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Incorporating ancillary data into image classification can 
increase classification accuracy and precision. Rule-based 
classification systems using expert systems or machine 
learning are a particularly useful means of incorporating 
ancillary data, but have been difficult to implement. We 
developed a means for creating a rule-based classification 
using classification and regression tree analysis (CART), a 
commonly available statistical method. The CART classifica- 
tion does not require expert knowledge, automatically selects 
useful spectral and ancillary data from data supplied by the 
analyst, and can be used with continuous and categorical 
ancillary data. We demonstrated the use of the CART classi- 
fication at three increasingly detailed classification levels for 
a portion of the Greater Yellowstone Ecosystem. Overall 
accuracies ranged from 96 percent at level 1 ,  to 79 percent at 
level 2, and 65 percent at level 3. 

Introduction 
Ancillary data, either in addition to or derived from remotely 
sensed data, has the potential for increasing classification 
accuracy. Incorporation of ancillary data into classification 
techniques, however, has been problematic. We developed a 
straightforward approach for creating a rule-based classifica- 
tion without expert knowledge by applying a commonly avail- 
able statistical technique, classification and regression tree 
(CART) analysis, to multiple spectral and ancillary data layers. 

Classiflcation and Regression Tree Analysis-Background 
CART is an increasingly popular form of statistical analysis 
available through widely used statistical packages, such as 
S-Plus (Venables and Ripley, 1997; Mathsoft, 1998; Lawrence 
and Ripple, 2000). CART operates by recursively splitting the 
data until ending points, or terminal nodes, are achieved using 
preset criteria. CART therefore begins by analyzing all explana- 
tory variables and determining which binary division of a sin- 
gle explanatory variable best reduces deviance in the response 
variable (Breiman et al., 1984; Efron and Tibshirani, 1991; Ven- 
ables and Ripley, 1997). In the case of image classification, 
explanatory variables consist of spectral and ancillary data, 
whether continuous or categorical, and the response variable 
is the land-coverlland-use class list. 

For each portion of the data resulting from this first split, 
the process is repeated, continuing until homogeneous termi- 
nal nodes are reached in a hierarchical tree. In the S-Plus imple- 
mentation of CART, terminal nodes are defined when either the 
total number of observations at the node is less than ten or the 
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deviance at the node is less than 1 percent of the total deviance 
for the entire tree (Venables and Ripley, 1997). 

CART usually will over-fit the model, creating a tree that 
explains substantially all of the deviance in the original data, 
but in a manner that is specific to the particular data used to fit 
the tree. It is necessary, therefore, to prune the tree back to a 
level where the tree can reasonably be expected to be robust. A 
common method used for pruning, and a method implemented 
in S-Plus, involves cross validation (Venables and Ripley, 
1997). In this method, the original data are randomly divided 
into ten equal sets. Trees are generated for nine of the data sets 
and validated against the tenth, with the minimum average 
deviance indicating the best size tree. The analyst might select 
a smaller tree if the cross-validation method indicates that, 
although additional deviance can be reduced, the amount of 
reduction does not justify an overly complex tree. 

The result of the CART analysis is a dichotomous decision 
or classification tree. Each path through the tree, defined by a 
series of dichotomous splits, specifies the conditions that lead 
to a most probable class. The tree, therefore, might be viewed 
as a series of rules that can be used for unknown observations to 
predict likely class membership. When used with remotely 
sensed and ancillary data, this naturally extends to a rule-based 
classification scheme. 

Ancillary Data Incorporation In Classification-Background 
Traditional methods of land-uselland-cover classification 
using satellite imagery have relied solely on the spectral infor- 
mation present in the images. With purely spectral approaches, 
the spectral and spatial resolutions of the imagery are the pri- 
mary determinants of the level of classification detail that can 
be achieved. For example, given the spectral and spatial reso- 
lution of Landsat Thematic Mapper (TM) imagery, such images 
have generally been considered adequate for mapping uSGS 
level I1 (Jensen and Cowen, 1999). By using ancillary data in 
addition to spectral responses, however, it might be possible to 
achieve either greater classification detail or greater classifica- 
tion accuracy for a given combination of spectral and spatial 
resolutions. 

Classification techniques using ancillary data in addition 
to spectral data have demonstrated that, in many cases, the 
proper addition of ancillary data to spectral data can lead to 
greater class distinctions (e.g., Strahler et al., 1978; Hutchen- 
son, 1982; Trotter, 1991; Jensen, 1996). Ancillary data generally 
is derived from GIS layers, such as digital elevation models, but 
might also include information derived from the imagery, such 
as texture information or multi-date composites. Initially, 
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methods incorporating ancillary data included pre-classifica- 
tion stratification, logical channel addition, and post-classifi- 
cation sorting (Jensen, 1996) and have met with considerable 
success. Each of these approaches builds on conventional 
supervised or unsupervised classification methods. 

Using ancillary data for pre-classification stratification or 
post-classification sorting does not incorporate additional data 
into the actual classification algorithm, but might increase 
accuracy by segregating otherwise confused classes using such 
information as elevation or landscape position (Vogelmann et 
al., 1998; Ricchetti, 2000). While these methods have been suc- 
cessful in increasing classification accuracies, failure to incor- 
porate ancillary data into the classification algorithm might 
fail to fully exploit the range of information available. When 
ancillary data have been incorporated into traditional classifi- 
cation algorithms as logical channels (combining the ancillary 
data as an additional data layer with the spectral bands), the 
full range of information available in the ancillary data was 
used (e.g., Strahler et al., 1978; Elumnoh and Shrestha, 2000; 
Ricchetti, 2000). With logical channel addition, ancillarv data 
are given equal weight tisingle spectral bands unless weights 
are assigned in a maximum-likelihood classifier. This im~lici t  
weightLg of ancillary data might not be appropriate or Lpti- 
mal, but proper weighting is usually unknown or must be 
sought out by trial and error. In addition, logical channel addi- 
tion is not appropriate for categorical, as opposed to continu- 
ous, ancillary data. 

More recently, ancillary data have been incorporated into 
modern classification methods such as expert systems 
(Goodenough et al., 1987) and neural networks (Bruzzone et al., 
1997; Skidmore et al., 1997). These approaches incorporate the 
ancillary data directly into the classification algorithms and are 
usually not dependent on a priori weights. Attempts to de- 
velop expert systems, however, are often hampered by the lack 
of requisite expert knowledge or difficulties in developing 
rules from such knowledge (Kontoes et al., 1993; Huang and 
Jensen, 1997). For example, it might be known that certain tree 
species only exist above certain elevations, but spectral distinc- 
tions among tree species within an image generally are not 
known prior to the analysis. Neural network approaches are 
still largely in the developmental stage, are not easily imple- 
mented (Bruzzone et al., 1997), and have had unpredictable 
results (Skidmore et al., 1997). 

Machine-learning approaches have been used to establish 
rule-based classification systems where expert knowledge was 
inadequate (Huang and Jensen, 1997). These methods use train- 
ing data and machine-learning algorithms to develop a series 
of rules to define each class. Although machine-learning 
approaches overcome many of the limitations of other 
approaches to incorporating ancillary data, they have required 
sophisticated programming skills and have not been readily 
available to the wider remote sensing community. Our 
approach using CART has similarities to machine learning 
approaches, but the tools we used are readily available and eas- 
ily implemented with commercially available software. 

Study Area 
The study area consisted of the northwest portion of the Greater 
Yellowstone Ecosystem (GYE). Covering approximately 20,900 
km2, the portion of the GYE included in this study spans two TM 
scenes, path 39, rows 28 and 29, and includes parts of Idaho, 
Montana, and Wyoming in the Rocky Mountain physiographic 
province. Most of the private land within the study area is 
found in broad valleys drained by active rivers (including the 
Gallatin, Madison, and Jefferson) and is surrounded by pub- 
licly owned, forested mountain ranges. The southeastern part 
of the study area contains the western-most boundary of Yel- 
lowstone National Park and the town of West Yellowstone, 
Montana. Remnants of the 1988 Yellowstone fires and large- 

scale clearcut logging are dominant disturbances in the south- 
east. The northern and western portions of the study area lie 
mainly within the Gallatin and Targhee National Forests and 
include the Gallatin Valley and the town of Bozeman, Mon- 
tana, which is the largest urban center in the GYE. Vegetation in 
the study area consists of mixed species conifer forests, gener- 
ally above 2000 m, intermixed with natural shrublands and 
grasslands. Less than 2 percent of the study area consists of 
exposed rock outcrops above treeline. At lower elevations, a 
mix of sagebrush, grasslands, and agricultural lands dominates 
the landscape. Hardwoods are mixed throughout the land- 
scape, generally in linear patches following rivers (cotton- 
wood and willow) and at the lower interfaces of forest and 
grassland (aspen). Water was excluded £rom the study area by 
thresholding TM band 5, and the limited areas of urban develop- 
ment were delineated by manual digitizing. 

Two pairs of TM scenes were acquired for the study area from 28 
June and 15 August 1994. These dates were chosen to encom- 
pass the growing season in the region and were the most cloud- 
free scenes available. The scenes were georeferenced, and 
paired scenes for each date were mosaicked. Radiometric cor- 
rection between scenes was performed through dark-body sub- 
traction to minimize artificial brightness and haze (Chavez, 
1998). In addition to using TM bands 1-7 from each date, we 
performed a Tasseled Cap transformation (Crist and Cicone, 
1984) for each date and used the first three components from 
the transformation (brightness, greenness, and wetness) for the 
analysis. Finally, for each of the three Tasseled Cap bands, we 
computed difference images between the two dates. 

In addition to the data from the TM scenes, we used a 30-m 
USGS digital elevation model (DEM) to extract elevation, slope, 
and aspect for the study area. A cosine transformation was 
applied to the aspect layer to provide a continuous variable 
measuring angle from due north (Beers et al., 1966), and the 
results were rescaled from 0 to 2000. 

Reference data were collected through aerial photo inter- 
pretation using either 1:15,840- or 1:24,000-scale photos from 
the 1990s, as available. Within the study area, seven transects 
were located covering the known range of cover types (from 
U.S. Forest Service stand maps) and elevation (from the DEM). 
For each cover type, 30 to 100 sample sites were collected 
using a stratified random sampling design, with stratification 
by elevation, aspect, and cover type. A total of 500 reference 
sites were interpreted using this method and were evenly 
divided into training and accuracy assessment (verification) 
sites. An additional 129 training sites were interpreted to 
increase the sample sizes for underrepresented classes, result- 
ing in 379 sites for classification training. In order to positively 
locate and interpret sample sites on the aerial photos, sample 
sites were designated as 2.25-ha areas, which was the smallest 
mapping unit practically sampled on the photos. Reference 
data were recorded at three levels of classification (Table 1). 

Spectral and topographic data were extracted for each ref- 
erence site. The ERDAS Imagine "Convert pixels to ASCII" utility 
was used to extract the data for each reference site from each 
data layer to a text file. Data extracted for each reference site 
were the mean value for a 5- by 5-pixel area to correspond to the 
size of the reference sites. 

The ASCII text file, which included three levels of land- 
coverlland-use classification and 26 possible explanatory vari- 
ables for each training site, was imported as an S-Plus data 
frame. CART analysis was performed to develop classification 
rules for the level 1 classification. Data classified as natural veg- 
etation was subset and CART analysis was performed on this 
subset to develop classification rules for the level 2 classifica- 
tion. For the level 3 classification, four CART analyses were con- 
ducted, with the hardwood, herbaceous, agriculture, and 
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TABLE 1. LANDUSE/~ANDCOVER CLASSIFICATION SCHEME USED FOR THE TABLE 2. DICHOTOMOUS CLASSIFICATION TREE FOR LEVEL 1 CLASSIFICATION 
STUDY BASED ON CART ANALYSIS 

Level 1 Level 2 Level 3 1. Tasseled Cap brightness difference < 22.5 
1.1. Elevation < 1682 m 

Urban Urban Urban 1.1.1. June TM band 6 < 139.5 
Agriculture Agriculture Perennial agriculture 1.1.1.1. June TM band 4 < 111, THEN Natural vegetation 

Annual agriculture 1.1.1.2. June TM band 4 > 111, THEN Natural vegetation 
Natural vegetation Conifer Mixed conifer 1.1.2. June TM band 6 > 139.5 

Douglas-& 1.1.2.1. June TM band 2 < 32.5, THEN Agriculture 
Coniferlherbaceous Coniferlherbaceous 1.1.2.2. June TM band 2 > 32.5, THEN Agriculture 

mix mix 1.2. Elevation > 1682 m 
Burned Burned 1.2.1. June TM band 6 < 116.5, THEN Natural vegetation 
Hardwood Aspen 1.2.2. June TM band 6 > 116.5, THEN Natural vegetation 

Willow 2. Tasseled Cap brightness difference > 22.5 
Cottonwood 2.1. Elevation < 1754 m 

Hardwood1 Hardwood1 2.1.1. Tasseled Cap greenness difference < 1 
herbaceous mix herbaceous mix 2.1.1.1. June TM band 4 < 116.5 

Herbaceous Sage-grassland 2.1.1.1.1. Tasseled Cap wetness difference < -5.5 
Grassland 2.1.1.1.1.1. August TM band 5 < 138.5 

2.1.1.1.1.1.1. June TM band 5 < 113.5 
2.1.1.1.1.1.1.1. June TM band 5 < 93 
2.1.1.1.1.1.1.1.1. June TM band 1 < 66.5, THEN 

conifer classes from level 2 each being further classified with Agriculture 
separate rule sets. 2.1.1.1.1.1.1.1.2. JuneTMband1>66.5,THENNatu- 

Using the results of the CART analyses as the basis for classi- ral vegetation 
fication rules, the ERDAS Imagine Expert Classifier was used to 2.1.1.1.1.1.1.2. June TMband 5 > 93, THEN Agriculture 
classify the entire study area. At levels 1 and 3, the manually 2.1.1.1.1.1.2. June TM band 5 > 113.5, THEN Natural 
digitized urban areas were merged with the classified CART vegetation 
map for final presentation and accuracy assessment. At level 2, 2.1.1.1.1.2. August TM band 5 > 138.5, THEN Agriculture 

both the urban areas and the classified agricultural areas from 2.1.1.1.2. Tasseled Cap wetness difference > -5.5, THEN 
Agriculture level 1 were merged into the final maps. Verification sites were 2.1.1.2. June TM band 4 > 116.5, THEN Agriculture 

used to test the maps for accuracy, and error matrices were 2.1.2. Tasseled Cap greenness difference > 1 
generated. 2.1.2.1. August TM band 1 < 77.5, THEN Agriculture 

2.1.2.2. August TM band 1 > 77.5, THEN Non-vegetation 
Results 2.2. Elevation > 1754 m 
CART analysis created 14 rules for classifying pixels at classifi- 2.2.1. June TM band 5 < 100.5, THEN Natural vegetation 
cation level 1, with each rule designated by a path through a 2.2.2. June TM band 5 > 100.5, THEN Natural vegetation 
dichotomous classification tree to a terminal node (Table 2). 
Data layers used in the classification rules included difference 
images for Tasseled Cap brightness, greenness, and wetness 
components; TM bands 1,2,4,5, and 6 from the june TM image; into six sub-classes [Table 4). Layers used to make class dis- 
T ~ b a n d s  1 and 5 from the ~~~~~t image; and elevation, ~ ~ ~ ~ ~ t ,  tinctions at level 2 included difference images for Tasseled Cap 
slope, and the remaining spectral data were not used in the brightness, greenness, and wetness components (as in level I), 
classification. Examining the CART results showed that a key as well as June TM bands 2,3, and 4; Tasseled Cap brightness 
factor used for distinguishing agriculture from natural vegeta- and greenness from the June TM image; and Tasseled Cap wet- 
tion was elevation. In areas of high brightness difference ness from the August TM image. The rules for level 2 were 
between June and August, no agriculture was classified above harder to interpret than were the rules for level 1 9  primarily 
1,754 m. ~~l~~ 1,754 m, agriculture was distinguished from due to the more complex nature of the classification. Two pat- 

vegetation by natural vegetation having terns were evident, however. First, burned areas were distin- 
intermediate values in band 5 (middle infrared) of the June TM guished from other classes by low values in band 4 (near 
image. In areas of lower brightness difference between June infrared) of the June TM image. Low vegetation cover and dark 
and ~ ~ ~ ~ t ,  no agriculture was classified above 1,682 ~~l~~ burn residue in the burned areas resulted in low near-infrared 
1,682 m, natural vegetation was distinguished from agriculture reflectance and explained this distinction. Second, conifer and 
by natural vegetation having lower band 6 (thermal) values for hardwood species were distinguished primarily b o u g h  the 
the June T~ image. ~h~~~ results with the general pat- use of difference images as a result of different phenological 
terns expected within the GYE: (1) forests tend to dominate PatternsbOWhoutthe growing season. 
higher elevations while agriculture is located almost exclu- Overall accuracy for level 2 was 79 percent and the Kappa 
sively in the lowlands; (2) forested canopies tend to have higher statistic was 0.74. Individual class accuracies ranged from 100 
leaf water content than dry-land agriculture but lower than irri- percent to 25 percent (Table 5). The greatest confusion at level 2 

gated agriculture, resulting in intermediate values in the mid- 
dle infrared; and (3) forested areas have greater canopy cooling 
and thus lower thermal values than agriculture. TABLE 3. ACCURACY ASSESSMENT FOR LEVEL 1 CLASSIFICATION. COLUMNS 

At level 1, overall accuracy was 96 percent and the Kappa REPRESENT REFERENCE DATA AND ROWS REPRESENT CLASSIFICATION DATA 
statistic was 0.92. For individual classes, accuracies ranged Natural 
from 79 percent to 100 percent (Table 3). The primary source of vegetation Agriculture Urban 
confusion at level 1 was between the urban and agriculture 
classes, where several urban sites were misclassified as Natural vegetation 171 1 1 

Agriculture 3 51 4 agriculture. 
The level 2 classification CART analysis, which was con- E:gcer,s accuracy 

0 0 19 
98% 98% 79% 

ducted only on the natural vegetation areas from the level 1 User,s accuracy 99% 88% 100% 
classification, created 17 rules to classify natural vegetation 
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TABLE 4. DICHOTOMOUS CLASS~FICAT~ON TREE FOR LML 2 CLASSIFICAT~ON 
BASED ON CART ANALYSIS 

TAELE 6. DICHOTOMOUS CLASSIFICATION TREES FOR LEVEL 3 CLASSIFICATIONS 
BASED ON CART ANALYSES 

1. August Tasseled Cap wetness < -17.5 
1.1. June Tasseled Cap greenness < -4.44 
1.1.1. June TM band 4 < 53.5, THEN Burned 
1.1.2. June TM band 4 > 53.5 
1.1.2.1. June Tasseled Cap brightness < 133.24, THEN 

Herbaceous 
1.1.2.2. June Tasseled Cap brightness > 133.24, THEN Burned 

1.2. June Tasseled Cap greenness > -4.44 
1.2.1. Tasseled Cap greenness difference < -13.5 
1.2.1.1. June TM band 3 < 28.5, THEN Herbaceous 
1.2.1.2. June TM band 3 > 28.5, THEN Herbaceous 

1.2.2. Tasseled Cap greenness difference > -13.5, THEN Coniferl 
herbaceous mix 

2. August Tasseled Cap wetness > -17.5 
2.1. June Tasseled Cap brightness < 122.5 
2.1.1. Tasseled Cap brightness difference < -2.5 
2.1.1.1. Tasseled Cap wetness difference < 8.54, THEN Conifer 
2.1.1.2. Tasseled Cap wetness difference > 8.54, THEN Conifer 

2.1.2. Tasseled Cap brightness difference > 122.5, THEN Coniferl 
herbaceous mix 

2.2. June Tasseled Cap brightness > 122.5 
2.2.1. August TM band 6 < 140.5 
2.2.1.1. Tasseled Cap wetness difference < -3.5 
2.2.1.1.1. June TM band 2 < 26.5, THEN Hardwood 
2.2.1.1.2. June TM band 2 > 26.5, THEN Hardwoodlherba- 

ceous mix 
2.2.1.2. Tasseled Cap wetness difference > -3.5, THEN 

Hardwood 
2.2.2. August TM band 6 > 140.5, THEN Conifer 

occurred with (1) conifer/herbaceous mix (defined as a mix of 
conifer and herbaceous with less than 70 percent conifer), 
which was primarily confused with the related classes of coni- 
fer and herbaceous, and (2) hardwood/herbaceous mix (defined 
as a mix of hardwood and herbaceous with less than 70 percent 
hardwood), which was primarily confused with the related 
class hardwood, as well as with agriculture. When coniferlher- 
baceous mix was combined with conifer, and hardwoodlherba- 
ceous mix was combined with hardwood, overall accuracy 
increased to 85 percent (Kappa statistic was 0.81) and individ- 
ual class accuracies ranged from 62 percent to 100 percent. 

The level 3 CART classification created four rules to subdi- 
vide hardwood classes into aspen, willow, and cottonwood; 
three rules to subdivide herbaceous classes in to sage-grassland 
and grassland; six rules to subdivide agriculture classes into 
perennial and annual agriculture; and four rules to subdivide 
conifer classes into mixed conifer species and Douglas-fir 
(Table 6). For hardwood classes, slope and band 1 (blue) from 
each of the June and August TM images were used to make class 
distinctions. Amen was distinguished from other hardwood 
classes by occu&ing on steepe~slopes, which was explained 
by the other hardwood classes-willow and cottonwood- 

1. Hardwood Classifications 
1.1. Slope gradient < 5" 
1.1.1. August TM band 1 < 59.66, THEN Willow 
1.1.2. August TM band 1 > 59.66 
1.1.2.1. June TM band 1 < 62.5, THEN Cottonwood 
1.1.2.2. June TM band 1 > 62.5, THEN Cottonwood 

1.2. Slope gradient > 5", THEN Aspen 
2. Herbaceous Classifications 
2.1. June Tasseled Cap brightness < 156.34 
2.1.1. Tasseled Cap wetness difference < -3.58, THEN Sage- 

grassland 
2.1.2. Tasseled Cap wetness difference > -3.58, THEN Grassland 

2.2. June Tasseled Cap brightness 3 156.34, THEN Grassland 
3. Agriculture Classifications 
3.1. Tasseled Cap brightness difference < 40.02 
3.1.1. Tasseled Cap greenness difference < -13.9 
3.1.1.1. Aspect < 1878.5, THEN Perennial agriculture 
3.1.1.2. Aspect > 1878.5, THEN Perennial agriculture 

3.1.2. Tasseled Cap greenness difference > -13.9, THEN Annual 
agriculture 

3.2. Tasseled Cap brightness difference > 40.02 
3.2.1. June Tasseled Cap wetness < -28.38 
3.2.1.1. June Tasseled Cap greenness < 6.22, THEN Annual 

agriculture 
3.2.1.2. June Tasseled Cap greenness > 6.22, THEN Perennial 

agriculture 
3.2.2. June Tasseled Cap wetness > -28.38, THEN Annual 

agriculture 
4. Conifer Classifications 
4.1. June Tasseled Cap greenness < 8.06, THEN Mixed conifer 
4.2. June Tasseled Cap greenness > 8.06 
4.2.1. August TM band 6 < 133.34, THEN Douglas-fir 
4.2.2. August TM band 6 > 133.34 
4.2.2.1. Elevation < 1823.5 m, THEN Mixed conifer 
4.2.2.2. Elevation > 1823 m, THEN Mixed conifer 

occurring within stream bottoms. Willow was distinguished 
from cottonwood by lower reflectance in blue in the August TM 
image. Within the herbaceous classes, sage-grassland was dis- 
tinguished from grassland by lower values in the Tasseled Cap 
wetness difference image, which resulted from August senes- 
cence of the grasses. Tasseled Cap brightness and wetness dif- 
ference images, Tasseled Cap greenness and wetness from the 
June TM image, and aspect were used to distinguish annual 
from perennial agriculture. At lower values of brightness dif- 
ference, annual agriculture had higher greenness difference 
values than did perennial agriculture. At higher values of 
brightness difference, perennial agriculture was distinguished 
by having higher greenness values in the June image. Finally, 
between conifer classes, Douglas-fir was distinguished from 
mixed conifer by having lower values in band 6 (thermal) of the 
August TEA image, probably as a result of denser canopies in the 
Douglas-fir forests. 

TABLE 5. ACCURACY ASSESSMENT FOR LEVEL 2 CLASSIFICATION. COLUMNS REPRESENT REFERENCE DATA AND ROWS REPRESENT CLASSI!=ICATION DATA 

Conifer1 Hardwood1 
Urban Burned Agriculture Conifer Hardwood Herbaceous herbaceous mix herbaceous mix 

- - 

Urban 19 0 0 0 0 0 0 0 
Burned 0 31 0 0 0 0 0 0 
Agriculture 0 0 51 0 1 2 0 2 
Conifer 1 2 1 63 9 2 4 1 
Hardwood 0 0 0 0 17 0 2 3 
Herbaceous 0 4 0 0 3 18 4 0 
Coniferlherbaceous mix 0 0 0 5 1 2 6 0 
Hardwoodlherbaceous mix 0 0 0 0 3 0 0 2 
Producer's accuracy 79% 84% 98% 93% 50% 75% 38% 25% 
User's accuracy 100% 100% 85% 76% 77% 62% 43% 40% 

I 
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TABLE 7. ACCURACY ASSESSMENT FOR LEVEL 3 CLASSIFICATION. COLUMNS REPRESENT REFERENCE DATA A N 0  ROWS REPRESENT CLASS~FICAT~ON DATA 

Annual Perennial Mixed 
Urban Burned agriculture agriculture conifer Douglas-fir Aspen Cottonwood Willow Sage-grassland Grass 

Urban 19 0 0 0 0 0 0 0 0 0 0 
Burned 0 31 0 0 0 0 0 0 0 0 0 
Annual agriculture 0 0 3 6 0 0 0 0 0 0 0 
Perennial agriculture 4 0 33 9 0 0 0 0 1 1 1 
Mixed conifer 1 2 0 1 57 6 5 1 1 1 2 
Douglas-fir 0 0 0 0 3 2 3 0 0 0 1 
Aspen 0 0 0 0 0 0 15 0 0 0 0 
Cottonwood 0 0 0 0 0 0 0 8 1 0 0 
Willow 0 0 0 0 0 0 0 0 7 0 0 
Sage-grassland 0 0 0 0 0 0 3 0 0 5 7 
Grass 0 4 0 0 0 0 0 0 0 0 7 
Producer's accuracy 79% 84% 8% 56% 95% 25% 58% 89% 70% 71% 41% 
User's accuracy 100% 100% 33% 18% 74% 22% 100% 89% 100% 36% 64% 

Overall accuracy of the level 3 classification was 65 per- 
cent and the Kappa statistic was 0.58. Individual class accura- 
cies were highly variable, ranging from 8 percent to 100 percent 
(Table 7). Particular problems were encountered with distin- 
guishing (1) annual from perennial agriculture, (2) Douglas-fir 
from other conifer forests, (3) aspen from conifer classes, and 
(4) sage-grassland from other grasslands without sage. 

Discussion 
A wide variety of classification options are available for image 
processing, and no single classification solution will always 
perform best. Incorporating ancillary data into rule-based clas- 
sifications, however, has been shown to be an effective 
approach in certain circumstances. We developed and demon- 
strated a method for creating and executing such a classifica- 
tion system without extensive a priori expert knowledge. This 
method, based on CART analysis, was easily implemented 
using commonly available image processing and statistical 
software. 

Overall and individual class accuracies at level 1 were 
excellent. While many classes were well classified at levels 2 
and 3, certain class accuracies were clearly unacceptable. Pri- 
mary reasons for unacceptable results might have included (1) 
inadequate spatial resolution for the desired level of classifica- 
tion, especially with respect to level 3 (Jensen and Cowen, 
1999), and (2) irresolvable class overlap with the spectral and 
GIS layers available. Attempts to distinguish problem classes 
with other classification algorithms were not successful. 

One of the strongest advantages of using CART to create 
classification rules was that a large array of potentially useful 
data could be entered into the analysis and CART automatically 
selected which layers were useful and which were not. This 
selection process distinguished CART from logical channel 
addition, expert systems, and neural networks. With logical 
channel addition, additional data must be selected before clas- 
sification. With expert systems, a priori knowledge is neces- 
sary to select ancillary data. With neural networks, only useful 
layers will be used, but the selection might be hidden from the 
analyst, hindering interpretation of the results and application 
to other classification problems. 

The automatic selection of useful data by CART should not 
be interpreted as a license to add layers to the analysis indis- 
criminately. As with any statistical analysis, the uncritical 
addition of potential explanatory variables increases the possi- 
bility of chance agreement between some explanatory variables 
and the response. Thus, an analyst should only include those 
data layers that are reasonably believed to have the potential to 
distinguish classes. 

CART is sensitive to large discrepancies in the size (number 
of observations) of training samples among individual classes. 
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Distinctions within the CART analysis are made based on min- 
imizing total misclassifications for the entire training set. Thus, 
a class with a larger number of training pixels might have 
greater weight in the analysis because it potentially contri- 
butes a larger number of misclassified pixels. Reasonable 
efforts, therefore, should be taken to keep the number of train- 
ing pixels per class roughly equivalent so that within class vari- 
ations do not overwhelm the among class distinctions that are 
the primary interest of classification. Furthermore, in selecting 
training sites, the caveats that apply to all supervised classifi- 
cation methods apply to CART as well. For example, training 
sites should be taken from relatively homogeneous locations, 
include all class types known to be present within the area to be 
classified, and cover the range of conditions present for each 
class Uensen, 1996). 

In addition to providing predicted classes at terminal 
nodes, CART analysis reports for each terminal node the proba- 
bility of misclassification and the probability of membership 
for each other class. This information can be used to assess the 
quality of the classification, assign fuzzy class memberships, or 
conduct Bayesian probability analysis. 

Supervised classification with CART analysis is an effective 
and easily implemented means for creating a ruled-based clas- 
sification when expert knowledge is insufficient. Applied in 
appropriate circumstances, it provides an alternative tool for 
the image analyst wishing to take advantage of ancillary data 
for classification. 
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