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Abstract
Coarse resolution data from the Moderate Resolution
Imaging Spectroradiometer (MODIS) was used to test the
effectiveness of 250 m data to detect forest disturbances and
update an existing, large-area (150,000 km2), 30 m Landsat
ETM� and TM land-cover map product used in Grizzly Bear
(Ursus arctos) habitat analysis. A Landsat-derived polygon
layer was applied to the MOD13Q1 data product to create a
polygon-based, mean NDVI time series (2000 to 2005). Image
differencing of the dataset produced multiple-scale layers of
change including a two-date, five-year change and a five-
year composite of annual changes. Accuracy assessments
based on available GIS data showed an overall accuracy as
high as 59 percent. Results also show that disturbance
patches larger than 15 ha were represented with an accu-
racy of 75 percent or higher. This offers an alternative to
higher spatial resolution data for the identification of larger
features and also provides general change information for
those areas that may be suitable for analysis with higher
spatial resolution data.

Introduction
Forests are subject to change from anthropogenic activities
such as mining, forestry, recreation, and oil and gas explo-
ration. The impacts of these activities often cover large areas
and may have a negative influence on the natural processes
of ecosystems and habitats that exist in these areas (Lunetta,
1998; Yuan et al., 1998; Gong and Xu, 2003; Wulder et al.,
2003; Wessels et al., 2004; Fraser et al., 2005; Jensen, 2005;
Linke, 2006). With these activities expanding deeper into
environmentally sensitive areas, public interest in the health
and status of these ecosystems can also generate pressure for
more accurate monitoring and sustainable management
practices. An example is the Foothills Model Forest (FMF)
Grizzly Bear Research Project (GBRP). One goal of the GBRP is
to map the entire grizzly bear range in Alberta Figure 1
using 30 m Landsat TM and ETM� imagery in an effort to
determine the relationship between grizzly bear response
and health to intensive land-use activities (Stenhouse and
Graham, 2005). Originally, a core study area of roughly
10,000 square kilometers in 1999, it has since expanded to
over 250,000 square kilometers that, by the end of 2007, will
include all of the eastern slopes of the Rocky Mountains
from the Montana border to the provincial boundary of the
Northwest Territories. The entire study area encompasses a
mosaic of nearly 25 Landsat TM scenes, a product that is
essentially impossible to duplicate at the same spatial

resolution annually or even bi-annually due to short growing
seasons and persistent cloud cover in these areas (Wulder,
2004; Fraser et al., 2005). Further, instruments such as those
from Landsat Thematic Mapper or Satellite Pour Observa-
tion de la Terre (SPOT), that offer moderate or high spatial
detail, typically have small swath widths and long repeat
times that result in compositing intervals that are too large
to resolve accurate time scales for many of these changes. As
a result, the working maps are often out of date (i.e., based
on most recent best available TM or ETM� data), and there is
dearth of alternative methods to update these products
(McDermid et al., 2005).

Coarser spatial resolution sensors (e.g., 250 to 1000 m)
have the ability to overcome some of these limitations. For
example, since 2000, the Moderate Resolution Imaging
Spectroradiometer (MODIS) has been collecting data across
the globe every one to two days. High quality, cloud free
mosaics are produced at 16-day intervals and are presently
available at no cost to the user. The spectral resolution
ranges across 36 spectral bands from visible to thermal
infrared (between 0.405 and 14.385 mm). Of the seven bands
collected for land surface remote sensing, two are available
at the 250 m resolution: Band 1 - Red: 620 to 670 nm and
Band 2 - Near Infrared (NIR): 841 to 876 nm (Townshend
et al., 2002; Justice et al., 2002). Research has suggested that
these are among the most important spectral regions for
remote sensing of vegetation, and interest is growing within
MODIS-based, coarse resolution change detection studies
(Coppin et al., 2004; Fraser et al., 2005). Phenomena have
ranged from climate-driven phenology (Moody and Johnson,
2001), natural disturbances (Tansey et al., 2004; Chuvieco
et al., 2005), and forest harvesting (Zhan et al., 2002; Jin and
Sader, 2005). Recent attempts use an assortment of change
detection techniques including change metrics (Fraser et al.,
2005), iterative estimation (Le Hegarat-Mascle et al., 2005),
end-member and spectral signatures (Thenkabail et al.,
2005), logistic regression (Fraser et al., 2003), decision trees
(Zhan et al., 2002), multi-date differencing (Kasischke and
French, 1995), and supervised classification (Jin and Sader,
2005). Gitas et al. (2004) used an object-based classification
to detect burned areas, however, in the literature, there are
few multiple spatial resolution change detection studies
that use an object-based combination of Landsat, 30 m data
with coarser spatial resolution data like MODIS. Further, little
research has focused on coarse resolution, satellite data for
the purposes of supporting temporally accurate and spatially
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adequate, large-area mapping and monitoring programs
despite recent trends towards regional and global monitoring
projects (Franklin, 2001; Olsen et al., 2002; Wulder et al.,
2003; Wessels et al., 2004; Stenhouse and Graham, 2005).

The objectives of this study are to (a) fill these gaps in
the literature by evaluating the ability of a multiple scale,
polygon-based dataset to detect forest disturbance, (b) to
determine the patch size at which forest disturbances are
accurately detectable with a multi-spatial, polygon-based
dataset, and (c) to determine if and where such products can
be used for the purpose of updating existing map products.
A GIS-based (manual) change layer and a Landsat change
detection layer will provide the reference data for validation
and accuracy assessments.

Study Area
The study area is located in a boreal forest along the eastern
slopes of the Rocky Mountains near Hinton, Alberta, Canada
in a moderate to high elevation within the existing Grizzly
Bear Research Program (GBRP) study area. The area covers a
subset of Landsat Path/Row 44/23 and encompasses more
than 7,000 square kilometers (Figure 1). This prime Grizzly
Bear habitat is composed of mixed and pure stands consist-
ing primarily of white spruce (Picea glauca), lodgepole pine
(Pinus contorta), and trembling aspen (Populus tremuloides)
(Stenhouse and Graham, 2005). Extensive land-use activities
occurring in this area (for example, oil and gas exploration
and forestry) will provide practical examples of change at
different spatial scales that are likely to occur within similar
forest types (Figure 2).

Imagery Acquisition and Preprocessing
Landsat Data
Based on availability, cloud-free imagery consisting of a
Landsat-7 Enhanced Thematic Mapper Plus (ETM�) image
acquired 14 September 2001 and a Landsat-5 Thematic
Mapper (TM) image acquired 17 September 2005 (Path/Row
44/23) were used to support the Landsat portion of the
change detection study. The entire 2005 Landsat-5 TM image
was radiometrically calibrated to convert digital number
(DN) to radiance to at-satellite reflectance values consistent
to those of Landsat-7 ETM� using a Top of Atmosphere
(TOA) Correction outlined by Chander and Markham (2003).
In order to calculate the TOA reflectance values, the DN’s
are first converted to the original 32-bit radiance values
measured by the sensor using the equation:

(1)

where l � TM band number, Ll � at-satellite radiance, Gain �
band-specific gain obtained from the header file, and Bias �
band-specific bias, obtained from the header file.

Once the radiance values are calculated, the at-satellite
reflectance is calculated as:

(2)

where l � TM band number, Ll � at-satellite radiance,
r � TOA reflectance, ESUNl � mean solar exoatmospheric
irradiance, and u � sun elevation angle, obtained from the
header file.

In addition to the radiometric corrections, both 44/23
scenes were geometrically calibrated to eliminate relief
displacement. To achieve this, each scene was orthorectified
using the satellite orbital math model found in PCI Geomatica®

OrthoEngine (Toutin, 1995). Ground control points (n � 25)
were collected across the entire image using a 30 m DTMI

digital elevation model (DEM) and a manually digitized,
government-issued Roads layer. The Roads layer was created
from orthophotos, high spatial resolution imagery, and ground
data. It defines the standard geometric quality for all Landsat
scenes used within the GBRP. In order to ensure precise
registration, resulting second-order polynomial produced from
this process requires a root mean square error (RMSE) of less
than 0.5 pixels. Once this was achieved, the image data were
resampled using a nearest neighbor algorithm to produce a
30 m grid projected to UTM Zone 11, NAD83 datum based on
the GRS80 ellipsoid to ensure precise integration with other
data in the GIS. Following visual inspection of geometric
quality based on the Roads layer, clear cuts and other linear
features, the data were clipped to the test area of 3,114 by
2,519 pixels covering a total area of 7062 km2 (Figure 1).

The wetness index of the tasselled cap transformation
was calculated for the at-satellite reflectance of both the
Landsat-7 ETM� (Crist and Cicone, 1984) and the Landsat-5
TM (Huang et al., 2000) test area. This index was used to
generate the Enhanced Wetness Difference Index (EWDI)
based on the study by Franklin et al. (2001). Shown here are
the Landsat TM coefficients, where LSBand* refers to the
individual reflective Landsat bands:

Wetness � (0.2626 * LSBand1) � (0.2141 * LSBand2) 
� (0.0926 * LSBand3) � (0.0656 * LSBand4) 
� (�0.7629 * LSBand5) � (�0.5388 * LSBand7). (3)

MODIS Data
The MOD13Q1 product contains vegetation indices that were
specifically designed to provide consistent spatial and
temporal comparisons of global vegetation cover to support

r �
p * Ll * d2

ESUNl * sin(u)

Ll � Gainl * DNl � Biasl 

Figure 1. Study Area and significant boundaries.
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Figure 2. Portion of study area subject to intensive land-use change highlighting loss of detail from
Landsat to MODIS sensors: (a) 2001 Landsat TM EMT�, (b) 2001 MODIS NDVI, (c) 2005 Landsat TM, and
(d) 2005 MODIS.

TABLE 1. SATELLITE IMAGERY ACQUISITION DATES

Year MODIS Landsat

2000 28 August
2001 13 August 14 September
2002 29 July
2003 13 August
2004 13 August
2005 28 July 17 September

change detection and phenological studies (Justice et al.,
2002; Jin and Sader, 2005). Contained in tile 10v03, all
available, MOD13Q1 scenes from summer (July to early-
September) 2000 to 2005 were downloaded from the MODIS

website (http://edcimswww.cr.usgs.gov.pub/imswelcome/),
but only six composite dates were selected based on avail-
ability of nearly cloud-free data that correspond with the
Landsat acquisition dates as outlined in Table 1. MODIS

products are atmospherically corrected before release

therefore, preprocessing was limited to: (a) reprojecting the
sinusoidal projection to UTM Zone 11 (NAD 83), (b) translat-
ing the dataset to a usable file format, and, (c) clipping the
mosaic to fit the study area. These tasks were completed
using the MODIS Reprojection Tool downloaded from the
NASA Land Processes Distributed Active Archive Center.
In total, six image dates were selected to create two different
change products: (a) a five-year composite of annual change
layers, and (b) a five-year, two-date change layer.

Manual GIS Change Layer (�GIS)
A reference change layer (called �GIS) was compiled based on
existing clear-cut and well-site data stored in the FMF GBRP

data archive. To create �GIS, existing cut-block and well-site
data were available over nearly 85 percent of the area. Image
interpretation and manual digitization of aerial photographs
and high-resolution SPOT5 imagery (acquired July 2005)
provided additional change features, and finally, the 2005
Landsat TM image was used to digitize any remaining change
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TABLE 2. SIZE DISTRIBUTION OF POLYGONS IN

LANDSAT TM SEGMENTATION

Size (Ha) Number of Polygons

0–2 20,681
2–4 35,034
4–6 26,447
6–8 17,242
8–10 10,638

10–15 10,880
15–20 3,257
20–25 1,053
25� 631

Total 125,863

features (less than 10 percent). Features such as roads, well-
sites, and clear-cuts were readily identified through multiple
field observations designed to identify each change mapped
in the GIS database. These field observations were acquired by
interdisciplinary field teams assembled for the purpose of
training data acquisition and verification of the land-cover
classification. Typically, manual interpretation of change is
confirmed in the form of experience and/or ancillary data
which include other classification maps, Geographic Informa-
tion Systems (GIS) layers, ground truth data, and aerial
photography. Despite minimal error associated to change
omission, the GIS-based change layer (�GIS) was used as the
validation layer for the study.

Landsat-Based Polygon Layer
The polygon layer used in this study was clipped from
the 2003 GBRP Land-cover Map (McDermid et al., 2005).
The layer was created from 30 m Landsat data using the
Multiresolution Segmentation algorithm provided in
Definiens® Professional 5.0 (formerly eCognition® 4.0).
This algorithm creates larger objects through a clustering
process based on weighted heterogeneity. The size of each
polygon is controlled by user defined parameters for
weight, scale, and shape parameter (McDermid et al.,
2005). To create the polygon layer used for this study,
various combinations of input variables and parameters
were tested to ensure all landscape features were appropri-
ately represented. The combination ultimately used was
based on a blend of the tasseled cap variables brightness,
greenness, and wetness (weight 1.0), and the DEM deriva-
tives of slope and incidence (weight 0.3). The scale
parameter was set to 9, and the composition criteria were
color: 0.8, shape: 0.2, smoothness: 0.8, and compactness:
0.2. Average polygon sizes are outlined in Table 2.

Image Differencing Methods
A series of one-year and five-year change maps were created
using the 2000 to 2005 imagery to create the polygon-based
change detection layers for comparison, several steps were
required. First, the MODIS NDVI values were applied to the
polygon layer using the VIMAGE algorithm in PCI Geomat-
ica®’s Algorithm Library. This algorithm applied the mean
value of the NDVI pixels found within each polygon to create
a multiple spatial resolution, polygon-based layer of average
mean NDVI MODIS values (Figure 3). Next, the polygon-based,
NDVI layers were subtracted (YEAR 1 – YEAR 2) resulting in
six separate layers of Change/No-Change: one two-date, multi-
year change layer from 2000 to 2005 (�SM), and five annual
change layers that were merged to produce one five-year
multi-date composite of Change (�CM).

Following the creation of the Change products, the
next step, and one of the most crucial was thresholding

i.e., determining the value(s) of actual change instead of
differences that may be a result of sensor noise, atmospheric
differences, geometric error, or other non-land-cover change
source. For this process, earlier work by Franklin et al.
(2005) suggested that selecting a threshold of two standard
deviations from the mean (i.e., mean difference in pixels in
change polygons) resulted in appropriate change threshold
for Landsat TM or ETM� Enhanced Wetness Difference Index
studies of forest canopies. Visual inspection of the resulting
thresholded imagery suggested that this was an adequate
reference point for this MODIS study however, manual
adjustments were necessary to generate optimal threshold
values for the changes to be mapped.

These steps were repeated with the Landsat EWDI to
create the polygon-based �TM. Upon completion of the final
change layers, several accuracy and map comparison tests
were performed to evaluate the quality of the MODIS change
detection at different spatial scales (or patch size) as com-
pared to the GIS-based change layer (�GIS) and the Landsat
EWDI change detection (�TM) of the same area.

Accuracy Assessment
Creating the sampling strategy for assessment points posed
a challenge and therefore, several sampling strategies were
implemented for the accuracy assessment. First, a proportional
sample was selected; i.e., a random selection of polygons was
generated. This resulted in extremely high accuracies overall
due to the mis-proportion of Change:No-Change (4:96). For
example, too much of the image had not changed, and a
direct proportional sample was biased to those no-change
areas. The accuracy of the Change class was of primary
interest in this study (i.e., the occurrence of omission error
was thought to be of greater consequence), so it was important
to ensure the number of points representing “No-Change”
did not falsely improve the overall map accuracy. In order to
represent all types of change within the area, one training
point was assigned to each change polygon contained within
�GIS polygon (n � 1,418). No-Change points (n � 400) were
randomly generated within �GIS. This sample size was chosen
based on a study by Congalton (1991) who suggested that
increasing sample size beyond this point does not significantly
effect the final statistics. To avoid the effects of mixed-pixels
and confusion along edges, especially within the coarse
resolution pixels, each of the No-Change points was placed at
least 400 m from the edge of change polygons (equivalent to
approximately 1.5 MODIS pixels).

Using the sample points, both validity and reliability
were assessed. First, validity (the agreement between the
value of a measurement and its true value on the ground) was
tested using a confusion matrix for each �CM, �SM, and �TM

with the reference map �GIS. The matrix was then used to
determine the overall map accuracy, error of omission, and
error of commission. Next, reliability (or the reproducibility
of the maps) was assessed by calculating KAPPA:

(4)

where pe � expected probability of agreement, and po �
actual agreement.

The KAPPA calculation produces an index that com-
pares agreement with chance and can be thought of as the
chance-corrected proportional agreement. Possible values
range from �1 (perfect agreement) to 0 (no agreement above
that expected by chance) to �1 (complete disagreement).
Landis and Koch (1977) suggest the following for one
possible interpretation of KAPPA:

• Poor agreement � Less than 0.20
• Fair agreement � 0.20 to 0.40

k �
po � pe

1 � pe
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Figure 3. Conversion from a pixel-based image to a polygon-based image: (a) MODIS NDVI 250 m pixels
with polygon overlay, (b) Mean NDVI Polygon-based MODIS 250 m data derived from PCI Geomatica®’s
VIMAGE algorithm.

Figure 4. Data Point Distribution versus 2000 to 2005
Single Image MODIS Change Detection Error Statistics.

• Moderate agreement � 0.40 to 0.60
• Good agreement � 0.60 to 0.80
• Very good agreement � 0.80 to 1.00.

In addition to the accuracy assessments mentioned
above, a map classification comparison was performed
providing insight into how the actual spatial coverage of
change polygons (�SM and �TM) compare to polygons of
ground data (�GIS). This assessment provided a different
perspective on the accuracy because (a) information con-
cerning the association among specific individual classes
in a confusion matrix can be lost by summary association
measures, and (b) this test provided a spatially explicit
comparison.

Next, the Cramer’s V correlation coefficient (V) was
calculated. A statistical correlation coefficient such as this is
used to measure the relationship between two categorical
variables and represents this association with values ranging
from 0 (no association) to 1 (perfect association) (Davis,
1986). Additionally, the Cramer’s V statistic is not affected by
sample size, and therefore is very useful in situations where
one may suspect a statistical significance was the result of
a large sample size instead of any substantive relationship
between the variables. For example, one study by Klita et al.
(1998) compared AVHRR and Landsat TM classifications of a
boreal forest in Northwest Alberta using the Cramer’s V. One
other comparative study by Fosnight and Fowler (2001)
used this statistic to compare an AVHRR-based U.S. Land
Cover Characterization and a photo-based USGS Land-cover
and Land-use map. The AVHRR data were scaled to match
the spatial scale of this classification and cross tabulation
from the two differing datasets tested several measures of
association and agreement. For rectangular cross classified
tables, the Cramer’s V performed in the top three and authors
suggested that it be used as a test of independence between
two classifications (Fosnight and Fowler, 1996). It is calcu-
lated as:

(5)

where X2 � Chi Square, N � the total number of observa-
tions in the contingency table, and L � the minimum
number of rows or columns in the contingency table.

V � ((X 2/N (L � 1))1/2

Natural Breaks Classification
As mentioned above, several authors have used MODIS

for the purpose of detecting forest disturbance, and the
general consensus is that smaller forest disturbances are
not accurately detected with 250 m MODIS data. One study
by Jin and Sader (2005), did find that patch size greater
than 20 hectares will be detected by a supervised classifi-
cation of MODIS NDVI data with an accuracy of 75 percent
or higher in a temperate forest suggesting that a fourth test
is necessary to determine the minimum polygon size for
change to be accurately identified using the multi-spatial
resolution method. To achieve this, polygons and their
associated validation points from �GIS were distributed
into 13 size classes based on natural breaks within the
data. This dataset was subject to the KAPPA and error
matrix accuracy tests and size classes are summarized
in Figure 4.
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Figure 5. Change Detection Results: (a) Manual Change: �GIS, (b) Cumulative MODIS NDVI Change: �CM,
(c) Single Image Landsat TM EWDI Change: �TM, and (d) Single Image MODIS NDVI: �SM.

Results and Discussion
The results of the change detections are displayed in Figure 5.
The results of the error matrix (Tables 3 and 4) showed that
the single-image MODIS change detection, �SM, provided the
best results (59 percent overall accuracy, KAPPA 0.272),
possibly because of cumulative data problems (e.g., atmos-
pheric effects) in comparing imagery year-by-year over the
five-year interval in �CM (52 percent overall accuracy, KAPPA
0.199). Also, it is possible that some of the first forest clear-
cuts were created shortly after initial image acquisition and
were maturing by the time of sequential image collection
resulting in weaker spectral changes (Lunetta et al., 2004).
The TM-based procedure yielded approximately 85 percent
accuracy with a KAPPA of 0.638 which is consistent with the
results of other EWDI studies. Spatial representation of the
changes detected by MODIS and Landsat agree generally with
those mapped in the �GIS (Figure 5a). The general pattern of
change is apparent through the �TM (Figure 5c) and �CM and
�SM (Figure 5b and Figure 5d, respectively) however, �CM

appears to contain more errors of omission and commission.
Closer inspection of a small area reveals some interest-

ing details in the change detection output (refer to Plate 1).
Significant omission is apparent (see Plate 1 identified with

the number 1 in the top central part of the upper right
image map); here, the GIS contained a large polygon identi-
fied as change which was not captured in either of the
MODIS change detection procedures. In the lower portion of
the Plate (lower central, labeled as the number 2), partial
change detection appears to have occurred; here, the GIS

data suggest several polygons were missed, but that others
were quite accurately identified in the MODIS procedure.
And finally, in the lower right hand side of the Plate
(labeled as number 3), very accurate change detection
appears to have occurred, since the GIS polygons appear to
overlay almost perfectly the change polygons identified in
the MODIS image differencing.

Map Agreement Comparison
The map agreement comparison spatially compared each of
�SM and �TM to the control, �GIS. These are displayed in
Plate 2. The largest difference was found between �SM and
�GIS (Table 5), however, the statistics show that �SM was
able to detect over half of the changes (54 percent) included
in the �GIS and 96 percent of the total No-Change included
in �GIS. �SM included an additional 3.79 percent and missed
1.42 percent of overall change compared to that of �GIS.
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TABLE 3. RESULTS OF THE ERROR MATRIX

No-Change Change Total % Correct % Commission

�CM
No-Change 391 852 1231 30.8 68.5
Change 9 566 587 96.4 1.6
Total 400 1418 1818
% Correct 97.8 39.9 51.98 K

% Omission 2.3 60.1 0.199

�SM
No-Change 379 717 1096 34.6 65.4
Change 21 701 722 97.1 2.9
Total 400 1418 1818
% Correct 94.8 49.4 59.4 K

% Omission 5.2 50.6 0.272

�TM
No-Change 394 274 668 59.0 41.0
Change 6 1144 1150 99.5 0.5
Total 400 1418 1818
% Correct 98.5 80.7 84.6 K

% Omission 1.5 19.3 0.64

TABLE 4. ACCURACY AND ERROR MATRIX DESCRIPTIVE STATISTICS

Map Change Change
Layer Accuracy Kappa Error of Omission Error of Commission

�SM 0.594 (�/�0.041) 0.272 (�/�0.040) 0.506 (�/�0.027) 0.0291 (�/�0.013)
�CM 0.520 (�/�0.065) 0.199 (�/�0.039) 0.601 (�/�0.026) 0.0358 (�/�0.016)
�TM 0.846 (�/�0.017) 0.638 (�/�0.039) 0.193 (�/�0.021) 0.00522 (�/�0.0046)

Obviously, the larger pixel size of the MODIS data has created
a similar area of change even though the number of change
locations has been reduced (omitted). Comparatively, �TM

was able to detect 83.87 percent of the total change and
97.84 percent total No-Change found within the �GIS layer.
It still is not able to detect perfectly 100 percent of the
change that was found by manual interpretation and GIS data
layers, however, there is only a discrepancy of 2.6 percent
across the entire area, i.e., less than half of the error associ-
ated with the �SM.

Cramer’s V and the Contingency Coefficient (C)
The results of the Map Agreement Comparison, Cramer’s
V, and Contingency Coefficient are displayed in Table 5.
Cramer’s V values show significant agreement between the
�SM and �TM with �GIS, 0.38 and 0.67, respectively. This
value is fairly low for the MODIS detection and closer to no
association (Cramer’s V � 0) than to complete association
(Cramer’s V � 1.00). However, if �TM is normally accepted
as the best replacement to �GIS, (Cramer’s V � 1.00), a
different interpretation is that the maximum Cramer’s
V is 0.67 instead of 1.00. This indicates that the association
is more likely 0.38 out of a possible 0.67 resulting in a
“weighted” Cramer’s V of 0.57.

Natural Breaks Classification
As anticipated, there is an increasing trend in the overall
change class accuracy based on MODIS data with increasing
polygon size (Figure 4). The error of omission decreases
consistently to 0 percent in the classification for the largest
size class; the smallest size class is the least accurate as
expected. The error of omission appears to level off to
approximately 0.21 with size classes 6 and 7 (14.5 to
19.2 hectares and 19.2 to 24.5 hectares); one interpretation

of these results is that change polygons of approximately
15 hectares in area may be the optimal size for successful
detection of change features using MODIS data. At this
point, the error of commission also decreases slightly, at least
until Class 7, at which point the error of commission does
increase slightly. Unfortunately, this is the point in the sam-
ple at which the number of training data within each class is
quite low, and therefore, this could have significantly affected
the error of omission associated with the No-Change class. In
an attempt to overcome this problem, the original segmenta-
tion used for the change detections was used to apply a size
class to each of the 400 No-Change points. This did improve
the results for all map agreement tests, however, the overall
trend did not change as expected. One reason may be that the
polygons within the segmentation do not match perfectly
with �GIS, and therefore, the overall area of change is affected
(Figure 6). Secondly, since the scale parameter of the segmen-
tation was preset to 9, this effectively limits the representa-
tion within the larger size classes (Table 2); for example, for
class 13 (polygons over 10 hectares), n � 5, and even small
differences have large impacts on the results. Plate 3 suggests
one additional problem when applying coarser satellite
resolution data sets to a polygon based map update. The GIS

polygons are shown in red, and the underlying polygons are
those mapped using the segmentation procedure on the
original Landsat imagery; clearly, there are major questions
associated with the appropriateness of the Landsat-based
polygons as identifiable features when the GIS polygons are
mapped as change. This problem is made even more difficult
to resolve when the larger pixel sizes of the MODIS data set
are incorporated in the change update. In summary, however,
the users of the map are most interested in overall accuracy
on the ground, and therefore, would likely prefer to use
�GIS as the reference map when available.
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Plate 1. An example of change detected within �SM compared to 2001 Landsat-7 ETM� and 2005
Landsat-5 TM. Highlighted areas include: (1) No-Change detected, (2) partial Change detected, and
(3) almost perfect Change detected.

Pixel Size, Pixel Location, and Thresholding Issues
When using different spatial resolution data sets, pixel size
and location are important mapping challenges. Plate 4
shows examples of this; when the pixel size is different in

the update imagery, there can be new blockiness introduced
into the final update map product that may reduce user
confidence and applicability. The pixel location problem
suggests that the segmentation in the original land-cover
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Plate 2. Agreement between �SM and �TM with �GIS. Black areas indicate areas of perfect
agreement.

TABLE 5. RESULTS OF THE MAP AGREEMENT COMPARISON (PERCENT AREA) AND CRAMER’S V

Percent Area of Study Area

�GIS** vs. �GIS** vs. �SM** vs.
�TM* �SM* �TM* �GIS

“NO-CHANGE” AGREEMENT 94.81 93.1 92.17 96.9
“CHANGE” AGREEMENT 2.6 1.68 2.33 3.1
DATASET 2** “CHANGE” 0.51 1.42 3.15

MISSED BY DATASET 1*
DATASET 1* “CHANGE” 2.09 3.79 2.36

MISSED BY DATASET 2**
CRAMER’S V 0.670 0.383 0.431

map may not be optimal for the update process; in other
words, there can be a difference between the areas identi-
fied as change in the imagery and the available segments
that need to be updated. Some decisions might be required
that have little in the way of practical guidance to support
them, and, again, user confidence and map applications
may be compromised. Additionally, these figures display
the challenges associated with polygon size and shape,
again, a characteristic of the final map that is dependent on
the original, segmented land-cover product.

Thresholding has long been an issue within satellite
imagery change detection studies, and the present study is

no exception; the results presented here are very sensitive to
the selection of the threshold, as the mapper is trying to
balance the detection of too much change versus missing
actual change features on the ground. The ability to select
an appropriate threshold of change to exclude undesired
noise determines the success of the change detection.
Typical methods are based on qualitative choices, for
example, airphoto interpretation (Mas, 1999), field methods,
and individual expertise (Lyon et al., 1998). Few studies are
available within the literature that use more quantitative
methods; it is possible that higher overall accuracy in the
MODIS change detection procedures could be obtained with a
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Figure 6. Partial detection due to �GIS polygon
centroid location: (A) shows agreement between �SM
and the accuracy point, and (B) is an example where
change was partially detected within �SM, however,
the location of the centroid in this polygon is outside
of the change area and therefore excluded in the
accuracy assessment.

different thresholding technique. One suggestion for future
studies is an automated binary change detection model
recently created by Im et al. (2007). This model calibrates
multiple user input variables for continuous thresholds and
produces graphs that assist the users’ understanding of
patterns between threshold and accuracy, at the same time,
removing the noise and false positives in an efficient
manner (Im et al., 2007). These models shows promise for
improving the accuracy of detecting forest disturbance, even
possibly among polygons less than 15 hectares; however, the
results presented here are internally consistent since the
same two-standard deviation threshold was applied in all
change layer procedures.

Conclusions
The main objectives of this study were to detect forest
disturbance using a multiple spatial resolution, polygon-
based method and to determine the minimum patch size
at which these changes can be accurately detected. Quantita-
tive data on MODIS change detection, the multiple spatial
resolution method, and patch size provides a better under-
standing of the potential for MODIS to be used in updating
existing map products for use in grizzly bear studies and

monitoring of other regional or global areas. Overall, the
MODIS sensor performed reasonably well considering the
spatial resolution is less than eight times that of Landsat TM;
the greatest sources of error reported were the relatively
large omission errors in small change polygons. Changes
greater than 15 hectares were detected accurately, thereby
providing a basis for further research and identifying areas
where higher spatial resolution imagery are required. The
results suggest that because smaller changes are not reliably
detected by the MODIS sensor, the map updates presented
here are probably appropriate in some but possibly not all
wildlife studies. However, despite the significant amount
of detail and information not present when these data are
compared to Landsat or SPOT sensor data, using coarse
resolution data are clearly better than doing nothing and
using an outdated map. For example, landscape fragmenta-
tion analysis may be reasonable when the landscape metrics
are calculated using MODIS-based change detection maps.
More research on the impact of different mapping products
on this landscape fragmentation and other wildlife applica-
tions may be useful in future.

Also, it is important to note that these results are based
on only the “first” layer of data and no additional layers
(that may be available with some MODIS products) were
utilized to assess whether or not some sort of radiometric
normalization of MODIS datasets may improve the overall
results of image differencing. In the study by Fraser et al.
(2005), a Thiel-Sen regression applied to MODIS imagery
proved to be effective in normalizing the broad-scale
reflectance variations across Canada (their study area was
the entire country). Additional studies that focus on this
aspect will determine how to account for the error associ-
ated with radiometric, atmospheric, and topographic differ-
ences; further work may be required in those areas of change
that are the result of differences in phenology (seasonal
vegetation models, for example).

Furthermore, much of remote sensing science is mov-
ing towards mapping methods that are comprised of
more polygon-based methods; therefore, research into the
various polygonal issues should be investigated, including
the original land-cover mapping specifications in the
segmentation approach. More broadly, developing a rough
guideline that provides information regarding optimal
scale values for the derivation of specific land-use or land-
cover features across the landscape may significantly
improve the results of any mapping effort, and would
have been of great value in this study. The general idea
is that change detection methods can be tailored if there
is a known relationship between the information content
of the imagery and the type of changes that occur in the
environment that is to be mapped; this would enable a
more thorough multiple-scale approach to be implemented
in which different parts of the mapping region are mapped
for updates with different sources of data.
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Plate 3. Example showing the affect of polygon size and shape. Change was detected in both �GIS and
�SM, however, error of commission occurs within the change class since the original polygon was
created for the entire forest stand that was only partially harvested.
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