 
tree model interactively. Our work is ongoing to facilitate the 
tree model acquisition process so as to meet the requirement 
for tree-crown-surface reconstruction for an entire stereo image 
coverage. Relevant research has been done on monocular 
images. Pollock (1996) developed optimal tree models using 
crown template matching for tree delineation, and Larsen and 
Rudemo (1998) detected conifer treetops using a similar tech- 
nique. We need to determine the ground coordinates for tree- 
tops in our tree model. We will use multi-ocular images for 
optimal tree model development. The multi-ocular approach 
is expected to produce better tree models than do the monocu- 
lar approaches. 

This paper uses a single tree as an example, but the pro- 
posed approach is readily applicable to sparse tree stands. The 
problem becomes complicated for dense forest stands where 
trees occlude each other. Occlusion will be treated in future 
research. A user-friendly interface is desirable for model-based 
crown analysis because human-machine interaction becomes 

necessary for complicated forest stands such as dense or 
uneven-aged stands. 

Conclusions 
nee-crown surface reconstruction is a difficult problem. It is 
not surprising that the current photogramrnetric~lgorithms are 
not successful because crown surfaces are s h a r ~  and irreeular, 
Although most of the commercially available &age-matlhing 
algorithms have many factors as control and constraints, they 
still fail to adequately reconstruct tree-crown surfaces. Intro- 
ducing tree-crown models into surface reconstruction dramati- 
cally improves this situation. The generalized ellipsoidal tree 
model can well describe most conifers. Our results indicate that 
crown-surface reconstruction through integration of tree- 
crown models with conventional pyramidal image matching is 
a good strategy. In the pyramidal image matching algorithm, 
slowly varying ground surface coordinates are extracted at the 
higher levels. At the final level, tree models are integrated to 
guide image matching for local adjustment of disparities. The 
degree of adjustment can be controlled by a parameter, the 
order p of the optimal path in dynamic programming tech- 
niques. This ensures that the image-matching algorithm will 
find the correct correspondence on a tree-crown in a proper 
range. When a tree is irregular in shape, or an optimal tree 
model is not adequate, a larger p value may help by giving more 
freedom in the image matching process. In addition, a model- 
based iterative image-matching algorithm may be implemented 
to achieve better results for conifer-crown surface recon- 
struction. 
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(0) QoWQ Ildd 

Figure 11. Ground truthing. 

t (b) 

(4 (dl 

Figure 12. Visualizing the crown surface model from vari- 
ous directions. (a) Northeast view. (b) Southeast view. (c) 
Northwest view. (d) Southwest view. 

when prior knowledge regarding the shapes of objects is 
available. 
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