
Abstract
Four atmospheric correction methods, two relative and two
absolute, were compared in this study. Two of the methods
(PIF and RCS) were relative approaches; COST is an absolute
image-based method and 6S, an absolute modeling method.
The methods were applied to the hazy bands 1 through 4
of a Landsat TM scene of the year 1997, which was being
used in a change detection project. The effects of corrections
were studied in woodland patches. Three criteria, namely
(a) image attributes; (b) image classification results, and
(c) landscape metrics, were used for comparing the perform-
ance of the correction methods. Average pixel values,
dynamic range, and coefficient of variation of bands consti-
tuted the first criterion, the area of detected vegetation
through image classification was the second criterion, and
patch and landscape measures of vegetation the third
criterion. Overall, the COST, RCS, and 6S methods performed
better than PIF and showed more stable results. The 6S
method produced some negative values in bands 2 through
4 due to the unavailability of some data needed in the
model. Having to use only a single set of image pixels
for normalization in the PIF method and the difficulty of
selecting such samples in the study area may be the reasons
for its poor performance.

Introduction
Australian woodlands have been subject to vegetation
clearing and livestock grazing since European settlement
around two centuries ago, which has resulted in patchy
vegetation remnants surrounded by farms and other land-
use. The long-term persistence of these patches has been the
subject of debate and research in Australia and elsewhere
(e.g., Saunders et al., 1987). These have given rise to studies
of vegetation change at the local and countrywide scales.
One of the most time and cost-efficient methods of vegeta-
tion change detection is through remote sensing data and
methods. This has brought about an era of research highly
dependent on remotely sensed imagery.

However, reflectance of the objects recorded by satellite
sensors is generally affected by atmospheric absorption and
scattering, sensor-target-illumination geometry, and sensor
calibration (Teillet, 1986). These normally result in distor-
tion of the actual reflectance of the objects that subsequently
affects the extraction of information from images. There

A Comparison of Four Common Atmospheric
Correction Methods

Abdolrassoul S. Mahiny and Brian J. Turner

has been considerable research on the need to and the
ways of correcting the satellite data for atmospheric effects
(Song et al., 2001; Campbell et al., 1994; Chavez, 1988;
Collett et al., 1997; Forster, 1984; Furby and Campbell,
2001; Hall et al., 1991; Milton, 1994; Schott et al., 1988;
Yang et al., 2000; Yuan and Elvidge, 1996). Deciding on the
need to correct for atmospheric effects is often a critical first
step that can affect subsequent steps in applications of
satellite data. For instance, the need for atmospheric correc-
tion in change detection studies is generally related to the
methods used. Song et al. (2001) state that in linear methods
of change detection such as simple image differencing, there
is no need to correct the images as long as the stable classes
in the differenced image have a zero mean.

Song et al. (2001) have shown that atmospheric correc-
tion affects the results of ratio transformations such as
Normalized Difference Vegetation Index (NDVI) (Song et al.,
2001), and that image classification is the image analysis
procedure least affected by correction. This is stated to be
especially true when the training data and the image to
be classified are at the same radiometric scale (i.e., both
corrected or both non-corrected) (Song et al., 2001).

In a study of vegetation change occurring in a rural area
of southeastern Australia over the years 1973 through 1997,
simple and NDVI differencing and post-classification compari-
son methods were the change detection methods chosen to
be used, based on an extensive literature review (Brogaard
and Prieler, 1998; Caccetta et al., 1998; Macleod and Congal-
ton, 1998; Singh, 1989). Prior to analysis, the remote sensing
data were examined for their need for atmospheric correction
and common correction methods were reviewed in an
attempt to assess their usefulness. However, after an exten-
sive literature review on the need to and the usefulness of
the common methods of atmospheric correction, it was still
not clear which of these methods was best for the available
data and the objects of interest in this study, namely vege-
tated areas. The literature often offered examples of studies
carried out in a small area where nearly all the required data
and parameters necessary for complete correction were
available. This is far from reality in most practical applica-
tions of remote sensing data where vast areas are studied
using images from different sensors, and some of the needed
information for atmospheric correction is usually lacking.
As a result, we chose to compare the effects of four atmospheric
correction methods on image attributes, image classification
results, and landscape metrics of vegetation patches. These
four represented a range of levels of sophistication in
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correction algorithms and were found to be the most often
recommended by researchers and analysts.

The study area was the catchment of the Boorowa River in
southern New South Wales, Australia, approximately 110 km
northwest of Canberra (Figure 1). The availability of field
data, long history of settlement, and vegetation clearing and
accessibility were among the reasons for this choice. The
catchment covers an area of about 220 thousand hectares
and is relatively flat with undulating hills to the east, north,
and west. Pastures, farmlands, remnant woodlands, and
small towns are the major land-cover/land-use covering the
area. The average annual rainfall ranges from 570 mm to 770
mm (Hird, 1991). The area has a warm climate with long
summers and cool to cold winters. Studies show that the
pre-European native vegetation of the area was composed of
three categories: dry schlerophyll forest, woodlands and
grasslands (Hird, 1991).

Eucalypt forests are dominant on the hilly country of the
eastern edge of the catchment where average annual rainfall
exceeds 640 mm (Hird, 1991). The woodlands are mostly
found on the lower slopes and plains (Figure 2). Also, minor
areas of grasslands can occur in small pockets in the wood-
land environment. The area has been subject to conversion of
woodland to agricultural lands for nearly two centuries. It is
thought that almost all native communities comprised of
eucalypt species have been cleared or modified to some extent
by agriculture or grazing (Yates and Hobbs, 1997a and 1997b).
As such, woodland patches have shrunk and remain mainly in
the hilly eastern areas. Areas of poor agricultural quality also
contain small patches of woodland (Newham, 1999). Contro-
versy continues over the amount of clearing that has taken
place, the rate of current change (loss and gain of woodland
areas), and the future stability of the woodland patches.

Literature Review
The aim of image normalization is to remove time- and
scene-dependent effects in remotely sensed data. Variability
in acquisition conditions is normally a result of differences
in atmospheric absorption and scattering, sensor-target-
illumination geometry, and sensor calibration. Converting
raw digital numbers (DN) in the images to the exo-atmos-
pheric or top-of-atmosphere reflectance (TOA) removes the
effects of differences in illumination geometry (Collett et al.,

1997). Scene-based data from a haze-free image (reference
image) can be used to accomplish the normalization process
over a series of multi-date images. This is done using sets of
pixels from invariant or pseudo-invariant features (PIF) in
the reference image and hazy images to be corrected (slave
images). Regression coefficients between these sets are used
to normalize images for atmospheric and illumination
effects. Pixels in the bright and dark portions of the tasselled
cap transformation (Hall et al., 1991) constitute the radio-
metric control set (RCS) which can be used alternatively in
the regression equation for image normalization.

Campbell et al. (1994) state that in most cases of change
detection projects, it is sufficient to convert raw DN of the
image set to be consistent with a reference haze-free image. So
in most cases, a relative atmospheric correction method such
as PIF or RCS is recommended. As alternatives to these normal-
ization methods, the cosine of the sun zenith angle (COST) and
the second simulation of the satellite signal in the solar
spectrum (6S) absolute correction methods are also commonly
used to convert raw DN of the images to the actual reflectance
of the objects on earth. The COST and 6S methods are relatively
easily implemented and are either incorporated into most
commercial image processing software (for the COST method) or
are available through standalone software (for the 6S method).
For brevity purposes, the term correction will be used through-
out this paper to denote both normalization and correction.

The PIF and RCS Methods
Two of the most commonly used atmospheric correction
methods are the pseudo-invariant features (PIF) and the
radiometric control sets (RCS) approaches. The PIF are
normally composed of man-made and natural features such
as concrete, asphalt, rooftops, and rock outcrops. Members
of the RCS are composed of non-vegetated extremes of the
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Figure 1. The area of study showing the Boorowa
Catchment location.

Figure 2. The gray scale composite image of
the Boorowa region, Landsat TM97 Bands
2,3,4. The darker areas represent vegetation.
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tasselled cap transformation (Hall et al., 1991) representing
bright and dark objects in the imagery. For RCS, the green-
ness and brightness components produced through the
tasselled cap process are used to single out the extreme
elements of the landscape such as deep water-bodies and
sands for dark and bright sets, respectively.

The PIF and RCS are selected through the following
criteria (Schott et al., 1988; Hall et al., 1991):

AND (1)

AND

AND

AND (2)

where t1 and t2 are threshold values and the bands refer to
Landsat TM data.

Geographically identical pixels are selected from the
reference and slave images. Then, a simple linear regression
is fitted between the raw DN in the slave and reference
images for each band and used to normalise the slave
image(s) to the reference one.

The COST Method
COST is an image-based absolute correction method. It uses
only the cosine of sun zenith angle (cos (TZ)) as an accept-
able parameter for approximating the effects of absorption
by atmospheric gases and Rayleigh scattering, hence the
name COST. In using the model, DN of the images are first
converted to radiance through the following formula
(Chavez, 1988):

(3)

where Lsat is the spectral radiance at the sensor, Lmin is the
minimum spectral radiance for a given band, Lmax is the
maximum spectral radiance for a given band, and DNmax is
the maximum digital number of the image range.

The values of Lmin and Lmax for each Landsat band are
given by Markham and Barker (1986).

Then, the radiance is converted to reflectance of the
objects at the Earth’s surface using the following formula:

(4)

where Ref is the reflectance at the Earth surface, Lsat is the
spectral radiance at the sensor, Lhaze is the path radiance, E0
is the mean solar exo-atmospheric irradiance, and TZ is
the mean solar angle. E0 is obtained from Table 4 of the
Markham and Barker (1986) publication.

The first step in calculating the path radiance (Lhaze) is
selection of the DNhaze through one of the following ways:

• By looking at the image histogram and finding the minimum
DN representative of haze values (Chavez, 1988);

• By looking at areas of known zero reflectance like large deep
water-bodies and assuming that any value in the raw image
in these areas other than zero represents haze effects
(although sediments and microscopic plants may obscure
this);

• By using software which automatically finds the DN for haze
value and applies a dark-object subtraction correction; or

• By defining other dark objects such as shadows and looking
for non-zero values in these areas. Principal components
analysis or the tasselled cap transformation can be used for
segmenting the shadows.

Then, the haze DN value is converted to at-satellite radiance
for each band using Equation 4.

Ref � p(Lsat � Lhaze) / (E0cos TZ)

Lsat � (Lmin � (Lmax � Lmin)/DNmax) DN

(brightness � t2)}

Bright sets � {(greenness � t1)

(brightness � t2)}RCS : Dark sets � {(greenness � t 1)

(Band7 � t2)PIF: {(Band4/Band3) � t1

Based on the fact that normally, dark objects comprise
nearly 1 percent of the whole image reflectance (Chavez,
1988), the radiance of an absolutely dark object when it is
haze-free will be:

(5)

where d2 is the squared sun-earth distance in astronomical
units. Hence, when the dark objects are hazy, the path
radiance due to haze (Lhaze) can be calculated by subtracting
L1% from the at-satellite radiance of hazy objects.

Lhaze is then substituted in Equation 4, and the images are
corrected band by band for atmospheric and radiometric noise.

As is evident, the COST method uses no additional
parameters other than those of the image and is able to
approximate the effects of atmospheric gas absorption and
Rayleigh scattering based on sun zenith angle.

The 6S Method
This model predicts the reflectance (�) of objects at the top
of atmosphere (TOA) using information about the surface
reflectance and atmospheric conditions (Vermote et al.,
1997b). This information is provided through a minimum of
input data to the model and incorporated features. The TOA
reflectance can be estimated using the following formula:

(6)

The surface reflectance (Ref) free from atmospheric
effects is estimated as:

(7)

where A � 1/��, B � ��/�, � is the global gas transmit-
tance, � is the total scattering transmittance, and 	 is the
spherical albedo (UNESCO, 1999). Alpha, beta, and gamma
are constants generated from running the model.

The minimum data set needed to run the 6S model is
the meteorological visibility, type of sensor, sun zenith and
azimuth, date and time of image acquisition, and latitude
and longitude of scene center. Using the input data and the
embedded features, the model produces variables to assess
the surface reflectance.

Data and Methods
Overview
For the change detection study, a Landsat MSS scene for 1973
and a TM scene for 1997 were obtained (Table 1). This was
done to provide the most extensive time frame for the change
detection. From examination of the band histograms and actual
DN values of dark water bodies, the MSS 1973 bands were found
haze-free, so no correction was needed for them. On the other
hand, examination of histograms of the TM 1997 bands revealed
that the first three bands were contaminated with a moderate
amount of haze that required atmospheric correction (Table 2).

For the PIF and RCS relative atmospheric correction
methods, a haze-free reference image was required. A TM
scene from 1991 was the only haze-free image set available.
It was recognized that using data so far apart in time might
introduce difficulties due to sensor degradation or changes in
the landscape. However, due to a lack of other suitable image
data, the TM 1991 was chosen for the normalisation task.

Field data recently collected were available to test the
accuracy of image classification. Additionally, a 2002 SPOT XS
image was acquired and used to assess the accuracy of classifi-
cation. Because of the high spatial resolution of the SPOT XS
image (10-meters) and high accuracy of its classification (99

Ref � [(Ar � B] / [1 � (g (Ar � B))]

r � (p Lsat d2) / (E0 cos TZ)

L1% � (0.01E0 cos TZ) / (pd2)
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to 100 percent on classifying woody vegetation) tested by
visual evaluation and field data, this image was used as ground
truth for accuracy assessment.

The four methods of atmospheric correction were
applied to the TM 1997 image and image attributes, image
classification results, and landscape metrics were investi-
gated to compare the methods.

Average reflectance of woodlands, and the entire bands
of the image together with the dynamic range and coefficient
of variation were the image attributes evaluated. The dynamic
range of the bands is an important feature because it shows
the amount of fine detail and extractable information (Yang
and Lo, 2000). Hence, in a relative sense, any atmospheric
correction method that produces wider dynamic ranges will
be of greater value for image classification. The frequency
distribution of image values is another important measure
reflecting separability of clusters in an image (Yang and Lo,
2000). As a variable representing the frequency distribution,
the coefficient of variation (CV) was selected for comparing
the methods.

Landscape attributes are generally studied at three
scales: patch, class, and landscape (McGarigal and Marks,
1995). In this research, patch refers to the isolated remnant
vegetation areas. The patches of vegetation can be grouped
into size classes or other categories. The whole landscape
mosaic containing patches, corridors of vegetation connect-
ing them, and the background matrix is studied through
the landscape metrics. It is assumed that any major change
in the bands’ attributes will be reflected in the landscape
metrics. In order to assess the effects of the correction
methods on landscape metrics, the detected woodlands in
the classified TM 1997 image were subjected to an adaptive
3 
 3 box filter for removing single pixels. Woodland
patches less than 0.5 hectare were also removed, and the
remaining patches were classified into the following size
classes (in hectares): 0.5 to 1, 1 to 5, 5 to 10, 10 to 20, 20 to
50, 50 to 100, and more than 100.

Then, the number of patches and percent of landscape
occupied by different patch-size classes were compared for
the correction methods. Total area of patches, patch-density,
mean patch-size, and landscape shape index together with
nearest neighbor and proximity indices were the landscape
metrics studied. IDRISI ver. 3.2 and ENVI ver. 3.4 software
were used for remote sensing analyses. The raster version of

Fragstats ver. 2 (McGarigal and Marks, 1995) software was
used for landscape analysis.

Correction Methods Applied
PIF Normalization
For the PIF normalization, the relatively haze-free TM 1991
was used as a reference. Then, pseudo-invariant features,
consisting mainly of rock outcrops, bare soils, and built-up
areas were segmented using bands 3, 4, and 7 of the TM
1991 and TM 1997 scenes, respectively.

For TM 1991, a total of 3,155 pixels were singled out as
the PIF set. This was done in two stages. First, the TM 1991
band 4 was divided by band 3. Then, by trial and error
(using known urban areas, water-bodies, and rock outcrops
on the division band), a DN value of 1.0 was chosen as the
threshold value (t1) that separated the image into urban
areas, water-bodies, and rock outcrops as one class and
other land-cover as the second class. Second, the DN values
between 11 and 173 (t2) were used for segmenting man-
made features and vegetation on TM 1991 band 7. Intersect-
ing the two resultant images with a logical AND gave the
final PIF set including only urban areas, rock outcrops, and
bare soils (Equation 1).

For TM 1997, a total of 3,577 pixels were collected as
the PIF set using t1 and t2 thresholds of 0.9 and 9 to 238,
respectively. The relatively low number of dark and
bright pixels is due to most of the area being agricultural
land and remnant woodlands. The coefficients of regres-
sion between the bands were then used to normalise
bands 1 through 5, and 7 of TM 1997 relative to that of
TM 1991.

RCS Normalization
For the RCS method, a tasselled cap transformation was
applied to TM 1991 and TM 1997 bands 1 through 5 and 7.
Then, the greenness and brightness components were
examined interactively for bright and dark objects. This
resulted in the selection of 973 bright and 33,672 dark
pixels for TM 1991 and 1,416 bright and 30,469 dark pixels
for TM 1997. Regression coefficients of the sets were calcu-
lated for the TOA reflectance of each band and then applied
to the bands to normalise TM 1997 to TM 1991.

COST Method
For the COST method, initial DNhaze values were selected
through histogram evaluation and then refined using gain
and offset values (Table 2). The refined DNhaze values
were calculated employing an Excel® spreadsheet, devel-
oped by Milton (1994). The spreadsheet has been con-
structed using the ideas of Chavez (1988) on improving
atmospheric correction procedures. The horizontal visibil-
ity was 50 km for the image date (Commonwealth Bureau
of Meteorology, personal communication, 2003) and
the haze DN value for the first band was 50. Hence, the
atmosphere was relatively clear at the time of satellite
overpass, and a relative scattering model representing a
clear atmosphere was chosen for the calculations in the
Milton spreadsheet (see Chavez, 1988). The results of the
spreadsheet application and COST correction method are
shown in Table 2.

The calculated Lhaze for each band was substituted in
Equation 4 for the COST method. Automatic selection of
DNhaze values by commercial software can be misleading,
because it normally results in the selection of the lowest
non-zero number with a very low frequency in the his-
togram for the haze value. However, in most cases, the
histogram minimum just represents noise in the imagery and
values slightly larger than that with a higher frequency of
pixels should be selected (Figure 3; Table 3).
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TABLE 1. IMAGE DATA SETS USED IN THE STUDY AND THE SPECIFIC

INFORMATION NEEDED FOR CORRECTION

Sun Sun
Imagery Date Zenith Azimuth D2 COS TZ

Landsat MSS 18 Jan. 1973 22.910 301.900 1.02 0.92
Landsat TM 8 Feb. 1991 44.740 76.150 0.97 0.71
Landsat TM 22 Oct. 1997 38.910 61.800 1.01 0.77
SPOT 5 XS 18 Nov. 2002 40.790 52.300 — —

TABLE 2. IMPROVING THE SELECTION OF DNhaze VALUES FOR BANDS USING THE
MILTON SPREADSHEET AND THE METHOD DEVELOPED BY CHAVEZ

Initial Refined
Imagery Band DNhaze DNhaze Lhaze

TM 22 Oct. 97 1 50 50.0 2.48
2 13 15.2 1.15
3 9 11.8 0.53
4 0 5.7 0.11
5 0 5.3 0.00
7 0 3.8 0.00
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6S Modeling
For the 6S atmospheric correction, a minimum data set
composed of date, sun zenith, azimuth angles, and horizontal
visibility was used. The horizontal visibility was available
from weather stations located in the region (Commonwealth
Bureau of Meteorology, personal communication). The Msixs
software ver. 6.2 (Vermote et al., 1997a) was used for the
calculations. The result of running the 6S model for the first
four bands of the TM 1997 dataset is given in Table 4.

The TOA reflectance for each band was converted to
ground reflectance using Equation 7.

Results and Discussion
The effects of the correction methods at three levels of (a)
image attributes, (b) image classification results, and (c)
landscape metrics are explained as follows.

Image Attributes
The expected reflectance pattern for eucalypt woodlands is
a relatively low reflectance in the blue band (band 1), a rise
in the green band (band 2), a fall in the red band (band 3),
followed by a sharp rise in the near infrared band (band 4) (e.g.,
Huang et al., 2004). The RCS and PIF corrected data showed this
pattern (Figure 4). However, the 6S method gave lower than
expected reflectance values for bands 1 and 2, and the COST
correction resulted in relatively lower reflectance in the green
band. The TOA reflectances (uncorrected for atmospheric effects)
were high in the blue band, a not unexpected result.

The COST method generated the widest dynamic range
in most bands followed by the 6S method (Table 5). The PIF
method generated the lowest dynamic range except in band
four in which it was greater than RCS.

In order to test the differences statistically, a hundred
points were randomly selected across the image and areas of
62 hectares in size were digitised around them. Then, the
dynamic range of the random areas across the bands were
measured and subjected to analysis of variance (ANOVA)
using Statistica ver. 5.2 (Statsoft, Inc., 1999). The analysis
showed significant differences between the mean dynamic
ranges for the COST, 6S, RCS, and TOA methods over all four
bands. Tukey’s honestly significant difference (HSD) test was
carried out on all pairs of means to reveal the significant
differences between pairs. As can be seen from Table 5, the
PIF range was significantly less than that of the other
methods in bands 1 through 3. The COST and 6S produced a
similar dynamic range in most cases.

Analysis of the different bands in relation to the
coefficient of variation (CV) showed that the 6S method
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Figure 3. Hypothetical figure showing the difference
between automatic and manual selection of DN
haze value.

TABLE 3. COMPARISON OF DNhaze SELECTION THROUGH MANUAL HISTOGRAM
ANALYSIS AND AUTOMATIC METHOD. “A” STANDS FOR AUTOMATIC AND “M” FOR

HISTOGRAM METHOD

Band 2 Band 3 Band 4

DN Npts DN Npts DN Npts

A 42 1 A 12 1 A 6 1
48 1 M 14 3 8 3
50 3 15 43 M 9 10

M 51 5 16 1054 10 32
52 21 17 5550 11 60
53 127 18 5426 12 534
54 489 19 5353 13 2219
55 1167 20 9986 14 4449
56 2059 21 36434 15 9613
57 3604 22 54221 16 21612

Band 5 Band 6 Band 7

DN Npts DN Npts DN Npts

0 100 0 799 0 2190
1 97 1 716 1 7991
2 248 2 2208 2 14314

No Haze 3 336 3 6289 3 16595
4 555 4 13618 4 16191
5 892 5 16052 5 11612
6 6456 6 10377 6 7396
7 17239 7 5959 7 4756
8 21761 8 4148 8 4103
9 13718 9 3509 9 4211

TABLE 4. PARAMETERS DERIVED FROM THE 6S MODEL

AND SUBSEQUENT CALCULATIONS

Parameter TM1 TM2 TM3 TM4

Global gas 0.98 0.91 0.93 0.91
transmittance

Total scattering 0.76 0.84 0.88 0.92
transmittance

Reflectance 0.07 0.04 0.02 0.01
Spherical albedo 0.15 0.10 0.07 0.04
A 1.32 1.29 1.20 1.17
B �0.09 �0.04 �0.02 �0.01

Figure 4. Average reflectance of woodlands for the
correction methods.
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generated the largest CV for bands 1 and 3, and the RCS
method gave the highest CV for band 2 followed by the 6S
method (Table 6). The PIF method produced the smallest
average CV in most bands.

Statistical analysis of the random areas for the four
bands treated with the COST, 6S, RCS, PIF, and TOA methods
showed significant differences in terms of coefficient of
variation. Tukey’s HSD test applied to the CV for the four
bands revealed that in most cases, for bands 1 through 3 the
methods of correction are significantly different from each
other. There was little separability for band 4.

Image Classification
In the post-classification comparison method, images for
each date are classified individually, and the results of
classification are compared through cross-tabulation. To
implement this method, all of the six bands of the corrected
and uncorrected (raw) TM 1997 image were used in a
maximum likelihood classification with a set of training
areas selected from the classified SPOT XS image. The images
were initially classified into two categories of woody and
non-woody areas. The SPOT classification image was also
used to validate the TM 1997 classification. Differences were
detected between the results of the classification of the
corrected bands and that of the uncorrected bands. In this
regard, the proportion of woodlands to the whole image
was nearly equal for the COST, 6S, and RCS methods. The
PIF method indicated a smaller proportion of woodlands
compared to the other methods and the TOA image showed
the highest proportion (Figure 5).

The additional area of detected woodlands resulting
from the correction methods was validated by the classified
and highly accurate SPOT image. Then, this additional area
for each correction method was compared to the uncorrected
image. The TOA image detected the greatest additional area
of woodland followed by the RCS, 6S, and the COST. The PIF
method produced the smallest area of additional woodland.

SPOT image validation of the corrected classified images
confirmed an average additional 1,195 hectares of wood-

lands resulting from application of the correction methods.
However, the methods failed to make an average area of
277 hectares of woodlands discernible to the classifier as
compared to the non-corrected image. Table 7 shows the
differential amount of woodland detected by the maximum
likelihood classification of the non-corrected and corrected
TM 1997 images.

The differential areas of woodland detected by the
correction methods were overlaid to investigate their spatial
overlap. Of the validated extra woodlands detected by
different methods of correction, only 327 hectares (27.3
percent) were detected by all four methods. This shows that
the correction methods behave differently in making areas of
woodlands discernible to the classifier. In other words, apart
from the fact that the corrections have improved the classifi-
cation results, each method has affected the process by
identifying woodlands in different locations. Hence, it is
expected that the distribution of patches across the land-
scape and the related landscape indices will also be differ-
ent for the correction methods used.

Landscape Metrics
Analysis of the patch metrics revealed that the number of
patches over the landscape was greatest in the TM 1997
image corrected by 6S and TOA followed closely by the RCS
and COST methods. Again, the PIF method resulted in a
smaller number of patches as compared to the other meth-
ods but the number was still greater than that determined
from the raw image (Table 8). This supports the argument
that a larger dynamic range and CV also give rise to detec-
tion of finer detail in the images since the PIF method
returned low values for these two measures.
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TABLE 5. TUKEY’S HSD TEST ON DYNAMIC RANGE OF REFLECTANCE OF

TM97 (ALPHA � .05)

TM Bands Correction Methods and Means

1 6S COST RCS TOA PIF
�: .060 .058 .057 .045 .033

2 COST 6S RCS TOA PIF
�: .087 .0863 .081 .067 .048

3 COST 6S TOA RCS PIF
�: .125 .116 .097 .097 .063

4 COST 6S TOA PIF RCS
�: .440 .391 .342 .262 .224

TABLE 6. TUKEY’S HSD TEST ON COEFFICIENT OF VARIATION OF TM97
(ALPHA � .05)

TM Bands Correction Methods and Means

1 6S COST RCS PIF TOA
�: 31.44 16.09 13.65 9.70 6.84

2 RCS 6S COST TOA PIF
�: 28.16 23.38 18.03 12.02 8.88

3 6S COST TOA RCS PIF
�: 31.31 25.76 20.39 19.84 16.47

4 COST TOA RCS PIF 6S
�: 21.02 20.68 18.92 18.87 17.73

Figure 5.  Difference in classification of woody and 
non-woody areas as a result of correction methods

TABLE 7. AREA OF WOODLANDS DETECTED IN THE CORRECTED IMAGES AND

NOT-DETECTED IN THE RAW IMAGES (A) AND THE REVERSE (B)

Amount of Woodland (ha)

Subtraction Operation A B

Raw - 6S 1,213 252
Raw - COST 1,168 278
Raw - PIF 956 244
Raw - RCS 1,226 328
Raw - TOA 1,412 283
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The correction methods were also found more efficient
in detecting the smallest areas of vegetation. In this regard,
the RCS, TOA, and the COST methods produced the best
results (Table 8).

As is clear from Table 9, the distribution of patches for
the different methods of correction varies greatly. The
smallest nearest neighbour was found with the 6S method,
followed by COST, TOA, and RCS. With the PIF method, this
index was even greater than the raw image suggesting that
the method has been able to distinguish the larger patches at
the expense of the smaller ones. Also, the smallest proximity
index was detected using the RCS method followed by the 6S
and PIF. The COST method was better than the TOA, and the
raw image performed very poorly in this connection.

The results shown in Table 10 also affirm these conclu-
sions. As is clear from this table, the correction methods
have produced images with more patches than detected in
the raw image.

Conclusion
Atmospheric correction methods used in this study showed
an effect on image attributes, vegetation change detection,
and the landscape metrics. Based solely on this fact, atmos-

pheric correction is judged a necessary step with regard to
the aims and specifications of the broader research study.
However, it was shown that each method behaved somewhat
differently. When it comes to choosing one of the methods
for atmospheric correction, the user should be aware that
the methods have their own advantages and disadvantages.

Each of the COST, RCS, or 6S methods can be equally
used where slight differences in the detected woodlands
in the form of small and scattered remnants are deemed
unimportant. When studying woodlands for the purpose of
biodiversity or wildlife habitats, even a few extra hectares
and their spatial arrangement can cause profound effects
on the final results. In these instances, choosing the right
correction method becomes crucial. Around 1,195 extra
hectares of woodland have been detected in this study as
a result of corrections applied to the TM 1997 compared to
the raw TM 1997 image and confirmed by the reference
classified SPOT image. The extra woodland has been found
dispersed across the landscape. This is about 8.9 percent
of the total woodland coverage in the area of study. The
difference between the corrected images and the raw image
and the discrepancy between the results of the correction
methods may be ecologically important. For example, the
extra woodlands act as connectors of the patches, increasing
the size, changing the shape and other attributes of the
patches that affect the decisions on the faunal habitat
quality, biodiversity, and the persistence of the patches.

The correction methods each tended to increase the
accuracy of the classification through distinguishing the
vegetation patches in different parts of the landscape. In
other words, what was classified as a patch of woodland in
a given correction method, might not be so detected by
another method. The 6S, RCS, COST, and PIF along with the
TOA tended to detect more small patches compared with the
raw image. Thus, the proximity index and mean nearest
neighbour decreased with the above corrections. This is
because of the higher dynamic range in the data as a result
of the corrections.

With any of the correction methods, the time needed to
carry out the procedure and the feasibility of application can
become very important. The time required for each method
can be a crucial factor when many sets of imagery are used.
The RCS method required more analyst time than the PIF.
The absolute and modeling methods of COST and 6S were
applied to the imagery in considerably less time than the PIF
and RCS methods. It is suggested that selection of a small
sample and relying on just one sample may have caused the
PIF method to perform poorly. The only critical factor with
the COST method is selection of the correct DNhaze values. In
this study, the automatic selection of DNhaze did not produce
the same results as the manual method. Usually, a combina-
tion of automatic selection of DNhaze and visual inspection
of the histogram is required for this purpose. For the 6S
model to produce accurate results, detailed data on the
atmospheric condition is required. Often this information is
not available. Using only the available information on
parameters and default values for the rest may cause the
model to produce anomalous results such as negative values.
However, the number of these pixels is likely to be minimal
compared to the whole scene (as in this study), and hence it
may not affect the final results greatly.

The COST, RCS, and 6S methods produced relatively
consistent results across the bands when the dynamic range
and coefficient of variation were considered. Also, with
image classification and landscape indices, the COST, 6S, and
RCS performed better than the PIF and raw image and
distinguished more patches. It was shown that merely
converting raw image data to exo-atmospheric reflectance
could enhance the final results. In most cases where a
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TABLE 8. COMPARISON OF THE PATCH METRICS FOR THE

CORRECTION METHODS

No. of Patches

Patch Size Raw
Class (ha) PIF RCS COST 6S TOA (uncorrected)

.5–1 884 913 909 875 912 801
1–5 784 820 778 838 811 735
5–10 135 127 138 141 149 118
10–20 70 67 78 80 72 47
20–50 48 46 60 56 43 46
50–100 19 20 19 19 21 18
100� 24 22 25 23 24 26
TOTAL 1,964 2,015 2,007 2,032 2,032 1,791

TABLE 10. COMPARISON OF SELECTED LANDSCAPE INDICES FOR THE

CORRECTION METHODS

Landscape Indices

Total No. of Patch Density Mean Patch Landscape
Method Area (ha) Patches (#100 ha) Size (ha) Shape Index

PIF 15,763 1,964 12.45 8.02 65.54
RCS 16,019 2,015 12.57 7.95 66.38
COST 16,091 2,007 12.47 8.01 66.26
6S 16,190 2,032 12.55 7.96 66.74
TOA 16,467 2,032 12.34 8.10 66.45
Raw 14,546 1,791 12.31 8.12 63.63

TABLE 9. COMPARING THE EFFECT OF CORRECTION ON THE DISTRIBUTION

OF PATCHES ACROSS LANDSCAPE

Correction Method

Landscape
Indices 6S COST PIF RCS TOA Raw

Mean Nearest 605 629 665 640 635 658
Neighbor (m)

Mean Proximity 4.7 5.2 4.9 4.2 7.5 10
Index
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relatively accurate correction fulfils the needs of study, the
image-based correction method of the COST is an efficient
way of removing atmospheric effects while saving time.
Where possible, the RCS method offers a good way of
correcting images. In case of a need for a speedy correction
with relatively correct results, the 6S modelling procedure
with minimum input can be employed. It is suggested that
for the PIF method to produce acceptable results, a large
sample of pixels be selected from across the image. If this
cannot be achieved, applying the method is better than
using the non-corrected image at the very least. To borrow a
sentences from Keith et al. (2002), although using in a
different context, this study has shown that making correc-
tion through one of the COST, RCS, or 6S methods is more
important than quibbling about which of these correction
methods to use.
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