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Abstract

Incorporating ancillary data into image classification can
increase classification accuracy and precision. Rule-based
classification systems using expert systems or machine
learning are a particularly useful means of incorporating
ancillary data, but have been difficult to implement. We
developed a means for creating a rule-based classification
using classification and regression tree analysis (CART), a
commonly available statistical method. The CART classifica-
tion does not require expert knowledge, automatically selects
useful spectral and ancillary data from data supplied by the
analyst, and can be used with continuous and categorical
ancillary data. We demonstrated the use of the CART classi-
fication at three increasingly detailed classification levels for
a portion of the Greater Yellowstone Ecosystem. Overall
accuracies ranged from 96 percent at level 1, to 79 percent at
level 2, and 65 percent at level 3.

Introduction

Ancillary data, either in addition to or derived from remotely
sensed data, has the potential for increasing classification
accuracy. Incorporation of ancillary data into classification
techniques, however, has been problematic. We developed a
straightforward approach for creating a rule-based classifica-
tion without expert knowledge by applying a commonly avail-
able statistical technique, classification and regression tree
(CART) analysis, to multiple spectral and ancillary data layers.

Classification and Regression Tree Analysis—Background

CART is an increasingly popular form of statistical analysis
available through widely used statistical packages, such as
S-Plus (Venables and Ripley, 1997; MathSoft, 1998; Lawrence
and Ripple, 2000). CART operates by recursively splitting the
data until ending points, or terminal nodes, are achieved using
preset criteria. CART therefore begins by analyzing all explana-
tory variables and determining which binary division of a sin-
gle explanatory variable best reduces deviance in the response
variable (Breiman ef al., 1984; Efron and Tibshirani, 1991; Ven-
ables and Ripley, 1997). In the case of image classification,
explanatory variables consist of spectral and ancillary data,
whether continuous or categorical, and the response variable
is the land-cover/land-use class list.

For each portion of the data resulting from this first split,
the process is repeated, continuing until homogeneous termi-
nal nodes are reached in a hierarchical tree. In the S-Plus imple-
mentation of CART, terminal nodes are defined when either the
total number of observations at the node is less than ten or the
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deviance at the node is less than 1 percent of the total deviance
for the entire tree (Venables and Ripley, 1997).

CART usually will over-fit the model, creating a tree that
explains substantially all of the deviance in the original data,
but in a manner that is specific to the particular data used to fit
the tree. It is necessary, therefore, to prune the tree back to a
level where the tree can reasonably be expected to be robust. A
common method used for pruning, and a method implemented
in S-Plus, involves cross validation (Venables and Ripley,
1997). In this method, the original data are randomly divided
into ten equal sets. Trees are generated for nine of the data sets
and validated against the tenth, with the minimum average
deviance indicating the best size tree. The analyst might select
a smaller tree if the cross-validation method indicates that,
although additional deviance can be reduced, the amount of
reduction does not justify an overly complex tree.

The result of the CART analysis is a dichotomous decision
or classification tree. Each path through the tree, defined by a
series of dichotomous splits, specifies the conditions that lead
to a most probable class. The tree, therefore, might be viewed
as a series of rules that can be used for unknown observations to
predict likely class membership. When used with remotely
sensed and ancillary data, this naturally extends to a rule-based
classification scheme.

Ancillary Data Incorporation in Classification—Background

Traditional methods of land-use/land-cover classification
using satellite imagery have relied solely on the spectral infor-
mation present in the images. With purely spectral approaches,
the spectral and spatial resolutions of the imagery are the pri-
mary determinants of the level of classification detail that can
be achieved. For example, given the spectral and spatial reso-
lution of Landsat Thematic Mapper (TM) imagery, such images
have generally been considered adequate for mapping USGS
level 11 (Jensen and Cowen, 1999). By using ancillary data in
addition to spectral responses, however, it might be possible to
achieve either greater classification detail or greater classifica-
tion accuracy for a given combination of spectral and spatial
resolutions,

Classification techniques using ancillary data in addition
to spectral data have demonstrated that, in many cases, the
proper addition of ancillary data to spectral data can lead to
greater class distinctions (e.g., Strahler et al., 1978; Hutchen-
son, 1982; Trotter, 1991; Jensen, 1996). Ancillary data generally
is derived from GIS layers, such as digital elevation models, but
might also include information derived from the imagery, such
as texture information or multi-date composites. Initially,

Photogrammetric Engineering & Remote Sensing
Vol. 67, No. 10, October 2001, pp. 1137-1142,

0099-1112/01/6710-1137$3.00/0
© 2001 American Society for Photogrammetry
and Remote Sensing

October 2001 1137




methods incorporating ancillary data included pre-classifica-
tion stratification, logical channel addition, and post-classifi-
cation sorting (Jensen, 1996) and have met with considerable
success. Each of these approaches builds on conventional
supervised or unsupervised classification methods,

Using ancillary data for pre-classification stratification or
post-classification sorting does not incorporate additional data
into the actual classification algorithm, but might increase
accuracy by segregating otherwise confused classes using such
information as elevation or landscape position (Vogelmann et
al., 1998; Ricchetti, 2000), While these methods have been suc-
cessful in increasing classification accuracies, failure to incor-
porate ancillary data into the classification algorithm might
fail to fully exploit the range of information available. When
ancillary data have been incorporated into traditional classifi-
cation algorithms as logical channels (combining the ancillary
data as an additional data layer with the spectral bands), the
full range of information available in the ancillary data was
used (e.g., Strahler et al., 1978; Elumnoh and Shrestha, 2000;
Ricchetti, 2000). With logical channel addition, ancillary data
are given equal weight to single spectral bands unless weights
are assigned in a maximum-likelihood classifier. This implicit
weighting of ancillary data might not be appropriate or opti-
mal, but proper weighting is usually unknown or must be
sought out by trial and error. In addition, logical channel addi-
tion is not appropriate for categorical, as opposed to continu-
ous, ancillary data.

More recently, ancillary data have been incorporated into
modern classification methods such as expert systems

(Goodenough et al., 1987) and neural networks (Bruzzone et al.,

1997; Skidmore et al., 1997). These approaches incorporate the
ancillary data directly into the classification algorithms and are
usually not dependent on a priori weights. Attempts to de-
velop expert systems, however, are often hampered by the lack
of requisite expert knowledge or difficulties in developing
rules from such knowledge (Kontoes et al., 1993; Huang and
Jensen, 1997). For example, it might be known that certain tree
species only exist above certain elevations, but spectral distinc-
tions among tree species within an image generally are not
known prior to the analysis. Neural network approaches are
still largely in the developmental stage, are not easily imple-
mented (Bruzzone et al., 1997), and have had unpredictable
results (Skidmore et al., 1997).

Machine-learning approaches have been used to establish
rule-based classification systems where expert knowledge was
inadequate (Huang and Jensen, 1997). These methods use train-
ing data and machine-learning algorithms to develop a series
of rules to define each class. Although machine-learning
approaches overcome many of the limitations of other
approaches to incorporating ancillary data, they have required
sophisticated programming skills and have not been readily
available to the wider remote sensing community. Our
approach using CART has similarities to machine learning
approaches, but the tools we used are readily available and eas-
ily implemented with commercially available software.

Study Area

The study area consisted of the northwest portion of the Greater
Yellowstone Ecosystem (GYE). Covering approximately 20,900
km?, the portion of the GYE included in this study spans two T™
scenes, path 39, rows 28 and 29, and includes parts of Idaho,
Montana, and Wyoming in the Rocky Mountain physiographic
province. Mosl of the private land within the study area is
found in broad valleys drained by active rivers (including the
Gallatin, Madison, and Jefferson) and is surrounded by pub-
licly owned, forested mountain ranges. The southeastern part
of the study area contains the western-most boundary of Yel-
lowstone National Park and the town of West Yellowstone,
Montana. Remnants of the 1988 Yellowstone fires and large-
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scale clearcut logging are dominant disturbances in the south-
east. The northern and western portions of the study area lie
mainly within the Gallatin and Targhee National Forests and
include the Gallatin Valley and the town of Bozeman, Mon-
tana, which is the largest urban center in the GYE. Vegetation in
the study area consists of mixed species conifer forests, gener-
ally above 2000 m, intermixed with natural shrublands and
grasslands. Less than 2 percent of the study area consists of
exposed rock outcrops above treeline. At lower elevations, a
mix of sagebrush, grasslands, and agricultural lands dominates
the landscape. Hardwoods are mixed throughout the land-
scape, generally in linear patches following rivers (cotton-
wood and willow) and at the lower interfaces of forest and
grassland (aspen). Water was excluded from the study area by
thresholding T™M band 5, and the limited areas of urban develop-
ment were delineated by manual digitizing.

Methods

Twa pairs of T™M scenes were acquired for the study area from 28
June and 15 August 1994. These dates were chosen to encom-
pass the growing season in the region and were the most cloud-
free scenes available. The scenes were georeferenced, and
paired scenes for each date were mosaicked. Radiometric cor-
rection between scenes was performed through dark-body sub-
traction to minimize artificial brightness and haze (Chavez,
1998). In addition to using ™ bands 1-7 from each date, we
performed a Tasseled Cap transformation (Crist and Cicone,
1984) for each date and used the first three components from
the transformation (brightness, greenness, and wetness) for the
analysis. Finally, for each of the three Tasseled Cap bands, we
computed difference images between the two dates.

In addition to the data from the T™ scenes, we used a 30-m
usGS digital elevation model (DEM) to extract elevation, slope,
and aspect for the study area. A cosine transformation was
applied to the aspect layer to provide a continuous variable
measuring angle from due north (Beers et al., 1966), and the
resulls were rescaled from 0 to 2000.

Reference data were collected through aerial photo inter-
pretation using either 1:15,840- or 1:24,000-scale photos from
the 1990s, as available. Within the study area, seven transects
were located covering the known range of cover types (from
U.S. Forest Service stand maps) and elevation (from the DEM).
For each cover type, 30 to 100 sample sites were collected
using a stratified random sampling design, with stratification
by elevation, aspect, and cover type. A total of 500 reference
sites were interpreted using this method and were evenly
divided into training and accuracy assessment (verification)
sites. An additional 129 training sites were interpreted to
increase the sample sizes for underrepresented classes, result-
ing in 379 sites for classification training. In order to positively
locate and interpret sample sites on the aerial photos, sample
sites were designated as 2.25-ha areas, which was the smallest
mapping unit practically sampled on the photos. Reference
data were recorded at three levels of classification (Table 1),

Spectral and topographic data were extracted for each ref-
erence site. The ERDAS Imagine “Convert pixels to ASCi” utility
was used to extract the data for each reference site from each
data layer to a text file. Data extracted for each reference site
were the mean value for a 5- by 5-pixel area to correspond to the
size of the reference sites.

The asci text file, which included three levels of land-
cover/land-use classification and 26 possible explanatory vari-
ables for each training site, was imported as an S-Plus data
frame. CART analysis was performed to develop classification
rules for the level 1 classification. Data classified as natural veg-
etation was subset and CART analysis was performed on this
subset to develop classification rules for the level 2 classifica-
tion. For the level 3 classification, four CART analyses were con-
ducted, with the hardwood, herbaceous, agriculture, and
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TasLe 1. Lamp-Use/LAND-COVER CLASSIFICATION SCHEME USED FOR THE TagLe 2. DicHotomous CLASSIFICATION TREE FOR LEVEL 1 CLASSIFICATION
StupY Basep on CART AnALYSIS
Level 1 Level 2 Level 3 1. Tasseled Cap brightness difference < 22.5
1.1. Elevation < 1682 m
Urban Urban Urban

Perennial agriculture
Annual agriculture

Agriculture Agriculture

Natural vegetation Conifer Mixed conifer
Douglas-fir
Conifer/herbaceous Conifer/herbaceous
mix mix
Burned Burned
Hardwood Aspen
Willow
Cottonwood
Hardwood/ Hardwood/
herbaceous mix herbaceous mix
Herbaceous Sage-grassland

Grassland

conifer classes from level 2 each being further classified with
separate rule sets.

Using the results of the CART analyses as the basis for classi-
fication rules, the ERDAS Imagine Expert Classifier was used to
classify the entire study area. At levels 1 and 3, the manually
digitized urban areas were merged with the classified CART
map for final presentation and accuracy assessment. At level 2,
both the urban areas and the classified agricultural areas from
level 1 were merged into the final maps. Verification sites were
used to test the maps for accuracy, and error matrices were
generated.

Results

CART analysis created 14 rules for classifying pixels at classifi-
cation level 1, with each rule designated by a path through a
dichotomous classification tree to a terminal node (Table 2).
Data layers used in the classification rules included difference
images for Tasseled Cap brightness, greenness, and wetness
components; T™M bands 1, 2, 4, 5, and 6 from the June TM image;
T™ bands 1 and 5 from the August image; and elevation. Aspect,
slope, and the remaining spectral data were not used in the
classification. Examining the CART results showed that a key
factor used for distinguishing agriculture from natural vegeta-
tion was elevation, In areas of high brightness difference
between June and August, no agriculture was classified above
1,754 m. Below 1,754 m, agriculture was distinguished from
natural vegetation primarily by natural vegetation having
intermediate values in band 5 (middle infrared) of the June T™M
image. In areas of lower brightness difference between June
and August, no agriculture was classified above 1,682 m. Below
1,682 m, natural vegetation was distinguished from agriculture
by natural vegetation having lower band 6 (thermal) values for
the June T™ image. These results correlate with the general pat-
terns expected within the GYE: (1) forests tend to dominate
higher elevations while agriculture is located almost exclu-
sively in the lowlands; (2) forested canopies tend to have higher
leaf water content than dry-land agriculture but lower than irri-
gated agriculture, resulting in intermediate values in the mid-
dle infrared; and (3) forested areas have greater canopy cooling
and thus lower thermal values than agriculture.

Atlevel 1, overall accuracy was 96 percent and the Kappa
statistic was 0.92. For individual classes, accuracies ranged
from 79 percent to 100 percent (Table 3). The primary source of
confusion at level 1 was between the urban and agriculture
classes, where several urban sites were misclassified as
agriculture.

The level 2 classification CART analysis, which was con-
ducted only on the natural vegetation areas from the level 1
classification, created 17 rules to classify natural vegetation
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1.1.1. June TM band 6 < 139.5
1.1.1.1. June TM band 4 < 111, THEN Natural vegetation
1.1.1.2. June TM band 4 > 111, THEN Natural vegetation
1.1.2. June TM band 6 > 139.5
1.1.2.1. June TM band 2 < 32.5, THEN Agriculture
1.1.2.2. June TM band 2 > 32.5, THEN Agriculture
1.2. Elevation > 1682 m
1.2.1. June TM band 6 < 116.5, THEN Natural vegetation
1.2.2. June T™M band 6 > 116.5, THEN Natural vegetation
2. Tasseled Cap brightness difference > 22.5
2.1, Elevation < 1754 m
2.1.1. Tasseled Cap greenness difference < 1
2.1.1.1. June TM band 4 < 116.5
2.1.1.1.1. Tasseled Cap wetness difference < —5.5
2.1.1.1.1.1. August TM band 5 < 138.5
2.1.1.1.1.1,1. June TM band 5 < 113.5
2.1.1.1.1.1.1.1. June TM band 5 < 93
2.1.1.1.1.1.1.1.1. June TM band 1 < 66.5, THEN
Agriculture
2.1.1.1.1.1.1.1.2. June TM band 1 > 66.5, THEN Natu-
ral vegetation
2.1.1.1.1.1.1.2. June TM band 5 > 93, THEN Agriculture
2.1.1.1.1.1.2. June TM band 5 > 113.5, THEN Natural
vegetation
2.1.1.1.1.2. August TM band 5 > 138.5, THEN Agriculture
2.1.1.1.2, Tasseled Cap wetness difference > —5.5, THEN
Agriculture
2.1.1.2. June TM band 4 > 116.5, THEN Agriculture
2.1.2. Tasseled Cap greenness difference > 1
2.1.2.1. August TM band 1 < 77.5, THEN Agriculture
2.1.2.2. August TM band 1 > 77.5, THEN Non-vegetation
2.2, Elevation > 1754 m
2.2.1. June TM band 5 < 100.5, THEN Natural vegetation
2.2.2. June TM band 5 > 100.5, THEN Natural vegetation

into six sub-classes (Table 4). Layers used to make class dis-
tinctions at level 2 included difference images for Tasseled Cap
brightness, greenness, and wetness components (as in level 1),
as well as June T™ bands 2, 3, and 4; Tasseled Cap brightness
and greenness from the June T™ image; and Tasseled Cap wet-
ness from the August T™M image. The rules for level 2 were
harder to interpret than were the rules for level 1, primarily
due to the more complex nature of the classification. Two pat-
terns were evident, however. First, burned areas were distin-
guished from other classes by low values in band 4 (near
infrared) of the June TM image. Low vegetation cover and dark
burn residue in the burned areas resulted in low near-infrared
reflectance and explained this distinction. Second, conifer and
hardwood species were distinguished primarily through the
use of difference images as a result of different phenological
patterns throughout the growing season.

Overall accuracy for level 2 was 79 percent and the Kappa
statistic was 0.74. Individual class accuracies ranged from 100
percent to 25 percent (Table 5). The greatest confusion at level 2

TaBLE 3. AccURrAcY ASSESSMENT FOR LEVEL 1 CLASSIFICATION. COLUMNS
REPRESENT REFERENCE DATA AND Rows REPRESENT CLASSIFICATION DATA

Natural

vegetation Agriculture Urban

Natural vegetation 171 1 1

Agriculture a 51 R}

Urban 0 0 19
Producer’s accuracy 98% 98% 79%
User's accuracy 99% 88% 100%
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TaBLE 4. DicHoTomOUS CLASSIFICATION TREE FOR LEVEL 2 CLASSIFICATION
Basep on CART AnALYSIS

TaBLe 6. DicHotomous CuassiFicaTion TRees FOR LEveL 3 CLASSIFICATIONS
Basep on CART ANALYSES

1. August Tasseled Cap wetness < —17.5
1.1. June Tasseled Cap greenness < —4.44
1.1.1. June TM band 4 < 53.5, THEN Burned
1.1.2. June TM band 4 = 53.5
1.1.2.1. June Tasseled Cap
Herbaceous
1.1.2.2. June Tasseled Cap brightness > 133.24, THEN Burned
1.2. June Tasseled Cap greenness > —4.44
1.2.1. Tasseled Cap greenness difference < —13.5
1.2.1.1. June TM band 3 < 28.5, THEN Herbaceous
1.2.1.2. June TM band 3 > 28.5, THEN Herbaceous
1.2.2. Tasseled Cap greenness difference > —13.5, THEN Conifer/
herbaceous mix
2. August Tasseled Cap wetness > —17.5
2.1. June Tasseled Cap brightness < 122.5
2.1.1. Tasseled Cap brightness difference < —2.5
2.1.1.1. Tasseled Cap wetness difference < 8.54, THEN Conifer
2.1.1.2. Tasseled Cap wetness difference > 8.54, THEN Conifer
2.1.2, Tasseled Cap brightness difference > 122.5, THEN Conifer/
herbaceous mix
2.2, June Tasseled Cap brightness > 122.5
2.2.1. August TM band 6 < 140.5
2.2.1.1, Tasseled Cap wetness difference < —3.5
2.2.1.1.1. June TM band 2 < 26.5, THEN Hardwood
2.2.1.1.2, June TM band 2 > 26.5, THEN Hardwood/herba-
ceous mix
2.2.1.2. Tasseled Cap wetness difference >
Hardwood
2.2.2. August TM band 6 > 140.5, THEN Conifer

brightness < 133.24, THEN

—3.5, THEN

occurred with (1) conifer/herbaceous mix (defined as a mix of
conifer and herbaceous with less than 70 percent conifer),
which was primarily confused with the related classes of coni-
fer and herbaceous, and (2) hardwood/herbaceous mix (defined
as a mix of hardwood and herbaceous with less than 70 percent
hardwood), which was primarily confused with the related
class hardwood, as well as with agriculture. When conifer/her-
baceous mix was combined with conifer, and hardwood/herba-
ceous mix was combined with hardwood, overall accuracy
increased to 85 percent (Kappa statistic was 0.81) and individ-
ual class accuracies ranged from 62 percent to 100 percent.
The level 3 CART classification created four rules to subdi-
vide hardwood classes into aspen, willow, and cottonwood;
three rules to subdivide herbaceous classes in to sage-grassland
and grassland; six rules to subdivide agriculture classes into
perennial and annual agriculture; and four rules to subdivide
conifer classes into mixed conifer species and Douglas-fir
(Table 6). For hardwood classes, slope and band 1 (blue] from
each of the June and August TM images were used to make class
distinctions. Aspen was distinguished from other hardwood
classes by occurring on steeper slopes, which was explained
by the other hardwood classes—willow and cottonwood—

1. Hardwood Classifications
1.1. Slope gradient < 5°
1.1.1. August TM band 1 < 59.66, THEN Willow
1.1.2. August TM band 1 > 59.66
1.1.2.1. June TM band 1 < 62.5, THEN Cottonwood
1.1.2.2. June TM band 1 > 62.5, THEN Cottonwood I
1.2. Slope gradient > 5°, THEN Aspen
2. Herbaceous Classifications
2.1. June Tasseled Cap brightness < 156.34
2.1.1. Tasseled Cap wetness difference < -3.58, THEN Sage-
grassland
2.1.2. Tasseled Cap wetness difference > —3.58, THEN Grassland
2.2, June Tasseled Cap brightness > 156.34, THEN Grassland
3. Agriculture Classifications
3.1. Tasseled Cap brightness difference < 40.02
3.1.1. Tasseled Cap greenness difference < —13.9
3.1.1.1. Aspect < 1878.5, THEN Perennial agriculture
3.1.1.2. Aspect > 1878.5, THEN Perennial agriculture
3.1.2. Tasseled Cap greenness difference > —13.9, THEN Annual
agriculture
3.2, Tasseled Cap brightness difference > 40.02
3.2.1. June Tasseled Cap wetness < —28.38
3.2.1.1, June Tasseled Cap greenness <
agriculture
3.2.1.2. June Tasseled Cap greenness > 6.22, THEN Perennial
agriculture
3.2.2, June Tasseled Cap weiness >
agriculture
4. Conifer Classifications
4.1, June Tasseled Cap greenness < 8.06, THEN Mixed conifer
4.2, June Tasseled Cap greenness > 8.06
4.2.1. August TM band 6 < 133.34, THEN Douglas-fir
4.2.2. August TM band 6 > 133.34
4.2.2.1. Elevation < 1823.5 m, THEN Mixed conifer
4.2.2.2, Elevation > 1823 m, THEN Mixed conifer

6.22, THEN Annual

—28.38. THEN Annual

occurring within stream bottoms. Willow was distinguished
from cottonwood by lower reflectance in blue in the August T™M
image. Within the herbaceous classes, sage-grassland was dis-
tinguished from grassland by lower values in the Tasseled Cap
wetness difference image, which resulted from August senes-
cence of the grasses. Tasseled Cap brightness and wetness dif-
ference images, Tasseled Cap greenness and wetness from the
June T™ image, and aspect were used to distinguish annual
from perennial agriculture. At lower values of brightness dif-
ference, annual agriculture had higher greenness difference
values than did perennial agriculture. At higher values of
brightness difference, perennial agriculture was distinguished
by having higher greenness values in the June image. Finally,
between conifer classes, Douglas-fir was distinguished from
mixed conifer by having lower values in band 6 (thermal) of the
August T™M image, probably as a result of denser canopies in the
Douglas-fir forests.

TaBLE 5. AccuracY ASSESSMENT FOR LEVEL 2 CLAsSIFICATION. CoLumns REPRESENT REFERENCE DATA AND Rows REPRESENT CLASSIFICATION DATA

Conifer/ Hardwood/
Urban  Burned Agriculture Conifer Hardwood  Herbaceous  herbaceous mix  herbaceous mix
Urban 19 0 0 0 Q 0 0
Burned 0 31 0 0 0 0 ] 0
Agriculture 0 0 51 0 1 2 0 2
Conifer 1 2 1 63 9 2 1 1
Hardwood 0 0 0 0 17 0 2 3
Herbaceous 0 - 0 0 3 18 4 0
Conifer/herbaceous mix 0 0 0 5 1 2 6 0
Hardwood/herbaceous mix 0 0 0 0 3 0 0 2
Producer’s accuracy 79% 84% 98% 93% 50% 75% 38% 25%
User's accuracy 100% 100% 85% 76% 77% 62% 43% 40%
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TABLE 7. AccurAcY AsSESSMENT FOR LEVEL 3 CLassiFicaTiON. COLUMNS REPRESENT REFERENCE DATA AND Rows REPRESENT CLASSIFICATION DATA
Annual Perennial  Mixed

Urban Burned agriculture agriculture conifer Douglas-fir Aspen Cottonwood Willow Sage-grassland Grass
Urban 19 0 0 0 0 0 0 0 0 0 0
Burned 0 n 0 0 0 0 0 0 0 0 0
Annual agriculture 0 0 3 6 0 0 0 0 0 0 0
Perennial agriculture 4 0 33 9 0 0 0 ] 1 1 1
Mixed conifer 1 2 0 1 57 6 5 1 1 1 2
Douglas-fir 0 0 0 0 3 2 3 0 0 0 1
Aspen 0 0 0 0 0 0 15 0 0 0 0
Cottonwood 0 0 0 0 0 0 0 8 1 0 0
Willow 0 0 0 0 0 0 0 0 7 0 0
Sage-grassland 0 0 0 0 0 0 3 0 0 5 7
Grass 0 4 0 0 0 0 0 ] 0 0 7
Producer’s accuracy 79%  84% 8% 56% 95% 25% 58% 89% 70% 71% 41%
User's accuracy 100%  100% 33% 18% 74% 22% 100% 89% 100% 36% 64%

Overall accuracy of the level 3 classification was 65 per-
cent and the Kappa statistic was 0.58. Individual class accura-
cies were highly variable, ranging from 8 percent to 100 percent
(Table 7). Particular problems were encountered with distin-
guishing (1) annual from perennial agriculture, (2) Douglas-fir
from other conifer forests, (3) aspen from conifer classes, and
(4) sage-grassland from other grasslands without sage.

Discussion

A wide variety of classification options are available for image
processing, and no single classification solution will always
perform best. Incorporating ancillary data into rule-based clas-
sifications, however, has been shown to be an effective
approach in certain circumstances. We developed and demon-
strated a method for creating and executing such a classifica-
tion system without extensive a priori expert knowledge. This
method, based on CART analysis, was easily implemented
using commonly available image processing and statistical
software.

Overall and individual class accuracies at level 1 were
excellent. While many classes were well classified at levels 2
and 3, certain class accuracies were clearly unacceptable. Pri-
mary reasons for unacceptable results might have included (1)
inadequate spatial resolution for the desired level of classifica-
tion, especially with respect to level 3 (Jensen and Cowen,
1999), and (2) irresolvable class overlap with the spectral and
GIS layers available. Attempts to distinguish problem classes
with other classification algorithms were not successful.

One of the strongest advantages of using CART to create
classification rules was that a large array of potentially useful
data could be entered into the analysis and CART automatically
selected which layers were useful and which were not. This
selection process distinguished CART from logical channel
addition, expert systems, and neural networks. With logical
channel addition, additional data must be selected before clas-
sification. With expert systems, a priori knowledge is neces-
sary to select ancillary data. With neural networks, only useful
layers will be used, but the selection might be hidden from the
analyst, hindering interpretation of the results and application
to other classification problems.

The automatic selection of useful data by CART should not
be interpreted as a license to add layers to the analysis indis-
criminately. As with any statistical analysis, the uncritical
addition of potential explanatory variables increases the possi-
bility of chance agreement between some explanatory variables
and the response. Thus, an analyst should only include those
data layers that are reasonably believed to have the potential to
distinguish classes.

CART is sensitive to large discrepancies in the size (number
of observations) of training samples among individual classes.
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Distinctions within the CART analysis are made based on min-
imizing total misclassifications for the entire training set. Thus,
a class with a larger number of training pixels might have
greater weight in the analysis because it potentially contri-
butes a larger number of misclassified pixels. Reasonable
efforts, therefore, should be taken to keep the number of train-
ing pixels per class roughly equivalent so that within class vari-
ations do not overwhelm the among class distinctions that are
the primary interest of classification. Furthermore, in selecting
training sites, the caveats that apply to all supervised classifi-
cation methods apply to CART as well. For example, training
sites should be taken from relatively homogeneous locations,
include all class types known to be present within the area to be
classified, and cover the range of conditions present for each
class (Jensen, 1996).

In addition to providing predicted classes at terminal
nodes, CART analysis reports for each terminal node the proba-
bility of misclassification and the probability of membership
for each other class. This information can be used to assess the
quality of the classification, assign fuzzy class memberships, or
conduct Bayesian probability analysis.

Supervised classification with CART analysis is an effective
and easily implemented means for creating a ruled-based clas-
sification when expert knowledge is insufficient. Applied in
appropriate circumstances, it provides an alternative tool for
the image analyst wishing to take advantage of ancillary data
for classification.
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